低温熔盐中Mg基储氢合金的电沉积及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基储氢合金以储氢量高、密度小、资源丰富与价格低廉等一系列优点,被认为是最具有开发前景的储氢材料之一。本文从尿素-乙酰胺-NaBr低温熔盐体系中电沉积了镁基合金,并研究了该合金电化学性能。本文的主要研究内容如下:
     1.研究了Ni(II)、Mg(II)及La(III)分别在尿素-乙酰胺(4.27 mol·L-1)-NaBr(1.40 mol·L-1)低温熔盐中的电化学行为,循环伏安实验证实Ni(II)在该熔盐体系中的还原是一步不可逆过程,并计算了Ni(II)电还原的扩散系数D0 = 2.03×10-7 cm2·s-1和电荷传递系数α=0.42。研究发现Mg(II)和La(III)无法单独在该熔盐体系中还原析出。用计时电流曲线来表征成核过程,结果表明Ni(II)的还原是瞬间三维成核过程,并计算Ni(II)电还原的扩散系数D0 = 9.09×10-7 cm2·s-1。
     2.研究了Mg(II)、La(III)与Ni(II)在尿素-乙酰胺-NaBr低温熔盐体系中的共沉积行为。从循环伏安实验和对沉积膜的EDS检测发现,Ni-La、Ni-Mg及Ni-Mg-La合金可以在该体系中共沉积出来,并且是分步还原。本文用多核络合物中间体来解释上述合金的共沉积的机理。
     3.利用恒电位和恒电流方法制备了Ni-La、Ni-Mg及Ni-Mg-La合金薄膜。研究了沉积电位、阴极电流密度及主盐浓度比对沉积膜组成的影响。用能谱(EDS)、扫描电镜(SEM)和X射线衍射(XRD)分析了镀层结构和表面形貌。结果表明,电沉积得到的合金膜均为含非晶的多相结构。
     4.所制备的薄膜合金的最大放电容量和电极充放电循环稳定性顺序为:Ni-Mg-La﹥Ni-La﹥Ni-Mg。不同的合金膜电极循环伏安曲线氧化峰电流均随扫描次数增加而减小;电极放电容量越大,其循环伏安曲线氧化峰面积越大,峰电流越高。速度扫描实验表明,合金膜电极氧化峰电流与扫描速度的平方根成线性关系,说明储氢电极反应是受氢的扩散所控制。
The Mg-based hydrogen storage alloys are considered as one of the most promising hydrogen storage alloys,offering the combination of great hydrogen storage capacity,low density,abundant resource and low cost.The Mg-based alloys were electrodeposited in urea-acetamide-NaBr low temperature molten salts,and the electrochemical performance of the alloys was studied.The main content in this dissertation was summarized as follows:
     1.The electrochemical behaviours of Ni(II)、Mg(II)、La(III) on Cu electrode was investigated in urea-acetamide(4.27 mol·L-1)-NaBr(1.40 mol·L-1) low temperature molten salts, respectively.The reduction processes of Ni(II) were proved as one step irreversibility by cyclic voltammetry experiments.The diffusion coefficient (D0) and the transfer coefficient (α) of the Ni(II) was calculated as D0=2.03×10-7 cm2·s-1 andα=0.41 respectively. Mg(II) and La(III) could not be electrochemically reduced in this molten salts independently. The nucleation processes were three-dimentional direction and instantaneous processes which was studied by chronoamperometry methods, and the diffusion coefficient (D0) was calculated as 9.09×10-7 cm2·s-1.
     2.The codeposition behaviors of Mg(II)、La(III) and Ni(II) were studied in low temperature molten salts by cyclic voltammetry and Energy dispersion spectrum(EDS).It was indicated that the codeposition of Ni-La、Ni-Mg and Ni-Mg-La alloys was step-by-step reduction. The codepositon mechanism was explained by the polynuclear complex of electroactive intermediates.
     3.The Ni-La、Ni-Mg and Ni-Mg-La alloys were prepared by constant current and potentiostatic electrodeposition. The effect of the deposition potential, current density and main salt concentration ratio on the deposits composition was investigated. The structure and surface morphology of the deposits were analyzed by EDS、Scanning Electronic Microscope(SEM) and X-ray diffraction (XRD). The results showed that the deposits were multi-phase containing amorphous phase.
