锂离子电池锡基负极材料的合成及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,商用的锂离子电池主要采用石墨及改型石墨作为负极材料,然而石墨的理论容量偏低,其利用率已经达到了它的极限(372 mAh/g),开发具有更高容量的新一代锂离子电池已经成为当前锂离子电池领域研究的热点。与石墨材料相比,合金负极材料理论贮锂容量大,贮锂电位安全。如金属Sn,它具有高达990 mAh/g (7200 mAh/L)的理论容量,其质量比容量是石墨的2.7倍,而体积比容量达到石墨的8.8倍。然而合金负极材料在锂离子嵌入脱出过程中伴随着巨大的体积膨胀收缩,这将导致材料受内部应力的作用而龟裂,从集流体上剥落,进而失去电化学活性,最终导致材料的循环性能下降。如何提高合金负极材料的循环性能成为开发高性能合金锂离子电池材料的关键。
     基于以上的研究背景,本论文的研究致力于改善锡基合金材料的循环性能,创新性地提出了将合金结构抑制作用与纳米包覆技术形貌抑制,两种体积缓冲方式相结合的新方法,开发出碳包覆的纳米核壳结构锡基合金负极材料,使材料的循环性能相对于一般纳米合金材料得到明显改善。此外,本论文还对基质材料的选择进行了探索,合成了以磷酸锂为基质的磷酸锡锂负极材料,并对材料的电化学性能及结构转变机理进行了深入研究。对于三维有序结构对电极材料电化学性能的影响,本论文也有所涉及。本论文通过对锡基负极材料制备,电性能等各方面的研究,对于制备高循环性能的锂离子电池用合金负极材料起到一定的指导作用。本论文的具体内容如下:
     在论文的第三章,我们首次成功实现了纳米锡基合金材料的碳包覆改性。在合成过程中,克服了锡基合金材料熔点低(一般低于232℃),难于制备纳米尺度高导电性碳包覆材料的难点。创新性地提出采用原位乳液聚合技术,对无机纳米粒子进行表面改性,实现油相/水相相反转,进而成功实现碳包覆的新方法。该法制备得到纳米碳包覆核壳结构Cu6Sn5具有优异的电化学性能,其可逆容量在100 mA/g的恒流测试条件下为437 mAh/g (0 V~2.0 V vs. Li+/Li),50圈循环后其容量为可逆容量的93%,循环性能明显优于未包覆的纳米Cu6Sn5粒子。通过TEM表征发现,该材料具有典型的核壳结构,其中壳为5纳米厚度的石墨化碳层,核为Cu6Sn5合金粒子。通过对充放电后体积收缩膨胀的合金粒子进行TEM表征发现,该材料所包覆的碳层具有一定的伸缩性,无论在充电状态还是放电状态,碳层都保持完整。该材料循环性能的改善主要是由于该材料在结合了合金的结构抑制作用与纳米材料绝对体积膨胀小的优点的同时,具有了完好的约5纳米的碳包覆层。该碳层有效地防止高温处理过程中低熔点锡基合金的熔出,保证了锡基材料的纳米尺寸,还能抑制锂离子嵌入脱出过程中锡基材料的粉化过程。另外,高电导性的碳包覆也有助于材料整体电化学性能的提高。该材料由于性能优异制备方法简单,是具有广阔应用前景的锡基负极材料,且该方法也易于拓展至其他合金体系。
     采用硼氢化钠还原法制备纳米合金粒子有其局限性。氧化物纳米粒子作为一种廉价易制备的前躯体,如果能用于纳米合金负极材料的制备,将简化制备流程,有着较高的实用意义。本论文的第四章,首先通过热力学计算对多种氧化物碳热还原体系的热力学性质进行研究,同时运用差热扫描量热法DSC对氧化物(CuO, SnO2)碳热还原反应的温度进行表征。采用纳米Sn02和CuO粒子为前躯体,利用十六烷基三甲氧基硅烷为表面改性剂(硅烷试剂能与氧化物粒子形成稳定的硅氧键,使硅烷有机链端朝外,从而改变氧化物粒子的表面性质),实现氧化物粒子的相反转。然后采用酚醛树脂包覆的方法,通过惰性气氛煅烧得到碳包覆的纳米Cu6Sn5合金材料。所得的材料可逆容量达到420 mAh/g,50圈后容量仍可维持在383mAh/g,容量维持率达到80%。材料循环型的提高同样得益于对合金粒子的碳包覆作用。
