双金属氧化物及其复合材料的赝电容行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种性能介于传统电容器和电池之间的新型电化学储能器件,因其功率高、循环性能好、充电速度快等优点,有望应用于军事、电动汽车、风能/太阳能发电以及消费类电子产品等诸多领域。在目前报道的超级电容器电极材料中,金属氧化物具有高于碳材料的比容量和优于导电聚合物的循环稳定性,最有潜力成为未来高比能量超级电容器的电极材料。本文根据目前最为常见的金属氧化物电极材料NiO和C0304赝电容性能的特点,设计制备了双金属氧化物及其复合材料,并根据分子式的不同将双金属氧化物分为AB204型、AB04型和A3B208型,分别研究了不同类型双金属氧化物及其复合材料的赝电容行为。
     (1)采用溶胶-凝胶方法制备了NiO和C0304电极材料,系统研究了其赝电容性能(NiO具有高比容量,但倍率性能和循环稳定性较差;C0304虽然容量远远低于NiO,却具有良好的倍率性能和循环稳定性)。为了兼备NiO和C0304材料赝电容性能的优点,设计制备了基于Ni.Co元素的AB204型双金属氧化物NiCo2O4;通过控制热处理的温度,分别得到了纯NiCo2O4和NiO/NiCo2O4/Co3O4复合材料。结果显示NiCo2O4不仅具有高于NiO的比容量,同时兼备了良好的倍率性能和循环稳定性;NiO/NiCo2O4/Co3O4复合材料具有更优于NiCo2O4的赝电容性能。说明设计双金属氧化物能使其兼备两种金属元素氧化物的赝电容性能优点,而通过复合则能够进一步提升氧化物材料的赝电容性能。同时,通过对于NiCo2O4中Ni元素的替代,制备了另一种AB204型双金属氧化物MnCo204。MnCo2O4虽然保持了较好的循环稳定性,但比容量和倍率性能远远低于NiCo2O4。说明AB204型双金属氧化物中,A位元素对于其比容量和倍率性能具有明显的影响作用。
     (2)为了进一步研究双金属氧化物中A、B两种元素对其赝电容性能的影响,分别设计制备了ABO4型双金属氧化物NiMoO4、CoMoO4、NiWO4和CoW04。通过对于四种双金属氧化物电极材料赝电容性能的研究发现:A位元素对ABO4型双金属氧化物的比容量、倍率性能和循环稳定性具有重要的影响作用,当A位元素变化时,双金属氧化物的比容量、倍率性能和循环稳定性会发生明显变化,双金属氧化物体现出接近于其A位元素氧化物的赝电容特性;当A位元素保持不变,B位元素变化时,双金属氧化物材料的赝电容性能的变化较小,说明B位元素对于双金属氧化物赝电容性能的影响弱于A位元素。
     (3)为了证实A位元素对于双金属氧化物赝电容性能的决定性影响作用以及A、B两种元素的比例对于双金属氧化物赝电容性能的影响规律,设计制备了A3B208型双金属氧化物Ni3V2O8和Co3V2O8。通过对于其赝电容性能的表征证实了A位元素对于双金属氧化物赝电容性能的决定性作用,即双金属氧化物材料的赝电容性能主要由处于A位的低价态元素所决定;随着双金属氧化物中A、B元素比例的增加,比容量随之增加。同时通过对于Ni系和Co系双金属氧化物赝电容性能的系统研究总结得出:Ni系双金属氧化物都具有高的比容量,但其倍率性能和循环稳定性较差(除了NiCo2O4具有良好的倍率性能和循环稳定性);Co系双金属氧化物则容量低,但具有良好的倍率性能和循环稳定性。
     (4)为全面提升双金属氧化物电极材料的赝电容性能,根据Ni系和Co系双金属氧化物赝电容性能的优缺点和结构特性设计制备了双金属氧化物复合材料(CoMoO4/NiMoO4和Ni3V2O8/Co3V2O8材料),通过控制材料中Ni系和Co系双金属氧化物相对含量的线性变化,最终探明复合材料的高比容量主要由Ni系双金属氧化物贡献,而良好的倍率储能则主要由Co系双金属氧化物贡献。同时通过具有不同尺寸和结构的Ni系和Co系双金属氧化物的选择以及里外层次(指骨架结构与表面包覆层结构)的设计,确定了复合尺寸和结构次序对于复合材料赝电容性能的贡献作用,即纳米尺寸的复合效果优于微米尺寸的复合;容量高的Ni系适合于作为复合材料的骨架,而倍率性能和循环稳定性较好的Co系更适合于作为表面包覆层。
Supercapacitor is a new type of energy storage equipments which can fill the gap between conventional dielectric capacitors and batteries, it characterized as high-power density, excellent cycle stability, and quick charge-discharge capability. It aroused considerable interest in applications in military field, electric vehicles, wind power generation, solar cells and electronic products. In the range of reported electrode materials for supercapacitor, metal oxides exhibit higher specific capacitance than carbon materials as well as better stability than conducting polymer materials, is one of the most important materials for next generation supercapacitor with high energy density. In this thesis, binary metal oxides and their composites are designed as novel electrode materials according to the reported pseudo-capacitive characteristics of NiO and CO3O4. The binary metal oxides are divided into AB2O4, ABO4, and A3B2O8type according to their molecular formula, and then the pseudo-capacitive properties of them and their composites are investigated.
