微波无极紫外碘灯降解二硫化碳和硫化氢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶臭污染因被全世界公认为七大环境公害之一而越来越受到全世界人民的重视。恶臭气体中的含硫恶臭气体以其嗅觉阈值低、涉及的行业广泛、毒性大而备受关注。为了开发出新型环保高效的处理恶臭气体的方法,本文采用自制的微波发生装置及无极紫外碘灯(Microwave Discharge Electrodeless Lamp-I_2,MDEL-I_2)进行了处理常温常压下流动态CS_2和H_2S两种含硫恶臭气体的实验室阶段的研究。
     本文初步考察了微波无极碘灯(内充碘2mg、氪气2torr)的发光性能。进而研究了微波无极紫外碘灯在不同影响因素(包括气体初始浓度、气体停留时间、电源输入功率等)下降解CS_2气体的效果,同时分析了各个实验条件下CS_2的绝对处理量和产能。最后本文初步探究了CS_2光降解产物以及光降解的反应机理。实验结果表明:
     微波无极碘灯可产生207nm的紫外辐射,并在300nm-400nm的范围内有丰富的发光带,其中峰值出现在327nm、342nm、359nm和387nm处。CS_2主要吸收207nm以及313nm附近的紫外辐射而发生光降解。
     在其他试验条件相同的情况下,CS_2气体的降解率随着初始浓度的增加而增大,随着气体停留时间的增加而增大,随着输入功率的提高而增大。从能量利用率的利用来看,CS_2的绝对处理量和产能随着气体初始浓度的提高而增加,并随着输入功率的提高而增加,最后趋于稳定;随着气体停留时间的增加,绝对处理量和产能都有减小的趋势,但当气体停留时间很小(0.59s、0.52s)时,由于降解率低,绝对处理量和产能值反而减小。在CS_2的初始浓度148.7mg/m3、气体停留时间1.19s、输入功率807W的条件下,CS_2的光降解效率达到96.0%,其绝对处理量为60.5μg/s,产能为270.1 mg/kWh。
     同时,本文考察了不同条件对H_2S气体的降解效果的影响。通过实验可以看出:当气体通过微波碘灯的停留时间为1.19s,电源输入功率为807W时,H_2S初始浓度为9.73 mg/m3时,H_2S气体的降解率可以达到71.43%。随着H_2S初始浓度的提高,其降解效率呈下降的趋势。但绝对处理量与产能有增大的趋势。在电源输入功率和H_2S初始浓度一定的条件下,随着H_2S在紫外辐射区域的停留时间增加,H_2S的降解率呈升高趋势。但是也同时增加了反应体系的能耗,绝对处理量和产能都因此降低了。
Odor Pollution is one of the biggest seven environmental nuisances in the world,for this reason it receives more and more attentions from all of the worlds. Odor Gas which has the element Sulfur is paid close attention to because of its low threshold of smell, extensive use and its toxicity. In order to explore the new method to deal with the Odor Gas, which method is more environmental and has higher efficiency. The degrability of CS_2 and H_2S by the Microwave Discharge Electrodeless Lamp-I_2(MDEL-I_2) was studied under normal pressure and temperature.
     The luminous performance of the MDEL-I_2 (I_2 2mg, Kr 2 torr) was discussed in the beginning. Then the removal efficiency of CS_2 by MDEL-I_2 under different conditions, such as initial concentrations of CS_2, gas retention time (GRT) and input powers, together with Absolute Removal Amount and Energy Yield, was also studied. In the end, the photolysis products and the photolysis mechanism of CS_2 was analyzed in a preliminary level. The experimental results indicate:
     The MDEL-I_2 was capable to emit UV radiation of 207nm and it also showed an emission band from 300nm to 400nm, the peak values being 327nm, 342nm, 359nm and 387nm. CS_2 could be photodegraded after absorbing the UV radiation of 207nm and 313nm.
     Other experimental conditions being the same, the removal efficiency of CS_2 was increased with increasing initial CS_2 concentrations, increasing gas retention time and increasing input power. From the perspective of energy utilization, the Absolute Removal Amount(ARA) and Energy Yield(EY) of CS_2 was increased with increasing initial CS_2 concentrations and increasing input powers, and ARA and EY became steady after the input power reached 567W. With increasing GRT, ARA and EY was reduced, however, when the GRT values became very small, ARA and EY dropped. The removal efficiency of CS_2 was 96.0% with the initial CS_2 concentration of 148.7mg/m3, GRT of 1.19s and input power of 807W, and ARA and EY were 60.5μg/s and 270.1 mg/kWh, respectively.
