原位自生Mg_2Si/Mg基复合材料的组织和高温蠕变行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基复合材料由于高的比强度和比刚度、低的热膨胀系数等优点。而成为提高镁合金高温性能的主要途径之一。原位内生镁基复合材料除了可以克服外加增强体所造成的污染外,还具有组织细小、界面结合好等优点,被认为是镁基复合材料研究和发展方向之一。
     本文利用Mg-Si的结晶特点,采用熔融铸造法在镁基体上原位生成Mg_2Si增强颗粒,成功制备出不同Mg_2Si含量的Mg_2Si/Mg基复合材料。研究表明,不同Si的加入量会影响生成的Mg_2Si颗粒的数量、形态和分布。当Si的含量超过Mg-Si共晶成分(1.34wt.%)后,随着Si的加入量增加,虽然不能改变共晶Mg_2Si的数量、形态和分布,但是初生Mg_2Si的量会逐渐增加,形态会呈“细小的颗粒-粗大的颗粒-花瓣状-单支树枝晶-多支树枝晶”的规律演变,当Si含量达到3wt.%时,初生Mg_2Si颗粒局部有团聚现象。
     随后考察了不同温度、不同外加应力载荷条件下,原位自生Mg_2Si/Mg基复合材料的高温蠕变行为。结果表明:温度、载荷、增强相含量是影响Mg_2Si/Mg基复合材料蠕变性能的三个主要因素。在较高的蠕变温度和应力下,复合材料表现出较差的蠕变性能,随着Mg_2Si含量的增加,复合材料的蠕变性能逐渐提高。通过材料的蠕变表观应力指数和蠕变表观激活能分析,发现原位自生Mg_2Si/Mg基复合材料的蠕变变形机制为蠕变由位错攀移和第二相增强控制。当Mg_2Si增强相含量较低,蠕变温度较高时,蠕变过程主要由位错攀移控制;而当增强相含量较高,蠕变温度较低时,主要由第二相增强控制;当蠕变条件处在两者之间时可能由位错攀移和第二相增强共同控制。通过对蠕变拉伸断口的扫描分析可知,Mg_2Si/Mg基复合材料的蠕变断裂过程是由韧窝和准解理断裂混合控制的蠕变断裂。
Due to the high specific strength and specific stiffness, low thermal expansion coefficient, high young’s modulus, Magnesium matrix composites are considered as one of the main choice to improve the performance of magnesium alloys. In-situ magnesium matrix composite are considered as one of magnesium matrix composites research and development directions, not only it can overcome the pollution caused by external enhanced,but also it have small organizations,well interface bonding, etc.
     In this thesis, make use of the crystallization characteristics of Mg-Si alloy, in-situ high-performance Mg_2Si particle can be formed in the process of melt casting, therefore it successfully prepared Mg_2Si/Mg composites with different content of Mg_2Si. Besides, adding different Si content will affected the amount,shape and distribution of Mg_2Si particle. When the Si content is more than Mg-Si eutectic composition (1.34wt.%), with the increase of Si content, the amount of paimary Mg_2Si will increase gradually, and its morphology will evolve, and take on“small particles-coarse particles-petal-single dendrite-multivessel dendrite”. When the Si content is up to 3wt.%, the paimary Mg_2Si will agglomerate obviously.
     The high temperature creep behavior of in-situ Mg_2Si/Mg composites is researched by a series of creep experiment. The results indicate that temperature, stress and the content of Mg_2Si are the main effect factors of creep properties. The Mg_2Si/Mg composites show more poor creep properties with the increase of temperature and stress, and composits will shown higher creep properties with the increase of Mg_2Si content. It is belived that the creep mechanism of Mg_2Si/Mg composites is dislocation climb and enhanced control of the second phase through analysis of apparent stress exponent and apparent activation energy. Through analysising of the tensile creep fracture, it can conclude that the creep fracture process of Mg_2Si/Mg is a kind of hybrid control of dimples and quasi-cleavage fracture.
引文
[1] Ye H Z, Liu X Y. Review of Recent Studies in Magnesium Matrix Composites[J]. Journal of Materials Science, 2004,39:6153-6171.
    [2] Wang H Y, Jiang Q C, Li X L, et al. In Situ Synthesis of TiC/Mg Composites in Molten Magnesium[J]. Scripta Materialia,2003,48(9):1349-1354.
    [3] Jiang Q C, Li X L, Wang H Y. Fabrication of TiC Particulate Reinforced Magnesium Matrix Composites[J]. Scripta Materialia,2003,48:713-717.
    [4]王慧远,姜启川.原位镁基复合材料的研究进展[J].中国材料进展,2010,(04).