     (1) NiO and CO3O4are synthesized by a sol-gel process and the pseudo capacitive properties of them are studied (Though the specific capacitance of NiO is high, its rate capability and cycle stability are inferior. However, CO3O4shows excellent rate capability and cycle stability, but its specific capacitance is much lower than that of NiO.). in order to combine the advantages of both NiO and CO3O4, the NiCo2O4(AB2O4type binary metal oxide) which based on Ni and Co is designed and synthesized. By controll the calcination temperature, NiCo2O4and NiO/NiCo2O4/Co3O4composite are obtained. The prepared NiCo2O4combines the high specific capacitance, excellent rate capability and good cycle stability, and the NiO/NiCo2O4/Co3O4composite also exhibits superior pseudo-capacitive properties than NiCo2O4. The results indicate that the design of binary metal oxides can combine the advantages of both metal oxides, and design of composites can imropve the pseudo-capacitive properties of the metal oxides. Meanwhile, MnCo2O4(another AB2O4type binary metal oxide) is synthesized by replacing Ni by Co in NiCO2O4, it shows lower specific capacitance and rate capability than NiCo2O4, indicating that the element located in A position has important effects on specific capacitance and rate capability of AB2O4type binary metal oxides.
     (2) To further study the contribution of the A and B elements to pseudo-capacitive properties of the binary metal oxides, the ABO4type binary metal oxides of NiMoO4, CoMoO4, NiWO4, and COWO4are designed and synthesized. By study the pseudo-capacitive properties of these binary metal oxides, we found that the element located in A position has important effects on specific capacitance, rate capability, and cycle stability of binary metal oxides. The pseudo-capacitive properties of these binary metal oxides are on the verge of metal oxides which located in A position. The change of the element located in B position has minor influence on pseudo-capacitive properties of binary metal oxides, indicating that the influence of element on pseudo-capacitive properties of binary metal oxides is lower than that of A element.
     (3) To confirm the decisive influence effect of the element located in A position to the pseudo-capacitive properties of binary metal oxide, and the effects of A and B ratios on pseudo-capacitive properties of binary metal oxide, the A3B2O8type binary metal oxides (Ni3V2O8and Co3V2O8) are designed and synthesized. The pseudo-capacitive properties of Ni3V2O8and CO3V2O8indicate the decisive effect of the element located in A position to the pseudo-capacitive properties of binary metal oxide, and the effects of A and B ratios on pseudo-capacitive properties of binary metal oxides. That means the pseudo-capacitive properties of binary metal oxides are mainlg determined by the A element, thus the specific capacitance increasing with at higher A/B ratios. At the same time, we also found that the Ni based binary metal oxides show higher specific capacitance but inferior rate capability and cycle stability (except NiCo2O4). Howerver, the Co based binary metal oxides exhibit excellent rate capability and cycle stability but lower specific capacitance.
     (4) To improve the pseudo-capacitive properties of binary metal oxides based electrode materials, binary metal oxides composites (CoMoO4/NiMoO4and Ni3V2O8/Co3V2O8nanocomposites) are designed according to the advantages/disadvantages of both Ni and Co based binary metal oxides. By controlling the mass ratios of Ni based binary metal oxides and Co based binary metal oxides in the composites, we found that the high specific capacitance of the composites is contributed by the Ni based binary metal oxides, and the excellent rate capability of the composites is contributed by the Co based binary metal oxides.