     At the same time,this paper makes an on-the-spot investigation at the influence from different conditions to the The removal efficiency of H_2S.We can see from the result of the experiments:when the gas retention time in the Microwave Discharge Electrodeless Lamp-I_2 was 1.19s, the input power was 807W and the initial H_2S concentration was 9.73mg/m3,the removal efficiency of H_2S reached 71.43%.with the increase of the initial H_2S concentration. The removal efficiency of H_2S was reduced with increasing initial H_2S concentrations.But the Absolute Removal Amount(ARA) and Energy Yield(EY) of H_2S was increased with increasing initial H_2S concentrations. As the input power and the initial H_2S concentration being the same, the removal efficiency of H_2S was increased with decreasing gas retention time. But the removal efficiency of H_2S was reduced with increasing gas retention time by the increasing energy waste of system.
引文
1.徐华成,徐晓军,翁娜娜,王凯.恶臭气体的净化处理方法[J].山东轻工业学院学报,2007,21(2):87-94.
    2.金至清.恶臭的分析方法及治理技术[J].上海环境科学,1997,16(5):40-43.
    3.马生柏,汪斌.恶臭气体处理技术研究进展[J].污染防治技术,2008,21(5):46-49.
    4.姜安玺.空气污染控制[M].北京:化学工业出版社,2010:141-167.
    5.郭广寨,朱建斌,顾玉祥.城市环境除臭方法的选择及其应用[J].上海建筑科技,2005,5:38-40.
    6.邹凯旋,张勇强.恶臭污染现状与处理技术[J].现代农业科技,2007,11:203-205.
    7.王燕.恶臭气体控制技术研究进展[J].广东化工,2010,37(2):103-104.
    8.Hodgson A T,Destaillats H,Sullivan D P,et al. Performance of Ultraviolet Photocatalytic Oxidation for Indoor Cleaning Applications[J].Indoor Air,2007,17:305-316.
    9.纪树满.恶臭污染的防治[J].重庆环境科学,1999,21(2):27-29.
    10.刘君华,张秦岭.恶臭物质及其控制[J].环境科学与技术,1983,4:12-17.
    11.李立清,杨健康,陈昭宜.恶臭污染及其治理技术[J].化工环保,1995,15(3):141-144.
    12.彭清涛.恶臭污染及其治理技术[J].现代科学仪器,2000,5:44-46.
    13.David J, Kirsti Y, Gary F. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury Evidence for a role of KATP channels[J].Basic Res Cardio,2006,101: 53-60.
    14.陈东旭,刘金元,范运湘.臭气控制[J].市政技术,2002,113(4):29-34.
    15.刘楷,白登明.污水处理系统臭气污染问题的研究[J].环境污染治理技术与设备,2004,15(5):38-42.
    16.Moller P., Dijksterhuis G.. Differential human electrodermal responses to odours [J].Neuros- cience Letters, 2003, 346(3):129-132.
    17.Herr CE,Nieden Az A,Stilianakis NI, et al.Health effects associated with exposure to reside- ntial organic dust[J]. American journal of industrial medicine,2004,46(4):381-385.
    18.李晶玉,杨颖,王红艳,李威.51例低浓度二硫化碳中毒神经传导速度与皮肤交感反射监测分析[J].当代医学,2010,16(2):53-54.
    19.宋庆锋,张永春,刘军.活性炭纤维吸附脱除硫化氢研究进展[J].广州化学,2007,32(4):72-76.
    20.罗媛媛,袁宗明,刘志成.硫化氢腐蚀数据库的建立[J].炼油与化工,2007,18(2):1-3.
    21.李明,李晓刚,陈钢,刘智勇.硫化氢环境下氢扩散的影响因素[J].北京科技大学学报,2007,29(1):39-44.
    22.腊军志.二硫化碳泄漏处理及火灾扑救中相关问题探讨[J].辽宁科技学院学报,2009,11(3):25-27.
    23.贾媛媛,刘光利,牛进龙.恶臭气体处理技术浅谈[J].科技信息,2007,32:68.
    24.宋庆锋,张永春,刘军.活性炭纤维吸附脱除硫化氢研究进展[J].广州化学,2007,32(4):72-76.
