氮镉胁迫下秋茄若干生理过程及其生物量变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前红树林湿地重金属污染加重的现实及利用红树林湿地进行污水处理的设想,本文以红树植物秋茄(Kandelia candel L.Druce)为研究对象,通过温室砂培,模拟研究不同浓度镉(Cd)和氮(N)处理条件下,秋茄幼苗N、Cd累积分配变化规律及生长、生理响应。试验中N、Cd分别设四个浓度梯度:0mg/L、20mg/L、40mg/L、60mg/L;0mg/L、0.5mg/L、1.0mg/L、2.0mg/L。秋茄幼苗在不同浓度N、Cd处理条件下培养90d后,其植株Cd含量、N含量、叶绿素含量、膜保护酶活性及生物量等指标的变化表明:
     1.试验条件下,不同浓度N、Cd处理对秋茄幼苗不同器官中Cd含量的变化研究表明:秋茄幼苗根部Cd含量明显高于茎和叶,根部是吸收、累积Cd的主要器官。不同的Cd处理系列中,秋茄幼苗各器官中Cd的含量随着施N量的增加而增加;同样,在不同的N处理系列中,Cd处理浓度增加时,幼苗各器官中Cd含量亦随之增加。在同一Cd胁迫水平条件下,秋茄幼苗各器官对Cd的累积系数均表现为随施N量的增加而变大:在同一施N水平下,随着Cd处理水平的提高,秋茄幼苗叶片、茎对Cd的累积系数逐渐下降。
     2.试验条件下,不同浓度N、Cd处理对秋茄幼苗不同器官中N含量的分析研究表明:秋茄幼苗根、茎、叶中N含量随N施用量和Cd胁迫浓度的改变而改变,叶片N含量高于茎、根。在同一N水平条件下,Cd胁迫浓度的增加通常会导致幼苗各器官中N的含量减少;而在同一Cd胁迫浓度下,N施用量的增加则会使幼苗各器官N含量显著增加。
     3.试验条件下,不同浓度N、Cd处理对秋茄幼苗叶绿素影响的效应分析表明:同一Cd胁迫水平下,随着施N量的增加,秋茄幼苗叶绿素a(Chla)和叶绿素b(Chlb)含量均表现出增加的趋势,而在同一N水平处理下,叶绿素变化规律并不一致,随着Cd胁迫浓度的增大,秋茄幼苗叶绿素a(Chla)含量呈先增后减的抛物状变化趋势,在Cd浓度为0.5mg/L处理中达到其最大值;而叶绿素b(Chlb)含量随着Cd胁迫浓度的增大呈缓慢减少的趋势。
     4.试验中,不同浓度N、Cd处理秋茄幼苗叶片SOD活性的变化分析表明:不同的镉处理系列中,SOD活性随着氮处理浓度的提高而呈上升趋势,在不同氮水平处理间的SOD活性差异均达到极显著水平;在不同氮处理条件下,SOD活性则随着镉处理水平的提高也呈上升趋势,中镉(Cd 1.0mg/L)和高镉(Cd 2.0mg/L)条件下,秋茄幼苗叶片SOD活性与对照间的差异均达到极显著水平。
     5.试验条件下,不同浓度N、Cd处理对秋茄幼苗叶片POD活性效应分析的变化表明:在不同氮系列中,秋茄幼苗POD活性随着镉胁迫浓度的提高而呈上升趋势,并且在高镉(Cd2.0 mg/L)、中镉(Cd 1.0mg/L)、低镉(Cd 0.5mg/L)处理后,秋茄幼苗POD活性与对照间(Cd 0mg/L)的差异均达到极显著水平。不同的镉处理系列中,POD活性随着氮处理浓度的提高而呈下降趋势,在经镉胁迫条件下,经较高氮(≥40mg/L)处理,秋茄幼苗POD活性与对照(N0mg/L)间的差异达到极显著水平。
     6.在各个N处理系列中,秋茄幼苗叶片的MDA含量均随着Cd处理浓度的升高而增大;中(Cd 1.0 mg/L)、高(Cd 2.0 mg/L)浓度Cd处理间及与对照(Cd0mg/L)之间均存在极显著差异。在不同浓度镉处理条件下,幼苗叶片的MDA含量随着N处理浓度的增大而减少,在4个镉系列中,高氮及中氮处理条件下秋茄幼苗叶片的MDA含量与对照(N 0mg/L)之间均存在极显著差异。
     7.在同一N水平条件下,秋茄幼苗根、茎、叶的生物量随着Cd胁迫浓度的增加而改变;在大多数处理中,生物量均随着Cd胁迫浓度的增加而表现出降低的变化趋势。而在同一Cd胁迫浓度下,幼苗根、茎、叶的生物量均随着施N量的增加而显著增加。
     本研究可为Cd胁迫下的秋茄栽培以及利用红树植物秋茄进行污水处理提供理论依据。
In view of the pollution of heavy mental in mangrove wetlands is aggravating and the assumptions of the utilization of mangrove in sewage treatment at present, Kandelia candel mangrove was regarded as the research object in the paper,cultivated in sand and treated with 10%o brine for 90 days in a greenhouse,by way of simulation test to study the accumulation and distribution of N and Cd and the effects on growth and physiology of the Kandelia candel under different concentrations of N and Cd treatments.There were 4 treatments of Cd including control(0 mg/L),low Cd(0.5 mg/L),medium middle Cd(lmg/L),high Cd(2mg/L);the 4 N treatments comprises control(0 mg/L),low N(0.5 mg/L),middle N(1 mg/L),high N(2mg/L).The influence of different concentrations of Cd and N treatments on Kandelia candel including Cd content and N content of different parts,chlorophyll content,antioxidase membrane protection system and the biomass of Kandelia candel were observed after 90 days' stress of different concentrations of N and Cd treatments.The results were as follows:
     1.The experiment showed that the Cd content of roots was higher than that of stems and leaves,and roots of Kandelia candel were the main organ of cadmium absorption and accumulation.The Cd content of different parts showed a climb under different Cd treatment series when the N concentration increased;meanwhile,the Cd content of different parts were also promoted when the Cd concentration increased under different N treatments.The Cd accumulation coefficient of different parts of Kandelia candel was increased with the increase of N concentration under the same Cd treatment,while the Cd accumulation coefficient of different parts of KandeIia candel dropped when the Cd concentration increased under the same N treatment.
     2.The N content of the roots,stems and leaves varied with the Cd and N concentrations in the experiment;the N content of leaves was higher than that of stems and roots.Under the same N concentration,the increase of Cd stress concentration led to the reduction of N content of the different parts of Kandelia candel,while the N content of different parts climbed when the N treatment concentration increased.
     3.The contents of chlorophyll a and chlorophyll b of Kandelia candel were enhanced when the N concentration level increased under the same Cd treatment;while under the same N treatment,the variation of the chlorophyll contents were inconsistency: the content of chlorophyll a increased with the increase of Cd stress concentration and reached the max at the low Cd(0.5mg/L)treatment,then declined with the increase of Cd stress concentration;while the content of chlorophyll b were enhanced gradually with increasing Cd concentration.
     4.The experiment showed that SOD activity in leaves raised gradually with increasing of N treatment concentration under different Cd treatment series,and SOD activity had significant difference between different N treatments;under different N treatment series,SOD activity also raised with increasing of Cd treatment,SOD activity of Kandelia candel when treated under middle Cd(1 mg/L)and high Cd(2 mg/L)had significant difference contrasted with that of control(Cd 0 mg/L).
     5.The experiment showed that POD activity in leaves raised gradually with increasing of Cd treatment concentration under different N treatment series,and the POD activity of Kandelia candel when treated under high Cd(2 mg/L),middle Cd(1 mg/L)and low Cd(0.5 mg/L)had significant difference contrasted with that of control (Cd 0 rag/L).Under different Cd treatment series,POD activity in leaves declined with increasing of N treatment concentration,the POD activity of Kandelia candel when treated with higher N(≥40 mg/L)had significant difference contrasted with that of control(N 0 mg/L).