     Meanwhile, by tail the structure and sizes of Ni and Co based binary metal oxides in the composites, we found that nanosize is more useful to improve the pseudo-capacitive properties of binary metal oxides based composites, and the Ni based binary metal oxides with high specific capacitance are more suitable ro serve as skeleton structure of the composite, but the Co based binary metal oxides with excellent rate capability and cycle stability are suitable to serve as coating structure of the composite.
引文
[1]Viswanathan B. "Energy sources," An introduction to energy sources,2006.
    [2]Burke A F. Ultracapacitors:Why, how and where is the technology. Journal of Power Sources,2000,91(1):37-50.
    [3]Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letter,2006,6(12):2690-2695.
    [4]Conway B E. Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York,1999,1-200.
    [5]Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?. Chemical Reviews,2004,104(10):4245-4269.
    [6]Burke A. Ultracapacitors:why, how, and where is the technology. Journal of Power Sources,2000,91(1):37-50.
    [7]郎俊伟.用于超级电容器的金属氧化物及其复合材料的制备与性能研究.博士学位论文,兰州理工大学,2010,1-2.
    [8]国家中长期科学和技术发展规划纲要(2006-2020),中国政府门户网站,2006.2.9.
    [9]王新宇.超级电容器用新型电极材料的研究.博士学位论文,中南大学,2011,3-4.
    [10]Miller J R, Outlaw R A, Holloway B C. Graphene double-layer capacitor with ac line-filtering performance. Science,2010,329:1637-1639.
    [11]Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology,2010,5: 651-654.
    [12]Brezesinski T, Wang J, Tolbert S H, et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Materials,2010,9:146-151.
    [13]Liu M C, Kong L B, Zhang P, et al. Porous wood carbon monolith for high-performance supercapacitors. Electrochimica Acta,2012,60:443-448.
    [14]Liu C G, Yu Z N, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters,2010,10(12):4863-4868.
    [15]Liu M C, Kong L B, Lu C, et al. Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors. RSC Advances,2012,2(5):1890-1896.
    [16]Qu Q T, Yang S B, Feng X L.2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Advanced Materials, 2011,23(46):5574-5580.
    [17]Wang D W, Li F, Liu M, et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie International Edition,2007,47(2):373-376.
    [18]Centeno T A, Fernandez J A, Stoeckli F. Correlation between heats of immersion and limiting capacitances in porous carbons. Carbon,2008,46:1025-1030.
    [19]Yan J, Wei T, Qiao W M, et al. A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry Communications,2010, 12(10):1279-1282.
    [20]Yoo J J, Balakrishnan K, Huang J S, et al. Ultrathin Planar Graphene Supercapacitors. Nano Letters,2011,11(4):1423-1427.
    [21]Mujawar S H, Ambade S B, Battumur T, et al. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochimica Acta,2011,56(12):4462-4466.
    [22]Nyholm L, Nystrom G, Mihranyan A, et al. Toward flexible polymer and paper-based energy storage devices. Advanced Materials,2011,23(33): 3751-3769.
    [23]Lee J W, Ahn T, Soundararajan D, et al. Non-aqueous approach to the preparation of reduced graphene oxide/a-Ni(OH)2 hybrid composites and their high capacitance behavior. Chemical Communications,2011,47(22): 6305-6307.
    [24]Yuan C Z, Zhang X G, Su L H, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry,2009,19(32): 5772-5777.
    [25]Meher S K, Rao G R. Ultralayered CO3O4 for high-performance supercapacitor applications. Journal of Physical Chemistry C,2011,115(31):15646-15654.
    [26]Kim J H, Kang S H, Zhu K, et al. Ni-NiO core-shell inverse opal electrodes for supercapacitors. Chemical Communications,2011,47(18):5214-5216.
    [27]Becher H L. Lowvoltage electrolytic capacitor. U S Patent,280061,1957-07-23.
    [28]Boos D L. Electrolytic capacitor having carbon paste electrodes. USP:3536963, 1970-10-27.
    [29]Trasatti S, Buzzanca P. Ruthenium oxide:a new interesting electrode material, solid state structure and electrochemical behavior. Journal of Electroanalytical Chemistry,1971,29:1-5.