    [5]陈晓,傅高升,钱匡武.镁基复合材料的研究现状和发展趋势[J].机电技术,2003,(S1).
    [6]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.06.
    [7]董群,陈礼清,赵明久,毕敬.镁基复合材料制备技术、性能及应用发展概况[J].材料导报,2004(04).
    [8] Whalen R T, Gonzalez D, Robinson G, et al.Mechanical properties of particulate composites based on a body-centered-cubic Mg-Li alloy containing boron[J]. Scripta Materialia,1989:137-140.
    [9] Lee D M, Suh B K, Lee J S, et al. Fabrication microstructures and tensile properties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy[J]. Mater Sci&Tech,1997,13:590-595.
    [10]郗雨林,张文兴,柴东琅等.粉末冶金法制备SiC颗粒增强镁基复合材料工艺及性能的研究[J].热加工工艺,2001,(5):24-26.
    [11]郗雨林,张文兴,柴东琅等.粉末冶金法制备MB15镁基复合材料组织及性能的研究[J].热加工工艺,2002,(1):51-52.
    [12] Perez P, Garces G, Adeva P. Mechanical properties of a Mg-10(vol.%)Ti composite[J]. Composites Sci&Tech,2004,64:145-151.
    [13] Gen S, Mako T Y, Osamu Y, et al. Mechanical properties and microstructure of Al18B4O33/Magnesium alloy composites prepared by compo-casting[J]. Materials Science Forum,2003,(777):419-422.
    [14]郑明毅,吴昆.预制块制备对挤压铸造SiCw/ZM5复合材料性能的影响[J].中国有色金属学报,1998,8(6):605-610.
    [15] Wu Feng, Zhu Jing, Chen Yu, et al. The Effects of processing on the microstructures and properties of Gr/Mg Composites[J]. Mater Sci Eng,2000, 277A(1):143-147.
    [16] Purazrang K, Kainer K U, Mordike B L. Francture toughness behaviors of a magnesium alloy metal-matrix composite produced by the infiltration technique[J]. Composites,1991,22(6):456-462.
    [17]刘贯军,李文芳,彭继华,尧建刚,杜军.硅酸铝短纤维增强AZ91复合材料的制备[J].特种铸造及有色金属,2006,26(11):688-690.
    [18] Wang H Y, Jiang Q C, Zhao Y Q, et al. Fabrication of TiB_2 and TiB_2-TiC particulates reinforced magnesium matrix composites[J]. Materials Science and Engineering A,2004,372:109-114.
    [19] Contreras L, Turrillas X, Vaughan G.B M, et al. Time-resolved XRD study of TiC-TiB_2 composites obtained by SHS[J]. Acta Materialia,2004,52:4783-4790.
    [20] Kunrath A O, Reimanis I E, Moore J J. Combustion synthesis of TiC-Cr_3C_2 composites[J]. Journal of Alloys and Compounds,2001,329:131-135.
    [21] Mation M A, Lu L, Gupta M. Investigation of the reactions between boron and titanium compounds with magnesium[J]. Scripta Materialia,2001,45:479- 486.
    [22] Ye H Z, Liu X Y, Luan B. In Situ Synthesis of AlN Particles in Mg-Al Alloy by Mg3N2 addition[J]. Materials Letters,2004,58:2361-2364.
    [23] Yu H S, Gao R L, Min G H, et al. Mechanical properties and creep resistance of Mg-Li composites reinforced by MgO/Mg_2Si particles[J]. Transactions of Nonferrous Metals Society of China,2002,12:1154-1157.
    [24] Jiang Q C, Wang H Y, Wang Y, et al. Modification of Mg_2Si In Mg-Si alloys with yttrium[J]. Materials Science and Engineering A,2005,392:130-135.
    [25] Wang H Y, Wang W, Zha M, et al. Influence of the amount of KBF4 on the morphology of Mg_2Si in Mg-5Si alloys[J]. Materials Chemistry and Physics,2008, 108:353-358.
    [26] Dong Q, Chen L Q, ZhaoM J, et al. Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process[J]. Materials Letters,2004,58:920-926.
    [27] Chen L Q, Dong Q, Zhao M J, et al. Synthesis of TiC/Mg composites withinterpenetrating networks by in situ reactive infiltration process[J]. Materials Science and Engineering A,2005,408:125-130.
    [28] Yang Z R, Wang S Q, Gao M J, et al. A new-developed magnesium matrix composite by reactive sintering[J]. Composites A,2008,39:1427-1432.
    [29] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering,2000, A29:49-113.
    [30] Zhang X Q, Wang H W, Liao L H, et al. The mechanical properties of magnesium matrix composites reinforced with (TiB2+TiC) Ceramic particulates[J]. Materials Letters,2005,59:2105-2109.