     4.The maximum discharge capacity and the cycle-life sequence of the deposits were both as follows: Ni-Mg-La>Ni-La>Ni-Mg. The cyclic voltammetry anodic peak current (Ip) of different alloy electrodes was decreased with increasing sweeping number,and the anodic peak area and its Ip are both proportional to electrode discharge capacity. The linear relationship between Ip and v1/2 (v is sweeping rate) indicated that the electrode discharge reaction was controlled by hydrogen atom diffusion process.
引文
[1]丁福臣,易玉峰.制氢储氢技术[M].北京:化学工业出版社,2006
    [2]王亚雅.储氢材料研究进展[J].金属功能材料,2004,11(3):63
    [3]廖小珍,刘文华,马紫蜂.贮氢合金进展[J].稀有金属,2001,25(2):139 -143
    [4]程菊,徐德明.镍氢电池用贮氢合金现状与发展[J].金属功能材料,2000,7 (5) :13-15
    [5]孙喜龙,杨桂玲,高贵军,等.镁基复合材料贮氢性能的研究[J].河北北方学院学报(自科版),2006,22 (1):32-34
    [6]Kleperis J, Wojcik G,Czerwinski A, etal.Electrochemical behavior of metal hydrides[J]. Journal of Solid State Electrochemistry, 2001,5(4) :229-249
    [7]王宁,席生歧.提高Mg-Ni储氢合金电极性能的因素[J].稀有金属材料与工程,2002,31(4):252-256
    [8]胡子龙.贮氢材料[M].北京:化学工业出版社,2002.
    [9]陈军,袁华堂.新能源材料[M].北京:化学工业出版社,2003,52-54
    [10]Sakai T, Ushara I, Ishikawa H. R&D on metal hydride materials and Ni-MH batteries in Japan [J]. Journal of Alloys and Compounds, 1999, 293-395: 762-769
    [11]Kim DM, Jiang KJ, Lee J Y. A review on the development of AB2-type Zr-Based Laved phase hydrogen storage alloys for Ni-MH rechargeable batteries in the Korea Advanced Institute of Science and Technology[J]. Journal of Alloys and Compounds, 1999, 293-295: 583-592
    [12]文凡,译.高效镍氢电池用贮氢合金的进步[J].金属功能材料,2000,7(1):37 - 38
    [13]Berlouis L E A, Cabrera E,et al. A thermal analysis investigation of the hydriding properties of nanocrystalline Mg–Ni based alloys prepared by high energy ball milling[J]. Journal of Alloys and Compounds, 2000, 305(1): 82-89
    [14]Zaluski L, Zaluska A,et al. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying[J]. Journal of Alloys and Compounds, 1995, 217(2): 245-249
    [15]张耀,李寿权.球磨表面包覆对镁基贮氢合金电化学性能的影响[J].中国有色金属学报,2001(4):582 - 586
    [16]王辉,曾美琴.Mg基贮氢合金研究进展[J].金属功能材料,2002(2):4 - 7
    [17]Reilly JJ, Wiswall R H. The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J]. The Journal of Inorganic Chemistry, 1968, 7: 2254-2256
    [18]张羊焕.快淬低钴、无钴AB5型和La2Mg2Ni系贮氢合金结构及电化学性能研究[D].钢铁研究总所博士学位论文,2004
    [19]Zhang Yunshi, Yang Huabin, Yuan Huatang,et al. Dehydriding properties of ternary Mg2Ni1?xZrx hydrides synthesized by ball milling and annealing[J]. Journal of Alloys and Compounds, 1998, 269(2): 278-283
    [20]申泮文,张允什,袁华堂等.贮氢材料新合成方法的研究-置换-扩散法合成Mg2Cu[J].高等学校化学学报,1985,6(3) :197-200
    [21]申泮文,曾爱东.氢与氢能[M].北京:科学出版社,1988
    [22]袁华堂,李秋荻,王一菁等.新型镁基贮氢合金的合成及电化学性能的研究[J].高等学校化学学报,2002,23(4):517-520
    [23]Yuan H T, Cao R, Wang L B,et al.Hydrogen Energy Process X II,2000,1:570-574
    [24]Yuan H T, Yang E D, Yang H B,etal. Characteristics of Mg2?xTixNi1?yCuy-H2 (0    [25]Saita, Li LQ, Saito K,et al.Hydriding combustion synthesis of Mg2NiH4[J]. Journal of Alloys and Compounds s,2003(356-357): 190-193
    [26]刘文斌,徐光亮,贾志华.氢化燃烧合成镁基贮氢合金的研究进展[J].粉末冶金技术,2005,18 (6):456-460