    [30]Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage. Journal of The Electrochemical Society,1991, 138(6):1539-1548.
    [31]Meher S K, Justin P, Rao G R. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Applied Materials & Interfaces,2011,3(6):2063-2073.
    [32]Jiang H, Zhao T, Li C Z, et al. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry,2011,21(11):3818-3823.
    [33]Cao L, Xu F, Liang Y Y, et al. Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Advanced Materials,2004,16(20):1853-1857.
    [34]Xia X H, Tu J P, Wang X L, et al. Mesoporous CO3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chemical Communications, 2011,47(20):5786-5788.
    [35]Xu M W, Kong L B, Zhou W J, et al. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow sphere and hollow urchins. The Journal of Physical Chemistry C,2007,111(51):19141-19147.
    [36]Aderson M A, Pang S C, Chapman T W. Novel electrode material for thin untracapacitors:comparison of electrochemical properties of sol-gel-derived and electrode deposited manganese dioxide. Journal of The Electrochemical Society,2000,147(2):444-450.
    [37]Chen W C, Wen T C, Teng H. Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochimica Acta,2003,48(6):641-649.
    [38]Fan L Z, Hu Y S, Maier J, et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Advanced Functional Materials,2007,17(16):3083-3087.
    [39]冉奋,孔令斌,罗永春,等.化学氧化法合成超级电容器电极用聚吡咯及其工艺优化.兰州理工大学学报,2007,33(6):27-32.
    [40]Zhang J, Kong L B, Li H, et al. Synthesis of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials. Journal of Materials Science,2010,45(7):1947-1954.
    [41]胡毅,陈轩恕,杜砚.超级电容器的应用与发展.电力设备,2008,9(1):20-22.
    [42]张琦,王金全.超级电容器及应用探讨.电气技术,2007,(8):67-70.
    [43]陈英放,李媛媛,邓梅根.超级电容器的原理及应用.电子元件与材料,2008,27(4):6-9.
    [44]张杜鹊,欧阳海,胡欢.超级电容器在电动汽车上的应用.汽车工程师,2009,(6):56-58.
    [45]世界第一列超级电容轻轨列车在湖南省株洲市下线,中国政府门户网站,2012.8.10.
    [46]吴浩青,李用舫.电化学动力学.高等教育出版社,2001,5-30.
    [47]李璐,张淮浩.超级电容器用炭基电极材料的研究进展.炭素,2009,(4):29-36.
    [48]An K H, Kim W S, Park Y S, et al. Supercapacitors using single-walled carbon nanotube electrodes. Advanced Materials,2001,13(7):497-500.
    [49]Shi H. Activated carbons and double layer capacitance. Electrochimica Acta, 1994,41(10):1633-1639.
    [50]Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science,2006,313:1760-1763.
    [51]Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society,2008,130(9):2730-2731.
    [52]Pan H, Poh C K, Feng Y P, et al. Supercapacitor electrodes from tubes-in-tube carbon nanostructures. Chemistry of Materials,2007,19(25):6120-6125.
    [53]Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon,2008,46(11):1475-1488.
    [54]Raymundo-Pinero E, Leroux F, Beguin F, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Advanced Materials,2006,18(14):1877-1882.
    [55]Frackowiak E, Lota G, Machnikowski J, et al. Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochimica Acta,2005,51(11):2209-2214.
    [56]Leitner K, Lerf A, Winter M, et al. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors. Journal of Power Sources, 2006,153(2):419-423.
    [57]Hulicova D, J Yamashita, Soneda Y, et al. Supercapacitors prepared from melamine-based carbon. Chemistry of Materials,2005,17(5):1241-1247.
    [58]Momma A, Liu X J, Osaka T, et al. Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor. Journal of Power Sources,1996,60(2):249-253.
    [59]Brownson D A C, Kampouris D K, Banks C E, An overview of graphene in energy production and storage applications. Journal of Power Sources,2011, 196(11):4873-4885.
    [60]Sun Y Q, Wu Q, Shi G Q, Graphene based new energy materials. Energy & Environmental Science,2011,4:1113-1132.
    [61]Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors, Nano Letters,2008,8(10):3498-3502.