    [31] Jiang Q C, Li X L, Wang H Y. Fabrication of TiC particulate reinforced magnesium matrix composites[J]. Scripta Materialia,2003,48:713-717.
    [32] Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys[J]. Acta Materialia,1996,44:4611-4618.
    [33] Wang Y X, Zeng X Q, Di W J. Effect of Al-4Ti-5B master alloy on the grain refinement of AZ31 magnesium alloy[J]. Scripta Materialia,2006,54:269-273.
    [34] Zhang X Q, Wang H W, Liao L H, et al. In situ synthesis method and damping characterization of magnesium matrix composites[J]. Composites Science and Technology,2007,67:720-727.
    [35] Breutinger F, Li Y, Zeschky J, et al. Stress relaxation in Mg-Al-alloys AZ31 reinforced by ceramic form[M]. Materials Science Forum,2003,419-422(Ⅱ):811-816.
    [36]于化顺,闵光辉,王大庆等.液态反应合成Mg-Li-MgO/Mg_2Si复合材料的组织与性能[J].稀有金属,2003,(2):156-159.
    [37] Jiang Q C, Li X L, Wang H Y. Fabrication of TiC particulate reinforced magnesium matrix composites[J]. Scripta Materialia,2003,48(6):713-717.
    [38] Zhang X Q, Wang H W, Liao L H, et al. The mechanical properties of magnesium matrix composites reinforced with (TiB2+ TiC ) ceramic particulates[J]. Materials Letters,2005,59:2105-2109.
    [39] Yang Z R, Wang S Q, Gao M J, et al. A new-developed magnesium matrix composite by reactive sintering[J]. Composites A,2008,39:1427-1432.
    [40]亢春生,王武孝,袁森,金志新,董志乔.镁合金及镁基复合材料的高温蠕变研究进展[J].铸造技术,2008,29(2):253-257.
    [41] Sklenicka V, Svoboda M, Pahutova M, et al. Microstructural processes in creep of an AZ91 magnesium-based composite and its matrix alloy[J]. Materials Science and Engineering A,2001,319-321:741-745.
    [42] Sklenicka V, Pahutova M, Kucharova K, et al. Creep processes in magnesium alloys and their composites[J]. Metallurgy and Materials Transactions A,2002,33(3):883-889.
    [43]刘刚. Al2O3-SiO2/AZ91D复合材料蠕变行为的研究[D].华南理工大学硕士学位论文,2009.7.1.
    [44]王金辉,金培鹏,马国俊,郭彦宏.硼酸镁晶须增强镁基复合材料高温蠕变性能[J].热加工工艺,2010,39(08):86-88.
    [45]胡强,闫洪,揭小平. SiC/AZ61镁基复合材料蠕变性能的研究[J].精密成形工程,2009,(02).
    [46]胡勇,闫洪,陈国香. Mg_2Si/AM60复合材料蠕变性能的研究[J].铸造,2009,(11).
    [47]于化顺,高瑞兰,闵光辉,王执福,陈熙琛. Mg-Li合金及复合材料的抗蠕变性能[J].特种铸造及有色金属,2002,(01).
    [48]袁广银,孙扬善,王震. Sb低合金化对Mg-9Al基合金显微组织和力学性能的影响[J].中国有色金属学报,1999,9(4):799-784.
    [49]孙扬善,翁坤忠,袁广银. Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报,1999,9(l):55-60.
    [50] Sunagawa I. Crystals growth, morphology and perfection[M]. Cambridge:Cambridge University Press, 2005.
    [51] Hartman P. Crystal growth:an introduction[M]. Amsterdam:North-Holland,1973.
    [52]余志强,谢泉等. Mg_2Si晶体结构及消光特性的研究[J].物理学报,2008,58(10).
    [53] Benhai Yu, Dong Chen, Qingbin Tang, Chunlei Wang, Deheng Shi. Structural, electronic and thermal properties of Mg_2Si[J]. Journal of Physics and Chemistry of Solids,2010,71:758-763.
    [54] R Saravanan, M.Charles Robert. Local structure of the thermoelectric material Mg_2Si using XRD[J]. Journal of Alloys Compound 2009,479:26-31.
    [55] Li C, Wu Y Y, Li H, Liu X F. Mrophological evolution and growth mechanism of primary Mg_2Si phase in Al-Mg_2Si alloys[J]. Acta materialia,2010(10).
    [56] RU-Yao Wang, Wei-Hua Lu, L. M. Hogan. Growth morphology of primary silicon in cast Al-Si alloys and the mechanism of concentric growth[J]. Journey of Cryst Growth,1999,207:43-54.
