TiC_p/AZ91镁基复合材料的制备工艺与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对Al-Ti-CaC_2反应体系进行了热力学计算,实验验证了原位反应方法合成TiC颗粒的可行性;采用Al-Ti-C-CaC_2增强体系及原位合成反应方法制备了TiC_p/Al中间合金,利用中间合金重熔稀释结合搅拌铸造工艺制备了不同TiC含量的TiC_p/AZ91镁基复合材料。为了提高TiC_p/AZ91镁基复合材料的强度、延伸率等性能,对TiC_p/AZ91镁基复合材料进行了轧制。利用金相显微镜、SEM、XRD、EDS等方法对铸造与轧制TiC_p/AZ91镁基复合材料进行了组织、力学性能及摩擦磨损特性测试。
     热力学计算可知,Al-Ti-CaC_2反应体系中TiC的生成具有较低的反应自由能ΔG与较高绝热温度Tad,表明满足原位反应方法制备TiC的热力学条件,XRD、EDS测试可见TiC的存在;将Al-Ti-CaC_2体系与Al-Ti-C体系结合,采用Al-Ti-C-CaC_2增强体系成功制备了含Ca的TiC_p/Al中间合金。
     采用半固态搅拌法制备了TiC含量为4wt.%,8wt.%,12wt.%的TiC_p/AZ91镁基复合材料。测试分析表明,随着TiC含量增加,铸态TiC_p/AZ91镁基复合材料的晶粒明显细化;β-Mg17Al12可依附于TiC颗粒析出,TiC可作为非均匀形核质点,细化组织。但TiC含量较高时,镁基复合材料中出现明显的微孔、缩孔等缺陷,TiC团聚越来越明显。随着TiC含量增加,镁基复合材料的硬度明显提高,抗拉强度、伸长率则随着TiC含量增加先提高后下降,8wt.%TiC_p/AZ91镁基复合材料最高;随着TiC含量增加,TiC_p/AZ91镁基复合材料的耐磨性明显提高。
     在加热温度为653K,热压及轧制总变形量为70%的条件下对TiC_p/AZ91镁基复合材料进行了热压及轧制。随着TiC含量的增加,镁基复合材料的可轧制性下降,8wt.%TiC_p/AZ91镁基复合材料表面出现微裂纹,12wt.%TiC_p/AZ91镁基复合材料明显开裂。轧制后TiC_p/AZ91镁基复合材料晶粒明显细化,抗拉强度、伸长率较铸态明显提高。TiC由4wt.%增加8wt.%,抗拉强度整体相差不多,延伸率则随着TiC含量增加单调下降。
Thermodynamic calculations were carried on in the Al-Ti-CaC_2system to analyze thefeasibility of in situ reaction synthesis TiC particles and the result was verified by experiment.The TiC_p/Al master alloy was prepared by the Al-Ti-C-CaC_2enhanced system and in situsynthesis reaction. TiC_p/AZ91magnesium matrix composites with different TiC content wereprepared by remelting dilution solution and by stir casting process. In order to improve thestrength, elongation and other significant properties, the TiC_p/AZ91magnesium composites wasalso rolled. The microstructure, mechanical properties, friction and wear characteristics ofTiC_p/AZ91magnesium matrix composites which was cast and rolled were test by using opticalmicroscope, SEM, XRD, EDS and other equipments.
     Thermodynamic calculation shows that the formation of TiC in the Al-Ti-CaC_2system hada lower ΔG and higher Tad, which came to the thermodynamics condition for preparation of TiC.The presence of the TiC was verified by the means of XRD and EDS test. Ca contained TiC_p/Almaster alloy was successfully prepared by the combining Al-Ti-CaC_2system with Al-Ti-Csystem.