    [62]Weng T C, Teng H. Characterization of high porosity carbon electrodes derived form mesophase pitch for electric double-layer capacitors. Journal of The Electrochemical Society,2001,148(4):A368-A373.
    [63]吴海芳,胡中华.活性炭纤维制备双电层电容器.炭素技术,2004,23(1):12-16.
    [64]Fischer U, Saliger R, Bock V, et al. Carbon aerogels as electrode material in supercapacitors. Journal of Porous Materials,1997,4(4):281-285.
    [65]成会明.纳米碳管:制备、结构、物性及应用.北京:化学工业出版社.2002.
    [66]Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews,2012,41(2): 797-828.
    [67]Fan L, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors. Electrochemistry Communications,2006,8(6):937-940.
    [68]Woo S W, Dokko K, Kanamura K. Composite electrode composed of bimodal porous carbon and polypyrrole for electrochemical capacitors. Journal of Power Sources,2008,185(2):1589-1593.
    [69]Zhou Y K, He B L, Zhou W J, et al. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochimica Acta,2004,49(2):257-262.
    [70]Gupta V, Miura N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Materials Letters, 2006,60(12):1466-1469.
    [71]Zhang Y, Feng H, Wu X B, et al. Progress of electrochemical capacitor electrode materials:A review. International Journal of Hydrogen Energy,2009,34(11): 4889-4899.
    [72]Ryu K S, Wu X, Lee Y G, et al. Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane. Journal of Applied Polymer Science,2003,89(5):1300-1304.
    [73]Ryu K S, Kim K M, Park Y J, et al. Performance phosphric acid doped polyaniline electrode material for apueous redox supercapacitor. Solid State Ionics,2011,50A:970-978.
    [74]Villers D, Jobin D, Soucy C, et al. The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor. Electrochemical Society,2003, 150(6):A747-A752.
    [75]Sivaraman P, Thakur A, Kushwaha R K, et al. Poly(3-methylthiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte. Solid-State Letters,2006,9(9):A435-A438.
    [76]Ryu K S, Kim K M, Park N G, et al. Symmetric redox supercapacitor with conducting polyaniline electrodes. Journal of Power Sources,2002,103(2): 305-309.
    [77]Zhang J, Kong L B, Cai J J, et al. Nano-composite of polypyrrole/modified mesoporous carbon for electrochemical capacitor application. Electrochimica Acta,2010,55(27):8067-8073.
    [78]Arbizzani C, Mastragostino M and Soavi F. Conducting polymers as electrode materials in supercapacitors. Journal of Power Sources,2001,148(3-4): 493-498.
    [79]Gupta V, Miura N. Electrochemically deposited polyaniline nanowire network: A high-performance electrode material for redox supercapacitor. Electrochemical and Solid-State Letters,2005,8(12):A630-A632.
    [80]Zhang J, Kong L B, Li H, et al. Synthesis of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials. Journal of Material Science,2010,45:1947-1954.
    [81]庞旭,马正青,左列等.超级电容器金属氧化物电极材料研究进展.表面技术.2009,38(3):77-80.
    [82]Patake V D, Lokhande C D. Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application. Applied Surface Science,2008, 254(9):2820-2824.
    [83]Raiistrick I D. The electrochemistry of semiconductors and electronics processes and devices. New Jersey, Luduing FNoyes,1992.
    [84]Park B O, Lokhande D C, Park HS, et al. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness. Journal of Power Sources,2004,134(1):148-152.
    [85]Zheng J P, Jow T R. High energy and high power density electrochemical capacitor. Journal of Power Sources,1996,62(2):155-159.
    [86]Chang K H, Hu C C, Chou Y C. Textural and pseudocapacitive characteristics of sol-gel derived RuO2·χH2O:Hydrothermal annealing vs. annealing in air. Electrochimica Acta,2009,54(3):978-983.
    [87]Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society, 1995,142(8):2699-2703.
    [88]Wu Z S, Wang D W, Cheng H M, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials,2010,20(20):3595-3602.
    [89]Wu M S, Huang Y A, Jow J J, et al. Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances. Hydrogen Energy,2008,33(12):2921-2926.
    [90]Gupta V, Kawaguchi T and Miura N. Synthesis and electrochemical behavior of nanotructured cauliflower-shape Co-Ni/Co-Ni oxides composites. Materials Research Bulletin,2009,44(1):202-206.