     6.Under different N treatment series,the MDA content of Kandelia candel leaves increased with increasing of Cd treatment concentration;there was significant difference between the MDA content of leaves treated by high Cd(2 mg/L),middle Cd(1 mg/L) and the control(0 mg/L)groups.Under different Cd treatments,the MDA content of leaves reduced when N concentration increased;there was significant difference between treatments of high N(60 mg/L),middle N(40 mg/L)and the control(0 mg/L) groups.
     7.The biomass of the roots,stems and leaves of Kandelia candel varied with the Cd concentrations in the same N group;in most of the treatments,the biomass reduced when the Cd concentration increased.While the biomass of roots,stems and leaves were significantly promoted when the N concentration increased under the same Cd treatment.
     This paper can provide theoretical basis for the cultivation of Kandelia candel under stress of Cd and the utilization of Kandelia candel mangrove in sewage treatment.
引文
[1]林鹏.中国红树林生态系[M].北京,科学出版社,1997.
    [2]Harbison P.,Mangrove muds-A sink and a source for trace metals[J].Marine Pollution Bulletin,1986,17:246-250.
    [3]Lacerda L.D.,Carvalho C.E.V.,Tanizald K.F.,et al.The biogeochemistry and trace metals distribution of mangrove rhizospheres[J].Biotropica,1993,25:252-257.
    [4]Tam N.F.Y.,Wong Y.S.,Retention of nutrients and heavy metals in mangrove sediments receiving wastewater of different strengths[J].Environmental Technology,1993,14:719-729.
    [5]Tam N.F.Y.,Wong,Y.S.,Retention and distribution of heavy metals in mangrove soils receiving wastewater[J].Environmental Pollution,1996,94:283-291.
    [6]王文卿,林鹏.红树林生态系统重金属污染的研究[J].海洋科学,1999,3:45.47.
    [7]Saenger P.,Mangrove Ecology[M],Silviculture and Conservation,Kluwer Academic,Dordrecht,2002,422.
    [8]Alongi D.M.,Tzner J.R,Trott L.A.,et al.,Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary,China[J].Estuarine,Coastal and Shelf Science,2005,63:605-618.
    [9]Alongi D.M.,Wattayakorn G.,Pfitzner J.,et al.,Organic carbon accumulation and metabolic athways in sediments of mangrove forests in southern Thailand[J].Marine Geology,2001,179:85-103.
    [10]Alongi D.M.,Sasekumar A.,Chong V.C.,et al.,Sediment accumulation and organic material flux in a managed mangrove ecosystem:estimates of land-ocean-atmosphere exchange in peninsular Malaysia[J].Marine Geology,2004,208:383-402.
    [11]Patharbison,Mangrove muds a sink and a source for trace metals[J].Marine Pollution bulletin,1989,17(6):246-250.
    [12]龚子同,张效朴.中国的红树林与酸性硫酸盐土[J].土壤学报,1994,31(1):86-94.
    [13]Lacerda L.D.,Abrao J.J.,Heavy metal accumulation by mangrove and salt marsh intertidal sediments[J].Review of Brasilian Botany,1984,7:49-52.
    [14]Silva C.A.,Lacerda L.D.,Rezende C.E,Metal reservoirs in a red mangrove forest[J].Biotropica,1990,22:339-345.
    [15]Tam N.F.Y.,Wong Y.S.,Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps[J].Environmental Pollution,2000,110:195-205.
    [16]Walsh G.E.,et al.,Resistance of red mangrove(Rhizophora mangle L)seedlings to lead cadmium and mercury[J].Biotropia,1979,11(1):22-27.
    [17]Thomas C.,Ong J.E.,Effect of heavy metals zinc and lead on Rhizophora mucronata Lam.and
    Avicennia alba BL seedlings,[C]In Proc.As.Syrup.Mangro:Env.Res.& Manag.(eds.E.Soepadmo et al.,),Kuala Lumpar:UNESCO & University of Malaya Press,1984,568-574.
    [18]陈荣华,林鹏.汞和盐度对三种红树种苗生长效应分析初探[J].厦门大学学报(自然科学版),1989,27(1):110-115.