    25.曾华星.南昌大学活性炭吸附法降解CS2[D].江西:南昌大学,2006.
    26.姜安玺,李芬,阎波,邵纯红,于清江.曝气生物滤池处理恶臭气体的试验[J].城市环境与城市生态,2005,18(2):11-14.
    27.洪伟,古国榜,吴志伟.光催化氧化法治理恶臭污染的工程应用[J].环境工程,2002,20(6):40-42.
    28.A.S. Stasinakis. Use of selected advanced oxidation processes (AOPs) for Wastewater treat- ment a mini review[J]. Global NEST Journal, 2008, 10(3): 376-385.
    29.徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996:309-335.
    30.张仁熙,侯健,侯惠奇.等离子体技术在环境保护中的应用(上)[J].上海化工, 2000,20:4-5.
    31.张仁熙,侯健,侯惠奇.等离子体技术在环境保护中的应用(下)[J].上海化工,2000,21:4-5.
    32.侯健,郑光云,蒋洁敏,侯惠奇.低温等离子体处理工业废气中的硫化氢和二硫化碳[J].化学世界, 2000,增刊:70-71.
    33.姜安玺,王晓辉,杨义飞,孟雪征.生物处理硫系恶臭气体的现状及展望[J].哈尔滨建筑大学学报,2001,34(1):45-48.
    34.陈建孟,王家德,唐翔宇.生物技术在有机废气处理中的研究进展[J].环境科学进展,1998,6(3):30-36.
    35.姜安玺,赵玉鑫,徐桂芹.生物过滤法去除H2S和NH3技术探讨[J].黑龙江大学自然科学学报,2003,20(1):92-95.
    36.董林,唐志刚.利用生物法处理恶臭气体[J].环境科学导刊,2009,28(1): 67-68.
    37.M.D. Murcia, M. Gomez, E. Gomez, et al. Comparison of Different Advanced Oxidation Processes for Degrading 4-Chlorophenol[J]. World Academy of Science, Engineering and Technology, 2009, 55:249-253.
    38.Mansfield J M,Bratzel M P,Norgordon H O,et al. Experimental investigation of electrodele- ss discharge lamps as excitation sources for atomic fluorescence flame spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,1968,23(6):389-402.
    39.Petr Klan, Jaromir Literak, Milan Hajek. The electrodeless discharge lamp:a prospective to- ol for photochemistry[J].Journal of Photochemistry and Photobiology. A: Chemistry,1999, 128:145-149.
    40.Pavel Muller,Petr Klan,Vladimir Cirkva.The electrodeless discharge lamp: a prospective to- ol for photochemistry Part 4: Temperature and envelope material dependent emission characteristics[J]. Journal of Photochemistry and Photobiology. A: Chemistry,2003,158:l-5.
    41.AndréLoupy.Microwaves in Organic Synthesis[M].Second Edition,Chichester :John Wiley, 2002:860-870.
    42.Satoshi Horikoshi, Masatsugu Kajitani, Susumu Sato, et al. A novel environmental risk-free microwave discharge eletrodeless lamp in advanced oxidation processes degradation of the 2,4-D herbicide[J].Journal of Photochemistry and Photobiology. A:Chemistry,2007,189: 355-363.
    43.夏兰艳,顾丁红,董文博.无极紫外灯及其在环境污染治理中的应用[J].四川环境,2007,26(4):107-112.
    44.何锦丛.206nm紫外光降解水相中有机金属化合物的研究[D].上海:复旦大学, 2009:6.
    45.李琤.无极灯及其应用[J].中国照明电器,1998 (5):25-28.
    46.刘洋,龙奇,陈大华.传统紫外光源与新型紫外光源[J].光源与照明,2006,1:7-9.
    47.Literak J,Klan P. The electrodeless discharge lamp:a prospective tool for photochemistry Part 2.Scope and limitation[J].Journal of Photochemistry and Photobiology A: Chemistry, 2000,137(1):29-35.
    48.张西旺,王怡中.微波无极灯:一种具有前景的高效光催化光源[J].环境污染治理技术与设备,2005,6(10):62-65.
    49.王尔镇,梁伟熠,王春峰.无电极放电灯的新进展[J].照明工程学报,2002,13(3):21-26.