     本论文的第五章,对CoSnC体系进行了研究。文献报道的无定形CoSnC体系虽然具有较大的容量,然而在循环过程中由于纳米粒子的团聚,会形成电化学失活的晶簇,影响电化学性能。针对以上问题,并对上一章以氧化物为前躯体合成合金粒子的过程中,按化学计量比均匀混合氧化物前躯体操作繁琐的问题,我们首次采用COSnO3纳米粒子为前躯体,利用化合物中Co、Sn的化学计量比,合成同样化学计量比的CoSn合金。CoSnO3纳米粒子的碳热还原过程,由于还原过程中液态锡的存在,更利于合金的形成。CoSnC体系体现出特殊的性质,该体系由于Co-Sn体系存在较多热力学相近的合金相,得到是多种具有电化学活性的合金相混合物,然而由于碳与合金粒子能形成稳定的复合体系,在充放电过程中,存在的碳不仅能抑制合金粒子的体积膨胀,还能防止纳米合金粒子的团聚。因此该材料显示出优异的循环性能,可逆容量达到450mAh/g,50圈容量维持率为72%。
     论文第六章对磷酸锂为基质材料的锡基负极材料磷酸锡锂进行了系统研究。本工作以磷酸锂为基质,合成晶体材料磷酸锡锂。对磷酸锡锂的合成条件进行探索,确定了采用纳米粒子SnO2为前躯体,900℃空气气氛的合成条件,该条件下合成的材料具有典型的NASICON结构,且形貌尺寸均一。该材料表现出优秀的电化学性能,可逆容量320mAh/g,50圈容量维持率达85%。本工作还对该材料的充放电机理进行了深入研究。通过对不同充放电电位的产物进行非原味X射线衍射结表征,发现在锂离子嵌入过程中,磷酸锡锂的晶体结构会遭到破坏,从而形成磷酸锂基质包裹的纳米金属锡体系。生成的金属锡能进一步与锂离子发生反应形成Li4.4Sn。由于磷酸锂基质的存在,金属锡的体积收缩膨胀得到抑制,材料的循环性得到改善。此研究也对该类材料的不可逆容量进行了分析,加深了对造成该材料首圈不可逆容量的原因理解。
     具有三维有序结构的纳米电极材料由于具有稳定的锂离子扩散通道、较薄的适于锂离子传输的孔壁,因此具有更大的容量和更好的倍率性能。本论文第七章,对锂离子电池用三维有序电极材料进行了初步研究。本工作以有序阵列聚苯乙烯小球为模板,采用浸渍法合成了三维有序大孔磷酸铁材料。SEM表征发现,该材料具有立方密堆积的孔结构,平均孔径为250m。在不同温度煅烧条件下,虽然材料发生了晶型的转变,但仍然维持了有序孔结构。该化合物在工作区间2.5V-4.0V (v.sLi+/Li),0.05C的放电倍率下,具有120mAh/g的容量且具有良好的循环性能。在2C条件下仍然具有40mAh/g的比容量,与同类材料相比具有较好的倍率性能。
Recently, graphite and modified graphite are mostly used as anode material in commercial lithium-ion batteries. However, the graphite materials have low theoretical capacity (372 mAh/g), and the current used graphite anode is close to its capacity limitation. Exploring new generation anode materials with higher capacity has become the focus of the research on lithium-ion batteries. It has been demonstrated that metals and alloys, present higher capacity and lower lithium intercalation potential. For example, Sn yields a maximum theoretical capacity of 990 mAh/g or 7200 Ah/L. However, one major problem preventing them from the commercial application is that they undergo large volume changes during cycling, which result in disintegration of the electrodes and subsequent rapid capacity fading. How to improve the cycleability of tin anode is the key point to develop high performance anode.