    [19]郑逢中,林鹏,郑文教等.秋茄对镉的吸收、积累及净化作用的研究[J].植物生态学与地植物学学报,1992,16(3):220-226.
    [20]Fernandes J.C.,Henriques F.S.,Biochemical physiological,and structural effects of excess copper in plants[J].Botany Review,1991,57:246-266.
    [21]MacFarlane G.R.,Burchett M.D.,Zinc distribution and excretion in the leaves of the grey mangrove,Avicennia marina(Forsk.)Vierh[J].Environmental and Experimental Botany,1999,41:167-175.
    [22]CHE R.G.O.,Concentration of 7 Heavy Metals in Sediments and Mangrove Root Samples from Mai Po,Hong Kong[J].Marine Pollution Bulletin,1999,39..269-279.
    [23]Tam N.F.Y.,Wong Y.S.,Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage[J].Hydrobiologia,1997,352:67-75.
    [24]郑文教,王文卿,林鹏.九龙江口桐花树红树林对重金属的吸收与累积[J].应用与环境学报,1996,2(3):207-213.
    [25]郑文教,林鹏.深圳福田白骨壤群落Cr、Ni、Mn的累积及分布[J].应用生态学报,1996,7(2):139-144。
    [26]郑文教,林鹏.深圳福田白骨壤红树林Cu,Pb,Zn,Cd的累积及分布[J].海洋与湖沼,1996,27(4):386-393.
    [27]陈小勇,曾宝强,陈利华.香港汀角红树植物沉积物及双壳类动物重金属含量[J].中国环境科学,2003,23(5):480-484.
    [28]MacFarlane G.R.,Burchett M.D.,Toxicity,growth and accumulation relationships of copper lead and zinc in the Grey Mangrove Avicennia marina(Forsk.)Veirh.[J].Marine Environmental Research,2002,54:65-84:
    [29]Thomas G.,Tresa V.F.,Incidence of heavy metals in the mangrove flora and sediments in Kerala,India[J].Hydrobiologia,1997,352:77-87.
    [30]MacFarlane G.R.,Burchett M.D.,Cellular distribution of Copper,Lead and Zinc in the grey mangrove,Avicennia.Marina(Forsk)Vierh[J].Aquatic Botany,2000,68:45-59.
    [31]Cacador I.,Vae C.,Catarino E,Accumulation of Zn,Pb,Cu,Cr and Ni in sediments between roots of the Tagus Estuany salt marshes,PortugaI[J].Estuarine,Coastal and Shelf,1996,42:393-403.
    [32]MacFarlanea G.R.,Pulkownikb A.,Burchettb M.D.,Accumulation and distribution of heavy metals in the grey mangrove,Avicennia marina(Forsk.)Vierh:biological indication potential, [J]EnviromnentaIPollution,2003,123:139-151.
    [33]赵胡,重金属Cu、Zn对秋茄幼苗生理生态效应的研究[D].厦门大学硕士论文,2004.
    [34]MacFarlane G.R.,Burchett M.D.,Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove,Avicennia marina(Forsk.)Vierh[J].Marine pollution bulletin,2001,42(3):233-240.
    [35]MacFarlane G.R.,Leaf biochemical parameters in Avicennia marina(Forsk.)Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems[J].Marine Pollution Bulletin,2002,44:244-256.
    [36]陈怀宇,李裕红等.Pb~(2+)对桐花树幼苗抗氧化酶活性及脂质过氧化膜的效应分析[J].泉州师范学院学报(自然科学),2006,24(2)
    [37]杨盛昌,吴琦.Cd对桐花树幼苗生长及某些生理特性的效应分析[J].2003,22(1),38-42.
    [38]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1 9 9 6:1-1 4
    [39]邵国胜,MUHAMMAD Jaffar Hassanl,章秀福等.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的效应分析[J].中国水稻科学,2004,18(3):239-244
    [40]汤春芳,刘云国,曾光明等.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的效应分析[J].植物生理与生物学学报,2004,30(4):469-474.
    [41]徐正浩,沈国军,诸常青等.植物镉忍耐的分子机理[J].应用生态学报,2006,17(6):112-116.