    [27]Chen Y,Williams J S.Formation of metal hydride by mechanical alloying[J]. Journal of Alloys and Compounds, 1995, 217: 181-184
    [28]王常春,张庆安.球磨镁和石墨的相结构及其氢化行为[J].安徽工业大学学报,2005,22 (4):355-357
    [29]Ruggeri S, Roue L, Liang G,et al. Influence of carbon on the electrode characteristics of MgNi prepared by mechanical alloying[J]. Journal of Alloys and Compounds, 2002, 343: 170-178
    [30]成钢,顾正飞,周怀营,等.MgNi非晶合金的制备及电极性能的研究[J].金属功能材料,2005,12(2):16-20
    [31]王毅,邱晓航,申泮文.镁基储氢材料研究新进展[J].化学通报,2004,67(5):327-332
    [32]季世军,孙俊才,许彬,等.非晶化程度对不同成分Mg-Ni非晶合金电极充放电容量的影响[J].功能材料,2000,31:45-47
    [33]唐有根,徐益军等.贮氢合金机械合金化制备的研究进展[J].金属功能材料, 2002,9(3):1-4
    [34]Kohno T, Yoshida H, Kawashima F,et al. Hydrogen storage properties of new ternary system alloys:La2MgNi9, La5Mg2Ni23, La3MgNi14[J]. Journal of Alloys and Compounds, 2000, 311: L5
    [35]Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9(R=La, Ce, Pr, Nd, Sm and Gd)built from MgNi2 Laves-type layers alternating with AB5 layers[J]. Journal of Alloys and Compounds, 1997, 257: 115-121
    [36]Pan Hongge,Liu Yongfeng,Gao Mingxia, et al. A Study of the Structural and Electrochemical Properties of La0.7Mg0.3(Ni0.85Co0.15)x (x = 2.5-5.0) Hydrogen Storage Alloys[J]. Journal of The Electrochemical Society, 2003, 150(5): A565-A570
    [37]Pan Hongge, Liu Yongfeng, Gao Mingxia, et al. An investigation on the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x=3.15-3.80) hydrogen storage electrode alloys[J]. Journal of Alloys and Compounds, 2003, 351(1-2): 228 - 234
    [38]Liu Yongfeng(刘永峰), Pan Hongge(潘洪革), Jin Qinwei(金勤伟) et al. La0.7Mg0.3Ni3.4-xCo0.6Mnx(x=0.0~0.5)贮氢电极合金的结构、储氢特性及电化学性能[J].Rare Metal Materials and Engineering(稀有金属材料与工程), 2005, 34(6): 867-871
    [39]Liao B, Lei Y Q, Chen L X,et al. A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9(M=Co, Mn, Fe, Al, Cu, Sn)hydrogen storage electrode alloys[J]. Journal of Alloys and Compounds, 2004, 376: 186-195
    [40]Pan Hongge, Liu Yongfeng, Gao Mingxia, et al. Electrochemical Properties of theLa0.7Mg0.3Ni2.65–xMn0.1Co0.75Alx(x=0-0.5)Hydrogen Storage Alloy Electrodes[J]. Journal of The Electrochemical Society, 2005, 152(2): A326-A332
    [41]Liao B, Lei Y Q, Chen L X et al. Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3?xNi9(x=1.6-2.2)hydrogen storage electrode alloys for nickel–metal hydride batteries[J]. Journal of Power Sources, 2004, 129(2): 358-367
    [42]陈其忠,姚应心编.电镀技术基础.上海科学技术出版社,1984
    [43]Brenner A. Electrodeposition of Alloys:Principles and practice[M].New York:Academic Press, 1963
    [44]Atkins.P.W. Physical Chemistry[M].Oxford:Oxford University Press, 1998, 936
    [45]郭鹤桐,覃奇贤.电化学教程[M],天津:天津大学出版社,2000,302
    [46]单秀萍,刘卫红.电沉积工艺对Mg2Ni储氢合金的电化学性能的影响[J].化学研究,2005,16(1):55-58
    [47]张晓燕,刘卫红,单秀萍.水溶液中电沉积镁基储氢合金的研究[J].电镀与精饰,2006,28(6):1-4
    [48]刘卫红,廖龙标.水溶液中镁-镍合金的电沉积合成[J].复旦学报(自然科学版),2004,43(4):511-514
    [49]Liao Longbiao, Liu Weihong, Xiao Xianming.The influence of sodium diphenylamine sulfonate on the electrodeposition of Mg–Ni alloy and its electrochemical characteristics[J]. Journal of Electroanalytical Chemistry, 2004, 566: 341-350