    [57] C.L.Xu, H.Y.Wang, C.Liu, Q.C.Jiang. Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys[J]. J Cryst Growth,2006,291:540-547.
    [58]王新坤,汪定江,祝长春.偏磷酸铝粘结剂在真空液相浸渗制备C/Al复合材料中的应用研究[J].材料科学与工程学报,2004,22(5):693-696.
    [59]姜云鹏,岳珠峰,王心美等.金属基复合材料的蠕变力学研究进展[J].燃气涡轮试验与研究,2003,16(2):53-57.
    [60]姜云鹏,岳珠峰,万建松.界面特性对短纤维金属基复合材料蠕变行为的影响[J].计算力学学报,2003,20(6):743-745.
    [61]张新平,于传宝,张宇鹏等.两种无铅钎料的抗蠕变性能与Sn6Pb4O钎料的对比分析[J].焊接学报,2007(2):l-4.
    [62] Wei X W, Zu X T, Fu H. Compressive creep resistance of Mg-14Li-Al-MgO/Mg_2Si composites[J]. Materials Science and Technology,2006,22(8):903-907. [63郭小宏.纤维含量对Al2O3-SiO2/AZ91D复合材料蠕变行为的影响[D].华南理工大学硕士学位论文,2010.7.1.
    [64] S.Ranganath, R.S.Mishra. Steady state creep behaviour of particulate-reinforced titanium matrix composites[J]. Acta Materialia,1996,44:927-935.
    [65] QIN Q D, ZHAO Y G, ZHOU W, CONG P J. Effect of phosphorous on microstructure and growth manner of primary Mg_2Si crystal in Mg_2Si/Al composite[J]. Materials Science and Engineering A,2007,A447:186-191.
    [66] Li-Hua Liao, Hao-Wei Wang, Xian-Feng Li, Nai-Heng Ma. Research on the dislocation damping of Mg_2Si/Mg-9Al composite materials[J]. Materials letters,2007,61 :2518-2522.
    [67] Nieh T G, Langdon T G. Mechanical properties of discontinuous silicon carbide reinforced aluminium composites at elevated temperatures[J]. Eng. Mater.Technol, 1988,110:77-82.
    [68]嵇峰等.原位自生20vol.%TiCp/LD7Al基复合材料蠕变的应力指数和门槛应力[J].物理学报,2010,59:2114-2119.
    [69]黄明华,王浩伟,李险峰,马乃恒.原位合成TiB2/ZL109复合材料的高温蠕变行为[J].复合材料学报,2005,22:36-40.
    [70] S.M.Zhu, S.C.Tiong, J.K.L.Lai. Creep behavior of aβ’(NiAl)precipitation strengthened ferritic Fe-Cr-Ni-Al alloy[J]. Acta Mater,1998,46:2969-2976.
    [71] N.Shi, B.Wilner, R.J.Arsenault R J. An FEM-study of the plastic deformation process of whisker reinforced SiC/Al composites[J]. Acta Metallurgica et Materialia,1992,40:2841-2854.
    [72] Farghalli A.Mohamed, Terence G.Langdon. The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metall,1974,22:779-788.
    [73] Ricardo F, Gaspar G D. Threshold stress and load partitioning during creep of metrix composites[J]. Acta Mater,2008,56:2549-2562.
    [74] Ricardo F, Gaspar G D. Additivity of reinforcing mechanisms during creep of metal matrix composites: Role of the microstructure and the processing route[J]. Journey of Alloys and Compounds.475:202-206.
    [75]王敏敏,赵永庆,周廉.影响钛合金蠕变行为的因素分析[J].稀有金属材料与工程,2002,135.
    [76]刘子利,丁文江,袁广银,朱艳萍.镁铝基耐热铸造镁合金的进展[J].机械工程材料,2001,1.
    [77]张尧成,曾明,郭萍,廖春丽. Mg-4Al-RE-0.8Ca-0.8Si合金压入蠕变性能的研究[J].材料热处理技术, 2009,38(6):57-60,90.
    [78]嵇峰,宋爱君,张卫国,宋海涛,梁顺星,马明臻.原位自生TiCp/LD7复合材料高温蠕变应力指数及激活能[J].特种铸造及有色金属,2008(s):326-328.
    [79]袁广银,吕宜振,曾小勤等.添加微量Sb对Mg-9Al-0.8Zn合金蠕变抗力及微观组织的影响[J].金属学报,2001,37(1):23-28.
    [80]尹久仁,张平,张俊彦.高温合金蠕变位错攀移控制的空洞形核时间[J].湘潭大学自然科学学报,2000,22(04).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.