    [42]Brown SL,Chaney RL,Angle JS,et al.Zinc and cadmium up take by Thlaspi caerulescens and Silene cucubalis in relation to soil metals and soil Ph[J].J Environ Qual,1994,23:1151-1157
    [43]安志装,王校常,严蔚东.植物鳌合肽及其在重金属胁迫下的适应机制[J].植物生理学通讯,2001,37(5):463-467.
    [44]Reeves RD,Baker AJM.1984.Studies on metal up take by plants from serpentine and non2serpentine populations of Thlaspi goesin-gense Halacsy(Cruciferae)[J].New Phytol,98:191-204
    [45]Zhou JH(周建华),Wang YS(王永锐).1999.Physiological studies on poisoning effects of Cd and Cr on rice(O ryza sativa L.)seedlings through inhibition of Si nutrition[J].Chin J Appl Environ B io-technol(应用环境生物技术学报),5(1):11-15(in Chinese)
    [46]缪绅裕.模拟条件下排污对秋茄湿地的效应分析及系统的净化效应[D].广州:中山大学图书馆,馆藏号:TN2765,1994.
    [47]马骅.人工合成污水对桐花树模拟湿地的效应分析及湿地净化效应研究[D].广州:中山大学图书馆,馆藏号:TN3310,1996.
    [48]陈桂珠,缪绅裕,黄玉山等.人工污水中的N 在模拟秋茄湿地系统中的分配循环及其净化效果[J].环境科学学报,1996,16(1):44-50.
    [49]Lindsey H.D.,James M.M.,Hector M.G.,An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay,Pacific Panama[J].Marine Pollution Bulletin, 2005,50:547-552.
    [50]Guzman H.M.,Jimenez C.E.,Contamination of coral reefs by heavy metals along the Caribbean coast of Central America(Costa Rica and Panama)[J].Marine Pollution Bulletin,1992,24,554-561.
    [51]王焕校.污染生态学[M].北京,高等教育出版社,2000.
    [52]郑逢中,林鹏,郑文教.红树植物秋茄幼苗对镉耐性的研究[J].生态学报1994,14(4):408-413
    [53]Gil J,Moral R,Gomez I,et al.Effects of cadmium on physiological and nutrition aspects of tomato plant I Chlorophyll(a and b)and carotenoids[J].Fresenkius Environ Bull,1995,4(4):30-35.
    [54]李元.镉、铁复合污染对烟草叶几项生理指标的效应分析生态学报[J].1992,12(2):147-153.
    [55]张凤琴,王友绍,董俊德等.重金属污水对木榄幼苗几种保护酶及膜脂质过氧化作用的效应分析[J].热带海洋学报.2006,25(2):66-70
    [56]Emma J.Yates·Nanjappa Ashwath,David J.Midmore,Responses to nitrogen,phosphorus,potassium and sodium chloride by three mangrove species in pot culture[J].Trees(2002)16:120-125
    [57]Boto KG,Wellington JT(1983)Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest[J].Mar Ecol Prog Ser 11:63-69
    [58]Saberi BO(1992)the growth and biomass production of R.hizophora mucronata in response to the varying concentrations of nitrogen and phosphorus in water culture[J].Trop Ecol 33:164-171
    [59]ILKA C.FELLER1,KAREN L.MCKEE2,3,DENNIS E WHIGHAM1 and JOHN P.O'NEILL,Nitrogen vs.phosphorus limitation across an ecotonal gradient in a mangrove forest[J].Biogeochemistry 00:1-31,2002.
    [60]章金鸿,李玫,陈桂珠.红树林湿地对榨糖废水中N、P的吸收和净化的可能性[J].重庆环境科学,1999,21(6):39-41.
    [61]李玫,章金鸿,陈桂珠.生活污水排放对红树林植物生长的效应分析[J].防护林科技,2002,3:125.
    [62]黄立南,蓝崇钰,李明顺.城镇生活污水排放对红树林植物群落凋落物的影响[J].应用与环境生物学报.2000,6(6):505-510.