    50.Henry Bergmann, Tatiana Iourtchouk, Kristin Schops, et al. New UV irradiation and direct electrolysis-promising methods for water disinfection[J]. Chemical Engineering Journal, 2002, 85:111-117.
    51.Satoshi Horikoshi,Hisao Hidaka.Environmental remediation by an integrated Microwave/ UV-illmination method. 1.Microwave-assisted degradation of Rhodamine-B dye in aqueous tio2 dispersions[J]. Environmental Science and Technology, 2002, 35:1357-1366.
    52.Na Ta, Jun Hong, Tingfeng Liu, et al. Degradation of atrazine by microwave-assisted electr- odeless discharge mercury lamp in aqueous solution[J]. Journal of Hazardous Matererial, 2006, 138:187-194.
    53.Satoshi Horikoshi,Akihiro Tsuchida, Hideki Sakai, et al. Microwave discharge electrodeless lamps. Part IV Novel self-ignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions[J]. Photochemical Photobiological Sciences, 2009, 8,:1618-1625.
    54.Vladimir Cirkva, Stanislav Relich, Milan Hajek. Microwave photochemistry V: Low-press- ure batch and continuous-flow microwave photoreactors with quartz mercury electrodeless discharge lamps. Photohydrolysis of mono-chloroacetic acid[J]. Journal of ChemicalTechnology and Biotechnology, 2010, 85:185-191.
    55.Xiwang Zhang, Guoting Li, Yizhong Wang, et al. Microwave electrodeless lamp photolytic degradation of acid orange 7[J]. Journal of Photochemistry and photobiology A: Chemistry, 2006, 184:26-33.
    56.Lanyan Xia, Dinghong Gu, Jing Tan, et al. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps[J]. Chemosp- here, 2008, 71:1774-1780.
    57.Xiao Sun, Bao Zhang, Lian He, et al. Photolysis of H2S with Interior Microwave Discharge Electrodeless Lamps[J]. Chinese Chemical Letters, 2010, 21(8): 968-972.
    58.马莹,孙晓,何炼等.微波紫外无极灯降解硫化氢气体的研究[J].环境科学研究,2010,23(5):663-666.
    59.邵春雷,夏兰艳,顾丁红等.微波无极灯光解模拟CS2废气[J].环境科学,2007,28(7):1627-1631.
    60.侯立安,左莉.二硫化碳的污染特征与净化材料的筛选实验[J].洁净与空调技术,2003,2:35-37.
    61.王春艳,张勇,韩建荣,张民.二乙胺分光光度法测定环境空气中二硫化碳影响因素的分析[J].仪器仪表与分析监测,2009,(1):44-46.
    62.金谷大.化纤行业废气的污染及治理[J].环境保护,1994,15(10):19-21.
    63.贝晓萍,潘理黎,郑飞燕.玻璃纸生产废气中的CS2和H2S的治理[J].化工环保,2006,26(6):480-482.
    64.M Chin, D D Davis. Globle sources and sinks of OCS and their distribution[J]. Global Biogeochemistry Cycle,1993,7:321-337.
    65.吴磊,谭晓东.吸入二硫化碳对小鼠生殖细胞损伤的影响[J].中国公共卫生,2005,21(7):833-834.
    66.马纪英,张威文,季佳佳.二硫化碳对雄性大鼠性激素的影响及维生素E的拮抗作用[J].毒理学杂志,2010,24(2):135-137.
    67.王晓,吴洪波,陈建民.常压和真空下CS2的光氧化反应[J].环境科学, 2005,26(2):45-49.
    68.张建良,潘循皙,张仁熙等.对流层CS2光氧化研究[J].环境化学,2003,22(1):26-31.
    69.刘芳.H2S废气处理研究进展[J].环境科技,2009,22(1):71-74.
    70.姜怡娇,宁平.硫化氢废气净化进展[J].云南环境科学,2002,21(3):40-44.
    71.王学谦,宁平.硫化氢废气治理研究进展[J].环境污染治理技术与设备,2001,2(4):77-85.
    72.奚旦立,蒋展鹏.环境工程手册环境监测卷[M].北京:高等教育出版社,1998,483-485.
    73.Santos J.C.C. and Korn M. Exploiting sulphide generation and gas diffusion separation in a flow system for indirect sulphite determination in wines and fruit juices[J].MicrochimicaActa,2006,153(1-2):87-94.