    [91]K. W. Nam, K. H. Kim, E. S. Lee, W. S. Yoon, X. Q. Yang and K. B. Kim, J. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. Journal of Power Sources,2008, 182(2):642-652.
    [92]Srinivasan V, Weidner J W. An electrochemical route for making porous nickel oxide electrochemical capacitors. Journal of Electrochemical Society,1997, 144(4):L210-L213.
    [93]王晓峰,孔祥华,刘庆国,等.氧化镍超级电容器的研究.电子元件与材料,2000,19(5):669-673.
    [94]Liu K C, Anderson A. Porous nickel oxide/nickel films for electrochemical capacitors. Journal of Electrochemical Society,1996,143(1):124-131.
    [95]Lang J W, Kong L B, Wu W J, et al. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry,2009,13:333-340.
    [96]Lang J W, Kong L B, Wu W J, et al. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chemical Communnications, 2008,4213-4215.
    [97]Cao L, Kong L B, Liang Y Y, et al. Preparation of novel nano-composite Ni(OH)2/USY material and its application for electrochemical capacitance storage. Chemical Communnications,2004, (14):1646-1647.
    [98]Zhang J, Kong L B, Cai J J, et al. Hierarchically porous nickel hydroxide/mesoporous carbon composite materials for electrochemical capacitors. Microporous and Mesoporous Materials,2010,132(1-2):154-162.
    [99]Wang H L, Casalongue H S, Liang Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society,2010,132(21):7472-7477.
    [100]Wang Y G and Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Advanced Material,2006,18(9):2619-2613.
    [101]Li H F, Li Y F, Wang R D, et al. Synthesis and electrochemical capacitor performance of mesostructured nickel oxide/carbon composites by a co-casting method. Journal of Alloys and Compounds,2009,481:100-105.
    [102]Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors. Journal of Electrochemical Socciety,1996,143(1):124-130.
    [103]Hu Y, Tolmachev Y V and Scherson D A. Rotating ring-disk studies of oxidized nickel hydrous oxide:oxygen evolution and pseudocapacitance. Journal of Electroanalytical Chemistry,1999,468(1):64-69.
    [104]Palmas S, Ferrara F, Vacca A, et al. Behavior cobalt oxide electrodes during oxidative processes in alkaline medium. Electrochim Acta,2007,53(2): 400-406.
    [105]王兴磊,何宽新,张校刚.层状C0304的制备及其电化学电容行为.无机化学学报,2006,22(6):1019-1022.
    [106]张密林,陈野,韩莹,等.纳米Mn02超级电容器性能研究.中国锰业,2004,22(4):19-22.
    [107]Liu T C, Pell W G, Conway B E. Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim Acta,1999,44(17):2829-2842.
    [108]Kong L B, Liu M C, Lang J W, et al. Porous cobalt hydroxide film electrodeposited on nickel foam with excellent electrochemical capacitive behavior. Journal of Solid State Electrochemistry,2011,15:571-577.
    [109]Kong L B, Lang J W, Liu M, et al. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. Journal of Power Sources,2009,194(2):1194-1201.
    [110]Chuan L, James A, Branko N. Characterization of sol-gel derived cobalt xergels as electrochemical capacitor. Journal of Electrochemical Socciety,1998, 145(12):4097-4101.
    [111]曹林,周盈科,陆梅,等.纳米氧化钴的制备及其超电容性能.科学通报,2003,48(7):668-670.
    [112]Wang R T, Kong L B, Lang J W, et al. Mesoporous CO3O4 materials obtained from cobaltecitrate complex and their high capacitance behavior. Journal of Power Sources,2012,217(1):358-363.
    [113]王兴磊,何宽新,张校刚.层状的C0304制备及其电化学电容行为.无机材料学报,2006,22(6):1019-1022.
    [114]Cao L, Xu F, Liang Y Y, et al. Preparation of the Novel Nanocomposite Co(OH)2/Ultra-Stable Y Zeolite and its application as a supercapacitor with high energy density. Advanced Materials,2004,16(20):1853-1857.
    [115]Kong L B, Cai J J, Sun L L, et al. Co(OH)2/SBA-15 molecular sieves nanocomposite materials for electrochemical capacitors. Materials Chemistry and Physics,2010,122(2-3):368-373.