     This dissertation is on the foundation of existing research, and creatively introduces a new method that combines two existing ways. A core-shell carbon-coated nano-scale alloy anode has been prepared in this dissertation, and shows excellent electrochemistry performance. Moreover, in the preparation, we used in-situ polymerization technique and surface modification to avoid the low-melting point alloy pouring out from shell in heating process. This method can be applied extensively to other nano-alloy preparation work. In addition, this dissertation explores the matrix materials for tin-based anode, and synthesize a LiSn2(PO4)3 compound in which the Li3PO4 is used as matrix. The lithiuation mechanism of this material has also been investigated. The ordered three-dimension structure anode is also included in this dissertation.
     In Chapter 3, a core-shell-structure carbon-coated nanoscale Cu6Sn5 is prepared by using an in situ polymerization method integrated with a surface modification technology. The composite combines the merits of intermetallic compounds and nano-sized anode materials, and exhibits an excellent cycling stability with a reversible capacity of 437 mAh/g and no obvious fading after 50 cycles, which is the best cycle performance among alloy anodes reported up to date. The improvement in the cycling stability could be attributed to the fact that the well-coated carbon layer can effectively prevent the encapsulated low melting point alloy from out-flowing in a high temperature treatment process, as well as preventing aggregation and pulverization of nano-sized Cu6Sn5 alloy particles during charge/discharge cycling.
     It is convenient and has practical meaning to use oxides which is cheap and easily got as precursors to prepare nano-alloy anodes. In Chapter 4, the thermodynamic characters of carbothermal reduction of various oxides have been studied. And differential scanning calorimetry (DSC) is applied to identify the reduction temperatures. The nano CuO and SnO2 are used as precursors, and hexadecyltrimethoxysilane (HTMS) is used as surface modifier. A "Si-O-metal" bond which is detected by Fourier infrared spectrometry (IR) technique is formed during the modification to keep the oxide particles dispersing well in the organic phase. This is a key point to guarantee that polymerization occurs on a single particle surface and ensure that the polymer layer firmly coats the grains. The prepared Cu6Sn5 delivers a reversible capacity of 420mAh/g with capacity retention of 80% after 50 cycles.
     In Chapter 5, CoSnC system has been investigated. It is reported that although the amorphous CoSnC has large capacity, the aggregation of nano particles deteriorate the electrochemistry performance. To solve this problem, for the first time, stannate, CoSnO3, which mixes the elements Co and Sn evenly at the atomic level, is used as precursor to prepare CoSnC by a modified carbothermal reduction method. The alloy formation is easier due to the existence of liquid tin. However, the composition of the product consists of CoSn and CoSn2 due to inhomogeneous quenching process and the chemical formula can be expressed as CoSnC8 identified by Thermogravimetric (TG) measurements. The synthesized CoSnC delivers a reversible capacity of 450mAh/g with a capacity retention of 72% after 50 cycles.
     A systematic research of LiSn2(PO4)3 is presented in Chapter 6. Through the optimization of the synthesis condition, a NASICON structure LiSn(PO4) is prepared in air at 900℃with nano-SnO2 as precursor. This material delivers a reversible capacity of 320mAh/g with a capacity retention of 85% after 50 cycles. The lithiuation mechanism of this material is studied by ex-situ XRD and SEM, which confirms that a Li4.4Sn phase is eventually formed accompanying with the structure collapse. The formed Li3PO4 matrix restricts the volume expansion of the tin particles and greatly improves the cycleability of tin-based anode. This work analyzes the irreversible capacity in the first cycle and deepens the understanding of tin/matrix anode.
     The three-dimensional structure materials have some unique advantages and show great promising for enhancing the performance of rechargeable lithium-ion batteries. In Chapter 7, highly ordered three-dimensional macroporous 3DOM FePO4 material was prepared by using a colloidal crystal template. The effects of the annealing temperature on the morphology changes and the electrochemical properties of the composite were investigated. The 3DOM FePO4 prepared at 400℃shows the excellent cycling stability and good rate capability. This material delivers a reversible capacity of 120mAh/g at current density of 0.05C (2.5V-4.0V v.s Li+/Li). These improvements are mainly due to the following facts:first, the macropores can make the electrolyte solution infiltrate the electrode better. Second, the 3DOM structure with the wall thickness only several tens of nanometers, can reduce the diffusion distances of lithium ions markedly. Third, the continuous network of 3 DOM materials should have better electrical conductivity.