    [50]Doron Aurbach. Nonaqueous Electrochemistry. New York:Marcel Dekker.Inc, 1999
    [51]藤岛昭,相泽益男,井上彻著.陈震,姚建年译.电化学侧定方法[M].北京:北京大学出版社,1995
    [52]Gregory T D, Hoffman R J, and Winterton R C. Nonaqueous electrochemistry of magnesium, application to energy storage[J]. Journal of The Electrochemical Society, 1990, 137: 775-780
    [53]Lossius L P, Emmenegger F. Plating of magnesium from solvent[J]. Electrochim. Acta, 1996, 41: 445-447
    [54]Liebenow C.Reversibility of electrochemical magnesium deposition from Grignard solutions[J]. Journal of Applied Electrochemistry , 1997, 27: 221-225
    [55]张海朗,王文继,张锁江.镁电沉积研究评述[J].化学研究与应用,2003,15(3):293-297
    [56]张文智,徐达锋.恒电流暂态法研究镁在非水体系的电沉积[J].物理化学,1991,7(5):609-612
    [57]刘翔.有机溶剂电镀铝镁合金的工艺与性能研究[D].天津:天津大学,2005
    [58]王吉会,张爱平,刘翔等.Al-Mg合金镀层的制备与性能[J].中国有色金属学报,2006,16(4):575-579
    [59]王建朝.二甲基甲酰胺中电沉积镁镍合金的研究[J].青海师范大学学报(自然科学版),2003,2:48-51
    [60]王建朝,何凤荣,刘冠昆,童叶翔.二甲基甲酰胺中镁钴合金的电沉积[J].中山大学学报(自然科学版),2002,41(2):60-63
    [61]王建朝,何凤荣,刘冠昆,童叶翔.二甲基甲酰胺中Y-Mg-Co合金膜的电化学制备[J].物理化学,2002,18(8):732-736
    [62]Li Gaoren, Ke Qinfang, Liu Guankun, etal. Studies on the electrochemical preparation of MgCeCo alloy thin films on Cu substrates in urea–DMSO system[J]. Materials Letters, 2006, 60: 2611-2616
    [63]吴纯素.熔盐体系电沉积技术进展[J].材料保护,1990,23( 1-2):58-61
    [64]段淑贞,乔芝郁.熔盐化学-原理和应用.北京:冶金工业出版社,1992:201-203
    [65]林忠夫,川崎元雄,小西三郎著.徐清发,李国英译.实用电镀.北京:机械工业出版社,1980:23-28
    [66]李文超主编.冶金与材料物理化学.北京:冶金工业出版社,2001,505
    [67]LIU G K, YU Q X, YANG Q Q. A study on preparation of rich-yttrium-magnesium middle alloy by codeposition at electrolysis molten salt[J]. Journal of The Electrochemical Society, 1985, 132(6): 352
    [68]CATHRO K J, DEUTSCHER R L and SHARMA R A, Electrowining magnesium from its oxide in a melt containing neodymium chloride[J]. Journal of Applied Electrochemistry, 1997, 27(4): 404-413
    [69]杨宝刚,于亚鑫,王兆文,邱竹贤.镁在钢板阴极上的电沉积现象[J].东北大学学报(自然科学版),2000,21(5):524-527
    [70]Borresen B, Haarberg G M and Tunold R. Electrodeposition of magnesium from halide melts-charge transfer and diffusion kinetics[J]. Electrochimica Acta, 1997, 42(10): 1613-1622
    [71]Martinez A M, Borresen B, Haarberg G M,etal. Electrodeposition of Magnesium from CaCl2-NaCl-KCl-MgCl2 Melts[J]. Journal of The Electrochemical Society, 2004, 151(7): 508-513
    [72]Takenaka T, Naka Y, Narukawa N,etal. Direct electrodeposition of Mg containing La in molten salt and its corrosion property[J]. Electrochemistry Society of Japan, 2005, 73 (8): 706-709
    [73]Takenaka T, Isazawa S, Mishina M, etal. Electrorefining of magnesium in molten salt and its application for recycling[J]. Materials Transactions, 2003, 44(4): 546-551
    [74]Martinez A M, Borresen B, Haarberg G M,etal. Electrodeposition of magnesium from the eutectic LiCl–KCl melt[J]. Journal of Applied Electrochemistry, 2004, 34(12): 1271-1278
    [75]Hurley F H and Wier T P. Electrodeposition of Metals form Fused Quaternary Ammonium Salts[J], Journal of The Electrochemical Society, 1951, 98(2): 203-206