    [116]Zhang J, Kong L B, Cai J J, et al. Nanoflake-like cobalt hydroxide/ordered mesoporous carbon composite for electrochemical capacitors. Journal of Solid State Electrochemistry,2010,14:2065-2075.
    [117]房振乾,刘文西,陈玉如.新型氧电极催化剂材料纳米γ型Mn02合成及其电化学性能.电源技术,2003,27(3):267-28.
    [118]Lee H Y, Goodenough J B. Supercapacitor behavior with KC1 electrolyte. Journal of Solid State Electrochemistry,1999,144(1):220-223.
    [119]Hu C C, Tsou T W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Communications,2002,4(2): 105-109.
    [120]Hu C C, Wang C C. Nanostructures and capacitive characteristic of hydrous manganese oxide prepared by electrochemical deposition. Journal of Electrochemical Society,2003,150(8):A1097-A1084.
    [121]Xu C L, Zhao Y Q, Yang G W. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chemical Communications,2009,7575-7577.
    [122]Aderson M A, Pang S C, Chapman T W. Novel electrode material for thin untracapacitors:comparison of electrochemical properties of sol-gel-derived and electrode deposited manganese dioxide. Journal of the Electrochemical Society,2000,147(2):444-450.
    [123]Chin S F, Pang S C, Anderson M A. Material and electrochemical characterization of tetmpropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors. Journal of the Electrochemical Society,2002,149(4):A379-A384.
    [124]Hsieh Y C, Lee K T, Lin Y P, et al. Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor. Journal of Power Sources,2008,177(2), 660-664.
    [125]Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors:Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society, 2000,147(2):444-450.
    [126]Chen Y and Hu C. Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition. Electrochemical and Solid-State Letters,2003, 6(10):A210-A213.
    [127]Nakayama M, Tanaka A and Sato Y. Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. Langmuir,2005,21(13):5907-5913.
    [128]Toupin M, Brousse T and Belanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chemistry of Materials,2002,14(9):3946-3952.
    [129]Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5-nH2O in KC1 aqueous solution. Journal of Solid State Chemistry,1999, 148(1):81-84.
    [130]Saravanakumar B, Kamatchi K, Purushothaman G. Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Applied Materials& Interfaces,2012,4(9):4484-4490.
    [131]Bonso J S, Rahy A, Perera S D, et al. Exfoliated graphite nanoplatelets-V2O5 nanotube composite electrodes for supercapacitors. Journal of Power Sources, 2012,203(1):227-232.
    [132]Prasad K R, Miura N. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. Electrochemistry Communications,2004,6(8):849-852.
    [133]Tang W, Liu L L, Tian S, et al. Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Electrochemistry Communications, 2011,47:10058-10060.
    [134]Lang J W, Kong L B, liu M, J, et al. Co0.56Ni0.44 oxide nanoflake materials and activated carbon for asymmetric supercapacitor. Journal of The Electrochemical Society,2010,157(12):A1341-A1346.
    [135]Gupta V, Gupta S, Miura N, et al. Potentiostatically deposited nanostructured CoxNi1-x layered double hydroxides as electrode materials for redox-supercapacitors. Journal of Power Sources,2008,175:680-685.
    [136]Li G R, Wang Z L, Zheng F L, et al. ZnO@MoO3 core/shell nanocables:facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry,2011,21:4217-4221.
    [137]Liu J P, Jiang J, Cheng C W, et al. CO3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays:a new class of high-performance pseudocapacitive materials. Advanced Materials,2011,23:2076-2081.
    [138]Liu J P, Jiang J, Bosman M, et al. Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry,2012,22:2419-2426.
    [139]Yang Y, Kim D, Yang M, et al. Vertically aligned mixed V2O2-TiO2 nanotube arrays for supercapacitor applications. Chemical Communications,2011,47: 7746-7748.
    [140]Xia X H, Tu J P, Zhang Y Q, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano, 2012,6(6):5531-5538.
    [141]Wei T Y, Chen C H, Chien H C, et al. A cost-effective supercapacitor material of ultrahigh specific capacitances:spinel nickel cobaltite aerogels from an epoxide-driven Sol-Gel process. Advanced Materials,2010,22:347-351.