     Different TiC content of4%,8%,12wt.%TiC_p/AZ91magnesium matrix composites wasprepared by semi-solid mixing. With increasing the amounts of TiC, the cast TiC_p/AZ91composite material grain could be refined. β-Mg17Al12can be attached to the precipitation of TiCparticles, and TiC was conducted as the heterogeneous nucleation. However, the more TiCcontents the more agglomeration and defects appeared in the microstructure such as obviouspores, shrinkage and so on. With the increase of TiC content, the hardness of the magnesiummatrix composites significantly improved, however, tensile strength and elongation declinedafter first going up with increasing the TiC content,8wt.%TiC of TiC_p/AZ91magnesium matrixcomposites had the best properties among these. The increasing TiC contents improved the wearresistance of TiC_p/AZ91magnesium matrix composites significantly
     Hot pressing and rolling of TiC_p/AZ91magnesium matrix composite was carried on under aheating temperature of653K and total deformation of70%. With the increasing of TiC content,the available rolling properties of the magnesium matrix composites decreased. Micro-cracksappeared on the surface of8wt.%TiC_p/AZ91magnesium matrix composites while the obviouscracking on the surface of TiC_p/AZ91magnesium matrix composites who contained12wt.%TiC.The grain of TiC_p/AZ91magnesium matrix composites was refined, whose tensile strength andelongation was significantly improved than the cast one. When the contents of TiC increasedfrom4wt.%to8wt.%, the tensile strength of the magnesium matrix composites did not variedvery much, meanwhile the elongation of the magnesium matrix composites decreased monotonically.
引文
[1]屈伟平,高崧.镁合金的特点及应用现状[J].金属世界.2011,(2):10-14.
    [2]赵文浩.镁合金的应用及展望[J].山西冶金.2012,(2):1-7..
    [3]龙思远,徐绍勇.长安汽车轻量化与镁合金应用[J].现代零部件,2010,(11):32-36
    [4]龙思远.镁合金应用与汽车节能减排[J].资源再生,2011,(03):48-50.
    [5]王祝堂.欧盟对航空航天器变形镁合金应用的评估[J].铝加工,2010,38(7):8-13.
    [6]佟立丰,张帆,于海生.Ca元素对镁合金显微组织及蠕变性能的影响[J].佳木斯大学学报(自然科学版),2007,25(1):56-58.
    [7]杨光昱,李介.合金化元素Zn对GW系镁合金组织和力学性能的影响[J].金属学报,2007,43(10):1077-1081.
    [8]李凌杰,李芳君.合金元素对镁合金耐腐蚀性能影响的研究进展[J].材料导报,2011,25(10):110-113.
    [9]张丁非,李鹏程,汤安.Si对镁合金组织和性能影响的研究现状[J].热加工工艺,2010,39(18):1-5.
    [10]张尧成,曾明,廖春丽.钙和硅元素对AE41镁合金显微组织及压入蠕变性能的影响[J].机械工程材料,2009,35(1):1-3.
    [11]陈增,张密林,吕艳卓.锆在镁及镁合金中的作用[J].铸造技术,2007,28(6):820-822.
    [12]张志华,潘复生,陈先华.稀土元素对ZK60镁合金组织和性能影响的研究现状[J].热加工工艺,2011,40(10):8-12.
    [13]吴安如,董丽君,夏长清.稀土元素对镁合金高温力学性能的影响[J].热加工工艺,2006,35(4):26-30.
    [14]黄晓锋,朱凯,曹喜娟.主要稀土元素对镁合金组织和性能的影响[J].新技术新工艺,2008,(11):122-125.
    [15]高平,狄石磊,张文波.钇添加量和固溶处理对AZ91D镁合金组织的影响[J].热处理,2011,26(4):40-44.
    [16]张大华,王瑞权,李国全.固溶处理对ZW21镁合金组织和性能的影响[J].热处理技术与装备,2009,30(5):27-31.
    [17]潘辉,刘晓烈,孙立喜.镁及镁合金晶粒细化的研究现状[J].金属材料与冶金工程,2009,37(1):8-12.