    [76]Chum H L, Koch V R, Miller,etal L L. An Electochemical Scrutinity of Organometallic Iron Complexes and Hexamethylbenzene in a Room Temperature Molten Salt[J], Journal of the American Chemistry Society, 1975, 97: 3264-3265
    [77]Wilkes J S, Levisky J A, Wilson R A,etal. Dialkylimidazolium chloroaluminate melts:A new class of room-temperature ionic liquids for electrochemisty, spectroscopy, and synthesis[J]. The Journal of Inorganic Chemistry, 1982, 21: 1263-1264
    [78]Hagiwara R, Ito Y, Room temperature ionic liquids of alkylimidazolium cations and fluoroanions[J]. Journal of Fluorine Chemistry, 2000, 105(1): 221-227
    [79]Carlin R T, Fuller J. Stabilized rechargeable cell in MSE and method therefor. USA Patent 5,552,238, 1996
    [80]Piersma B J, Ryan D M, Schumacher E R, etal. Electrodeposition and Stripping of Lithium and Sodium on Inert Electrodes in Room Temperature ChloroaluminateMolten Salts[J]. Journal of The Electrochemistry Society, 1996, 143(3): 908-913
    [81]Gordon C M, Holbrey J D, Kennedy,etal A R. Ionic Liquid Crystals: Hexafluorophosphate Salts[J]. Journal of Materials Chemistry, 1998, 8: 2627-2636
    [82]Liebenow C, Yang Z, Lobitz P.The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates[J]. Electrochemistry Communications, 2000, 9(2): 641–645
    [83]NuLi Y, Yang Jun, Wang Pu. Electrodeposition of magnesium film from BMIMBF4 ionic liquid[J]. Applied Surface Science, 2006, 252(23): 8086–8090
    [84]NuLi Y, Yang J, Wang J L, etal. Electrochemical magnesium deposition and dissolution with high efficiency in ionic liquid[J]. Electrochemical and Solid state Letters, 2005, 8(11): 166-169
    [85]NuLi Y, Yang Jun and Wu Rong. Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid[J]. Electrochemistry Communications, 2005, 7(11):1105-1110
    [86]Iwagishi T, Sawada K, Yamamoto H, etal. Electrodeposition of Zinc-Magnesium Alloy from 1-Ethyl-3-Methylimidazolium Bromide Molten Salt[J]. Electrochemistry Society of Japan, 2003, 71(5): 318-321.
    [87]梁宏莹,吴锋,陈立泉等.以高氯酸锂为基的二元低温熔盐电解质[J].电池,2002,32 (1):47- 49
    [88]杨绮琴,刘冠昆.尿素-金属氯化物熔体的电导特性.中山大学学报(自然科学版),1995,34(2):47-51
    [89]刘莉治.尿素低温熔盐中稀土与铁族离子的诱导共沉积[D].中山大学硕士毕业论文,广州,2001
    [90]童叶翔,刘鹏,刘莉治等.尿素-NaBr低温熔盐中Fe2+和Sm3+的电化学行为及其诱导共沉积[J].中国稀土学报,2002,20(1):11-15
    [91]Yang Qiqin, Qiu Kairong, Keshan, etal. Electrodeposition of Ti-Ni Alloy in Urea-NaBr-KBr Melt[J]. Trans.Nonferrous Met. Soc. China, 1998, 8(1): 138-141
    [92]王建朝,徐常威,童叶翔等.乙酰胺-尿素-NaBr熔体中Tb-Ni薄膜合金的制备.中山大学学报(自然科学版),2002,41(1):119-122
    [93]Liu Lizhi, Tong Yexiang, Yang Qiqin. Electroreduction of Co(II), Ni(II) andCo-deposition with La(III) in urea-NaBr Melt[J]. Rare Metals, 2000, 19(3): 237-241
    [94]王建朝,徐常威,何凤荣等.酰胺-尿素-NaBr熔体中电沉积Tb-Co合金的研究[J].中国稀土学报,2003,21(5):584-588
    [95]李高仁,徐常威,童叶翔等.乙酰胺-尿素-NaBr熔体中Gb-Co合金膜的电沉积研究[J].稀有金属,2004,28(2):304-307
    [96]Liu Peng, Du Yuping, Yang Qiqin, etal. Induced Codeposition of Sm-Co Amorphous Films in Urea Melt and Their Magnetism[J]. Journal of The Electro- chemical Society, 2006, 153(1): 57-62
    [97]中山大学金属系.稀土物理化学常数[M].冶金工业出版社,1978.