    [63]安志装,王校常,施卫明等.重金属与营养元素交互作用的植物生理效应[J].土壤与环境2002,11(4):392-396.
    [64]聂俊华,刘秀梅,王庆仁.营养元素N、P、K对Pb超富集植物吸收能力的效应分析[J].农业工程学报,2004(20):262-265.
    [65]Williams C H,Singh R N,Vlamis A H.Metals in sludge-amended soils:a nine-year study[J]. Soil Sci.,1976,[2]:86-93.
    [66]徐明岗,刘平,宋正国,张青.施肥对污染土壤中重金属行为效应分析的研究进展[J].农业环境科学学报2006,25(增刊):328-333
    [67]Wallace A.Excess trace metal ef ects on calcium distribution in plants[J].Commun Soil Sci and Plant Anal,1979,10(1-2):473-479
    [68]Eriksson J E.Effects of nitrogen-containing fertilizers on s olubility and plant uptake of cadmium[J].W ater,Air and Soil Poll,1990,49:355-368
    [69]曾清如.不同氮肥对铅锌矿尾矿污染土壤中重金属的溶出及水稻苗吸收的效应分析[J].土壤肥料,1997,(3):7-11
    [70]熊礼明.施肥与作物重金属的吸收.农业环境保护[J].1993,12(5):217-222
    [71]郑曦,张建山.氮与铜的交互作用对小麦种子萌发过程的效应分析[J].麦类作物学报2006,26(3):120-122.
    [72]朱云集,王晨阳,马元喜等.铜胁迫对小麦根系生长发育及生理特性的效应分析[J].麦类作物(现已更名为麦类作物学报),1997,(5):49-51.
    [73]李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应[J].植物营养与肥料学报,2000,6(4):383-388
    [74]Nedwell,D.B.Sewage treatment and dischange into tropical coastal waters.Search.1974,5(5):187-190
    [75]陈桂葵,陈桂珠,黄玉山等.人工污水对白骨壤幼苗生理生态特性的效应分析[J].应用生态学报,1999,10(1):95-98
    [76]靖元孝,任延丽,陈桂珠.人工湿地污水处理系统三种红树植物生理生态特性[J].生态学报,2005,25(7):1612-1619
    [77]林益明,林鹏.中国红树林生态系统植物种类、多样性、功能及其保护[J].海洋湖沼通报,2001,3:8-16.
    [78]陈建勋,王晓峰.植物生理学实验指导[M].华南理工大学出版社,2002
    [79]刘祖祺,张石城.植物抗性生理学IN].北京:中国农业出版社,1994,371-372.
    [80]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,167-195.
    [81]Zachara J M,Smith S C,Resch C T et al.,Cadmium sorption to soil separates containing layer silicates and iron and aluminum oxides[J].Soil Science Society America Journal,1992,56:762-769.
    [82]周红卫,施国新,杜开和等.Cd污染对水花生生理生化及超微结构的效应分析[J].应用生态学报,2003,14(9):1581-1584
    [83]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121.
    [84]任安芝,高玉葆.铅、镉铬单-和复合污染对青菜种子萌发的生物效应[J].生态学杂志,2000, 19(1):19-22.
    [85]周启星,高拯民.土壤水稻系统Cd-Zn的复合污染及其衡量指标的研究[J].土壤学报,1995,32(4):430-436.
    [86]贺建群,杨居荣,许嘉琳等.重金属及其交互作用对小麦幼苗中金属含量的效应分析[J].生态学杂志,1992,11(4):5-10.
    [87]徐勤松,施国新,杜开和.镉胁迫对水车前叶片抗氧化酶系统和亚显微结构的效应分析[J].农村生态环境,2001,17(2):30-34.
    [88]田国良,刘厚田.土壤中镉,铜伤害对水稻光谱特性的影响[J].环境遥感,1990,5(2):140-149
    [89]赵春,施国新,尤文鹏等.Cd对石龙尾的色素、O_2及脂类过氧化物含量的效应分析[J].南京师大学报,2000,23(3):83-86.
    [90]孙赛初,王焕校,李启任.水生维管植物受Cd污染后的生理变化及受害机制初探[J].植物生理学报,1985,1(2):113-121.