    [142]Wang Q F, Liu B, Wang X F, et al. Morphology evolution of urchin-like NiCo2C>4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. Journal of Materials Chemistry,2012,22, 21647-21653.
    [143]Jiang H, Ma J, Li C Z. Hierarchical porous NiCo2O4 nano wires for high-rate supercapacitors. Chemical Communications,2012,48:4465-4467.
    [144]Xiao J W, Yang S H. Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Advances,2011,1:588-595.
    [145]Wu Y Q, Chen X Y, et al. Sol-gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochimica Acta 2011,56:7517-7522.
    [146]Zhang G Q, Lou X W. General solution growth of mesoporous NiCO2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Advanced Materials,2013,25:976-979.
    [147]Chien H C, Cheng W Y, Wang Y H, et al. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites. Advanced Functional Materials,2012,22:5038-5043.
    [148]Kuo S L, Wu N L. Electrochemical capacitor of MnFe2O4 with NaCl electrolyte. Electrochemical and Solid-State Letter,2005,8(10):A495-A499.
    [149]Kuo S L, Lee J F, Wua N L. Study on pseudocapacitance mechanism of aqueous MnFe2O4 supercapacitor. Journal of the Electrochemical Society,2007,154(1): A34-A38.
    [150]Mai L Q, Yang F, Zhao Y L, et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance, Nature Communications,2011,2:381-385.
    [151]Gao Y Y, Chen S L, Cao D X, et al. Electrochemical capacitance of CO3O4 nanowire arrays supported on nickel foam. Journal of Power Sources,2010,195 (6):1757-1760.
    [152]Lee J K, Kim G P, Kim K H, et al. Fabrication of mesoporous cobalt oxide (CO3O4) film by electrochemical method for electrochemical capacitor. Journal of nanoscience and nanotechnology,2010,10:3676-3679.
    [153]Wang G X, Shen X P, Horvat J, et al. Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. The Journal of Physical Chemistry C,2009,113:4357-4361.
    [154]Toupin M, Brousse T, Bealanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chemistry of Materials, 2004,16:3184-3190.
    [155]Lang J W, Kong L B, Wu W J, et al. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors, Journal of Solid State Electrochemistry,2009,13:333-340.
    [156]张晶.基于介孔碳载体的高容量超级电容器复合电极材料的制备及性能研究.博士学位论文,兰州理工大学,2010,63-64.
    [157]Hu L F, Wu L M, Liao M Y, et al. High-performance NiCo2O4 nanofilm photodetectors fabricated by an interfacial self-assembly strategy. Advanced Materials,2011,23:1988-1992.
    [158]Choi J M, Im S. Ultraviolet enhanced Si-photodetector using p-NiO films.2005, 244:435-438.
    [159]Kumar R V, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chemistry of Materials,2000,12 (8):2301-2305.
    [160]Ehrenberg H, Schwarz B, Weitzel H. Magnetic phase diagrams of alpha-MnMoO4. Journal of Magnetism and Magnetic Materials,2006,305: 57-62.
    [161]Singh R N, Madhu R, Awasthi R. et al. Preparation and electrochemical characterization of a new NiMoO4 catalyst for electrochemical O2 evolution. Journal of Solid State Electrochemistry,2009,13,1613-1619.
    [162]Sears W M, The effect of oxygen stoichiometry on the humidity sensing characteristics of bismuth iron molybdate. Sensors and Actuators B:Chemical, 2000,67,161-172.
    [163]Liu B, Yu S H, Li L J, et al. Morphology control of stolzite microcrystals with high hierarchy in solution. Angewandte Chemie International Edition,2004,43, 4745-4750.
    [164]Haetge J, Djerdj I, Brezesinski T. Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries. Chemical Communications,2012,48:6726-6728.
    [165]Brito J L, Barbosa A L. Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(Ⅱ), Co(Ⅱ), and Ni(Ⅱ). Journal of Catalysis,1997,171(2):467-475.
    [166]Straumal B B, Protasova S G, Mazilkin A A, et al. Amorphous interlayers between crystalline grains in ferromagnetic ZnO films. Materials Letters,2012, 71:21-24.
    [167]Cao C Y, Guo W, Cui Z M, et al. Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. Journal of Materials Chemistry,2011,21: 3204-3209.
    [168]Lu X H, Yu M H, Wang G M, et al. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Advanced Materials,2013,25:267-271.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.