    [18]宁海青,陈嫚丽,王艳彬.镁基复合材料力学性能与微观组织研究[J].精密成形工程,2011,3(1):27-29.
    [19]蒋爱云,周亚军,刘建秀. SiC颗粒对镁基复合材料摩擦磨损性能的影响[J].汽车零部件,2011,30(2):170-173.
    [20]黄正华,张忠明,郭学锋.镁合金阻燃方法与机理[J].兵器材料科学与工程,2004,27(1):63-67.
    [21]黄晓锋,周宏,何镇明.镁合金压铸过程中的阻燃研究及其进展[J].特种铸造及有色合金,2002,327-328.
    [22]赵伦,刘建睿,黄卫东.镁合金熔体气体保护防燃技术[J].材料导报,2008,22(12):71-73.
    [23]赵鸿金,张迎晖,康永林.镁合金阻燃元素氧化热力学及氧化物物性分析[J].特种铸造及有色合金,2006,26(6):340-343.
    [24] B-S Y. The Effect of Calcium Addition to Magnesium on the Microstructure andCompositional Changes of Oxide Film Formed at High Temperature[J].MaterialsTransactions,2001,42(6):1139-1141.
    [25]程素玲,杨根仓,樊建锋.Ca对Mg-9%Al合金阻燃特性的影响[J].铸造,2005,54(2):141-143.
    [26]赵云虎,曾小勤. Be和Ca对Mg—9Al—0.5Zn合金表面氧化行为的影响[J].中国有色金属学报,2000,10(6):847-851.
    [27]闵学刚.Ca提高Mg17Al12相熔点的现象及EET理论分析[J].科学通报,2002,47(2):109-112.
    [28]漆振华,林晓娉,代兆立.Ca及时效处理对ZA102镁合金组织和力学性能的影响[J].材料热处理学报,2011,32(5):105-109.
    [29]谷雪花,杨方,齐乐华.镁基复合材料新型制备工艺及其应用[J].塑性工程学报,2011,18(2):81-86.
    [30] SVOBODA M, PAHUTOV M, KUCHA OV K. The role of matrix microstructure in thecreep behaviour of discontinuous fiber-reinforced AZ91magnesium alloy [J]. MaterialsScience and Engineering: A,2002,324(1–2):151-156.
    [31] WU F, ZHU J. Morphology of second-phase precipitates in carbon-fiber-andgraphite-fiber-reinforced magnesium-based metal-matrix composites[J].Composites Scienceand Technology,1997,57(6):661-667.
    [32]田君,李文芳,韩利发.镁基复合材料的研究现状及发展[J].材料导报,2009,23(9):71-74.
    [33]王彦,王慧远,马宝霞.颗粒增强镁基复合材料的研究现状[J].材料科学与工艺,2006,14(3):320-324.
    [34]林素梅. TiC颗粒增强金属基复合材料的研究进展[J].广西轻工业,2009,25(4):34-35.
    [35] WANG H Y, JIANG Q C, LI X L, et al. In situ synthesis of TiC/Mg composites in moltenmagnesium [J]. Scripta Materialia,2003,48(9):1349-1354.
    [36]郑明毅,吴昆.不连续增强镁基复合材料的界面行为[J].兵器材料科学与工程,1998,21(3):45-50.
    [37]张鹏,李付国.界面对颗粒增强金属基复合材料强化性能的影响[J].材料科学与工艺,2010,18(2):192-198.
    [38]蔡叶,苏华钦. SiCp/AZ80镁基复合材料凝固组织研究[J].铸造,1996,6):5-8.
    [39]胡勇,闫洪,陈国香.原位镁基复合材料的研究进展[J].铸造,2008,57(8):757-762.
    [40]王慧远,姜启川.原位镁基复合材料的研究进展[J].中国材料进展,2010,29(4):17-22.
    [41]杨明,田琴,向嵩.自蔓延高温合成工艺研究[J].材料导报:纳米与新材料专辑,2011,205-208.