    [98]Bard A J, Faulkner L R. Electrochemical Methods, Fundamentals and Applications. New York: john Wiley&Sons Press, 1980
    [99]Afshar A, Dolati A G, Ghorbani M. Electrochemical Characterization of the Ni -Fe alloy electrodeposition from chloride-citrate-glycolic acid solutions[J]. Materials Chemistry and Physics, 2002, 77: 352-358
    [100]Tetsuya Tsuda.Nucleation and surface morphology of aluminum-Lanthanum alloy electrodeposited in a LaC13-EMIC room tempetature molten salt[J].Electrochim Acta., 2002, 236: 2817-2820
    [101]Liu Peng, Yang Qiqin, Tong Yexiang, etal. Electrodeposition of Gd-Co film in organic bath[J]. Electrochemical Acta, 2000, 45(13): 2147-2152
    [102]Schwartz M, Myung N V, Nobe K. Electrodeposition of Iron Group-Rare Earth Alloys from Aqueous Media[J]. Journal of The Electrochemical Society, 2004, 151(7): 468-477
    [103]Zhang J, Paul Evans, Giovanni Zangari. Electrodeposition of Sm-Co nanoparticles from aqueous solutions[J]. Journal of Magnetism and Magnetic Materials, 2004, 283:89-94
    [104]Lokhande C.D., Kumbhar P.P., Eletrodeposition of Dysprosium from a nonaqueous bath[J].Metal Finishing, 1994, 92(11):70-72
    [105]Yuan Dingsheng, Liu Yingliang, Liu Guankun, etal. Electrodeposition of Tm-Co alloy films in dimethylsulfoxide[J]. Journal of The Electrochemical Society, 2004, 151(11): 749-751
    [106]Willems J J G. Metal hydride electrodes stability of LaNi5-related compounds[J]. Philips Journal of Research, 1984, 39(1): 1-10
    [107]张永俊,孙俊才,于志伟等.贮氢合金电极的发展[J].金属功能材料,2001,8(2):6-11
    [108]陈长聘,王春生.高性能贮氢电极合金[J].物理,1998,27(3):156-163
    [109]Andreas Zuttel, Felix Meli, Louis Schlapbach.AB2 and AB5 metal hydride electrodes:a phenomenological model for the cycle life[J]. Journal of Alloys and Compounds, 1993, 200(1-2): 157-163
    [110]Joubert J M, Latroche M, Cerny R. Hydrogen cycling induced degradation in LaNi5-type materials[J].Journal of Alloys and Compounds, 2002, 330-332: 208-214
    [111]Kitamura T, Iwakura C, Tamura H. Comparative study of LaNi5-type alloy electrodes with and without Pd-plated layer by means of cyclic voltammetry[J]. Electrochimica Acta, 1982, 27(12):1729-1731
    [112]Kitamura T, Iwakura C, Tamura H. Embrittlement of LaNi5-type alloy electrodes during the cathodic evolution of hydrogen[J]. Electrochimica Acta, 1982, 27(12): 1723-1727
    [113]Tamura H, Iwakura C, Kitamura T. Hydrogen evolution at LaNi5-type alloy electrodes[J]. Journal of the Less Common Metals, 1983, 89(2): 567-574
    [114]Machida K, Enyo M, Adachi G, etal. The hydrogen electrode reaction characteristics of thin film electrodes of Ni-based hydrogen storage alloys[J]. Electrochimica Acta, 1984, 29(6): 807-815
    [115]Yayama H, Kuroki K, Hirakawa K, etal. Electrode Resistance of Metal Hydride in Alkaline Aqueous Solution[J]. Jpn. J. Appl. Phys., 1984, 23: 1619-1623
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.