    74.Cassella,R.J.,Oliveira L.G.,Santelli,R.E.On line dissolution of ZnS for sulfide determinati- on in stabilized water samples with zinc acetate,using spectrophotometry by methylene blu- e methed[J].Spectrosc.Lett, 1999,32:469-484.
    75.顾丁红.微波无极紫外灯光降解水相中有机污染物的研究[D].上海:复旦大学,2008:13-17.
    76.夏兰艳.新型无极紫外辐射技术降解中低浓度含硫恶臭气体的研究[D].上海:复旦大学,2008:3-47.
    77.汪海涛,胡长江,牟玉静等.CS2近紫外吸收面积测定[J].光谱学与光谱分析,2009,29(6):1586-1589.
    78.张仁熙,潘循皙,董文博等.CS自由基与O2的反应研究[J].环境化学, 2002,21(4):336-343.
    79.Yunchuan Gao, Dan Chen. Heterogeneous reactions of sulfur dioxide on dust[J]. Science in China: Series B Chemistry, 2006, 49(3): 273-280.
    80.范康年.物理化学[M].第二版.北京:高等教育出版社,2005:789-790.
    81.艾智慧,姜军清,杨鹏等.水溶液中4-氯酚的微波辅助光化学降解[J].环境科学,2004,25(4):100-104.
    82.潘循皙,董文博,张仁熙等.大气中紫外光作用下CS2及COS的转化反应[J].化学世界,2002,增刊:94-96.
    83.Ernst K, Hoffman J J. Carotenoid radical chemistry and antioxidant/pro-oxidant properties [J]. L Chem PhysLetter,1979,68(1):40-43.
    84.William P W,Julian H.The photooxidation of carbon disulfide[J].J Phys Chem,1971,75 (7):854-860.
    85.马广大.大气污染控制工程[M].第二版,北京:中国环境科学出版社,2003:536-538.
    86.Vlahoyannis Y P,Patsilinakou E,Fotakis C et al.Laser-Induced Particle Generation in Carbon Disulfide and Carbonyl Sulfide[J]. Radiat.Phys.Chem.,1990,36(4): 523-528.
    87.夏兰艳,吴飞,董文博,侯惠奇.无极紫外灯降解流动态硫化氢废气[J].化学世界,2007,增刊:187-190.
    88.Brad,R.W.,Harold,B.L.,James,J.V.,et al. Ultraviolet photodissociation dynamics of H2S and D2S[J]. J. Chem. Phys., 1989,90 :1403-1414.
    89.Canela,M.C.,Rosana,M.A.,Wilson FJ.Gas-phase destruction of H2S using TiO2/UV-VIS [J]. J. Photoch. Photobio. A.,1998,112:73-80.
    90.Liu X.,Hwang,D.W.,Yang X.F.,et al. Photodissociation of hydrogen sulfide at 157.6nm: Observation of SH bimodal rotational distribution [J].J.Chem.Phys.,1999, 111:3940-3945.
    91.Chang,M.B.,Tseng,T.D. Gas-phase removal of H2S and NH3 with dielectric barrier dischar- ges [J].J. Environ. Eng.,1996,122:41-46.
    92.Xia L Y,Gu D H,Tan J,et al.Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps[J]. Chemosphere, 2008, 71: 1774 -1780.
    93.Zuo l,Hou l,Yang l s.The experimental investigations of dielectric barrier discharge and pul- se corona discharge in air cleaning[J]. Plasma Science and Technology, 2003, 5 (5): 1961-1964.
    94. Hideo,O. Photochemistry of Small Molecules[M]. New York:John Wiley,1978,168:204-208.
    95.Ma. Y. L.,Zhao,J.L.,Yang B.L. Removal of H2S in waste gases by an activated carbon Bioreactor[J]. Int. Biodeter. Biodegr, 2006,57:93-98.
    96.Kovalenko,O.N.,Kundo,N.N.,Kalinkin,P.N. Kinetics and mechanism of low-temperature oxidation of H2S with oxygen in the gas phase[J]. React.Kinet.Catal.Lett,2001,72:139-145.
    97.Kataoka,S.,Lee,E.,Tejedor,I.T.,Anderson,M.A.Photocatalytic degradation of hydrogen sulfi- de and in situ FT-IR analysis of reaetion products on surface of TiO2[J].Appl.Catal.B-Envir- on.,2005,61:159-163.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.