    [42]江国健.自蔓延高温合成[J].化学进展,1998,10(3):327-330.
    [43]赵敬忠,高积强,金志浩.浸渗反应技术制备AlN基复合材料[J].西安交通大学学报,2004,38(1):108-110.
    [44] DONG Q, CHEN L Q, ZHAO M J. Synthesis of TiCp reinforced magnesium matrixcomposites by in situ reactive infiltration process [J]. Materials Letters,2004,58(6):920-926.
    [45] DAVIES P, KELLIE, J. L. F., WOOD, J. V.. Development of Cast Aluminium MMC's [J].key engineering materials,1998,77(78):357-362.
    [46] MATIN M A, LU L, GUPTA M. Investigation of the reactions between boron and titaniumcompounds with magnesium [J].Scripta Materialia,2001,45(4):479-486.
    [47]梅本富,吴炳尧.开发新型合金材料的新工艺—机械合金化法[J].材料科学与工程,1992,1-5.
    [48] LU L, LAI M O, HOE M L. Formaton of nanocrystalline Mg2Si and Mg2Si dispersionstrengthened Mg-Al alloy by mechanical alloying [J]. Nanostructured Materials,1998,10(4):551-563.
    [49]曾松岩,张二林.一种新型的制备金属基复合材料的方法—接触反应法[J].宇航材料工艺,1995,5):27-30.
    [50] CHEN L Q, DONG Q, ZHAO M J,. Synthesis of TiC/Mg composites with interpenetratingnetworks by in situ reactive infiltration process [J]. Materials Science and Engineering: A,2005,408(1–2):125-130.
    [51] IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metal matrixcomposites—a review [J].Materials Science,1991,26(5):1137-1156.
    [52] HU H. Grain microstructure evolution of Mg(AM50A)/SiC{sub p} metal matrixcomposites [J]. Scripta Materialia,1998,39(8):1015-1022.
    [53]郑茂盛,赵更申.关于颗粒增强金属基复合材料的协同强化[J].稀有金属材料与工程,1996,25(5):16-17.
    [54]倪丹丹,崔向红.Al3Ti/Mg复合材料磨损行为的研究[J].特种铸造及有色合金,2009,5(29):459-461.
    [55] LIM C Y H, LIM S C, GUPTA M. Wear behaviour of SiCp-reinforced magnesium matrixcomposites [J]. Wear,2003,255(1–6):629-637.
    [56] HAN G, LIU X-F, DING H-M. Grain refinement of AZ31magnesium alloy by new Al-Ti-Cmaster alloys [J].Transactions of Nonferrous Metals Society of China,2009,19(5):1057-1064.
    [57]刘相法. Al-Ti-C系中TiC形成的热力学与动力学研究[J].金属学报,2000,36(10):1025-1029.
    [58]杨华.自蔓延高温合成TiC-Al的热力学计算与分析[J].甘肃科学学报,2008,20(3):35-37.
    [59]姚文志.普通化学中吉布斯自由能变的计算[J].科技信息(高校理科研究中心),2012,141.
    [60] SONG M S, ZHANG M X, ZHANG S G. In situ fabrication of TiC particulates locallyreinforced aluminum matrix composites by self-propagating reaction duringcasting[J].Materials Science and Engineering: A,2008,473(1–2):166-171.
    [61]叶大伦.实用无机物热力学手册[M].北京;冶金工业大学出版社.2002.
    [62]刘威威.自蔓延高温合成过程中绝热温度的编程计算[J].材料工程,1993,9):36-39.
    [63]杨筠.基于物质热力学数据库自蔓延反应体系绝热温度的计算及验证[J].硅酸盐通报,2009,28(6):1300-1305.
    [64] MERZHANOV A G, BOROVINSKAYA I P. A New Class of Combustion Processes[J].Combustion Science and Technology,1975,10(5-6):195-201.
    [65]郑林庆.摩擦学原理[M].北京;高等教育出版社.1994.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.