    [91]刘海亮,崔也明.镉对作物种子萌发、幼苗生长及氧化酶同工酶的效应分析[J].环境科学,1991,12(6):29-31.
    [92]宋松泉,简伟军,傅家瑞.Cd对玉米种子活力的效应分析及Ca2+的拮抗作用[J].应用与环境生物学报,1997,3(1):1-5.
    [93]施国新,杜开和,解凯彬等.汞、镉污染对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378.
    [94]Chatterjee J,Chatterjee C.Phytotoxicity of cobalt chromium and copper in Cauliflower[J].Environmental Pollution,2000,109:64-74.
    [95]李兆君,马国瑞,徐建民等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,2004,35(2):234-238.
    [96]黄玉山,罗广华.镉诱导植物的自由基过氧化损伤[J].植物学报:英文版,1997,39(6):522-526
    [97]吕朝晖,王焕校.镉铅对小麦脱氢酶(ADH)基因表达的初步研究[J]。环境科学学报,1998,18(5):500-503.
    [98]杨明杰,林咸永,杨肖娥.Cd对不同种类植物生长和养分积累的效应分析[J].应用生态学报,1998,9(1):89-94.
    [99]Weigel HJ,Jager HJ.Subcellular distribution and chemical form of Cadmium in bean plant[J].Plant Physiology,1980,65:480-482.
    [100]刘云国,李欣,徐敏等.土壤重金属镉污染的植物修复与土壤酶活性[J].湖南大学学报(自然科学版),2002,29(4):108-113.
    [101]洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的效应分析[J].华北农学报,1991,6(3):70-75.
    [102]宋松泉,简伟军,傅家瑞.Cd~(2+)对玉米种子活力的效应分析及ca~(2+)的拮抗作用[J].应用与环境生物学报,1997,3(1):1-5.
    [103]曾昭华.长江中下游地区地下水中Cd元素的背景特征和形成[J].江苏地质,2004,28(2):96-99.
    [104]杨居荣,贺建群.Cd污染对植物生理生化的效应分析[J].农业环境保护,1995,14(5):193-197.
    [105]张志良.植物生理学实验指导[M].北京:高等教育出版社 1990,78-83.
    [107]FoyerCH,HalliwellB.The Presence of glutathione and glutathione reduetase in ehloroPlasts:aProPosed role in ascorbic acid metabolism[J].Planta,1976,133:21-25
    [108]W.VCamP.Enheneement or oxidative stress tolermlce intransgenic tobaeco Plants overproducing Fe-SuPeroXide dismutase in ehloroPlasts[J].PlantPhysiol,1996,112:1703-1714.
    [109]张小兰,施国新,徐楠等.Hg、cd对轮藻部分生理生化指标的影响[J].南京师大学报(自然科学版),2002,25(1):38-43
    [110]胡金朝,施国新,王学等.Cd对槐叶苹的生理影响及外源La、ca的缓解效应比较[J].广西植物,2005,25(2):156-160
    [111]孙光闻,朱祝军,陈日远.镉对小白菜根细胞质膜氧化还原系统的影响[J].华北农学报,2007,229(3):65-67
    [112]王凯荣,周建林,龚慧群.土壤福污染对竺麻的生长毒害效应[J].应用生态学报,2000,11(5):773-776.
    [113]洪仁远,杨广笑,刘东华,蒲长光.Cd对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75.
    [114]陈平,张伟锋,于士元等.Cd对水稻幼苗生长及部分生理特性的影响[J].仲恺农业技术学院学报,2001,14(4):18-21,27
    [115]Patra,J.Lenka,M,Panda,B.B.Tolerance and co-tolerance of the grass Chloris harbala Sw[J].tomercury,cadmium and zinc New Phytol,1994,128:165-171.
    [116]段昌群,王焕校,曲仲湘.重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究[J].环境科学,1992.13(5):31-35
    [117]段昌群,王焕校.pb~(z+),Cd~(z+),Hg~(2+)对蚕豆(cia faba L.)乳酸脱氢酶的影响[J].生态学报,1998,18(4):413-417.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.