引文
[1]谭国武,邱建忠.能源与人类文明.现代物理知识.2007,110:67-70.
    [2](1)吴宇平,戴晓兵,马军旗,等.锂离子电池—应用与实践.北京:化学工业出版社,2004.(2)吴宇平,张汉平,等.绿色电源材料.北京:化学工业出版社,2008.
    [3]J.M.Tarascon, M.Armand. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414:359-367.
    [4]M. Winter, R. J. Brodd. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004,104:4245-4269.
    [5]R. Kanno, Y. Kawamoto, Y. Takeda, et al., Carbon-Fiber as a Negative Electrodein Lithium Secondary Cells. J. Electrochem. Soc.,1992.139(12):p.3397-3404.
    [6]M. Mohri, N. Yanagisawa, Y. Tajima, et al., Rechargeable Lithium Battery Based on Pyrolytic Carbon as a Negative Electrode. J. Power Sources,1989.26(3-4):p.545-551.
    [7]R. Jasinski. High Energy Batteries. New York:Plenum Press,1967.
    [8]M. Fukuda, D. Kagaku. Electrochemistry(Tokyo, Jpn.).1973,41,593-601.
    [9]郭炳焜,徐微,王先友,et al., ed第一版.长沙:中南大学出版社:2002.
    [10]J. M. Tarascon, A. S. Gozdz, C. Schmutz, et al., Performance of Bellcore's Plastic Rechargeable Li-Ion Batteries. Solid State Ionics,1996.86-8:p.49-54.
    [11]张敬君,锂离子电池合金负极材料的理论设计和合成,复旦大学博士学位论文,2008
    [12]吴宇平,万春荣,姜长印,等.锂离子二次电池.北京:化学工业出版社,2002.
    [13]V. R Koch, J. H.Young. The Stability of the Secondary Lithium Electrode in Tetrahydrofuran-Based Electrolytes. J. Electrochem. Soc.1978,125,137-1377.
    [14]张鹏,新型锂离子电池聚合物电解质制备及性能研究,复旦大学博士学位论文,2010
    [15]I. Yoshimatsu, T. Hirai, J. Yamaki. Lithium Electrode Morphology during Cycling in Lithium Cells. J. Electrochem. Soc.1988,135,2422-2427.
    [16]P. Dan, E. Mengeritsky, Y. Geronov, D. Aurbach, I. Weissman. Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell. J. Power Sources.1995,54: 143-145.
    [17]王兆翔,陈立泉.锂离子电池正极材料研究进展.电源技术.2008,32:287-292.
    [18]K. Mitzushima, P. C. Jones, P. J. Wiseman. LixCoO2 (0    [19]Z. H. Chen, J. R. Dahn. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta.2004,49:1079-1090.
    [20]L. J. Liu, Z. X. Wang, H. Li, L. Q. Chen, X. J. Huang. Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics,2002,152-153:341-346.
    [21]Z. X. Wang, L. J. Liu, L. Q. Chen, X. J. Huang. Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ionics,2002,148:335-342
    [22]H. Cao, B. J. Xia, Y Zhang, N. X. Xu. LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics,2005,176:911-914
    [23]C. Julien, M. A. Camacho-Lopez, T. Mohan, S. Chitra, P. Kalyani, S. Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries. Solid State Ionics.2000,135:241-248.
    [24]A. Kumar, K. Shahi. The conduction characteristics of CsCl-Al2O3 composites. Solid State Ionics,1994,68:71-76.
    [25](1)R. Alcantara, P. Lavela, J. L. Tivado. Structure and Electrochemical Properties of Boron-Doped LiCoO2. J. Solid State Chem.,1997,134:265-273. (2) S. Madhavi, G.V. SubbaRao, B.V.R. Chowdar. Synthesis and Cathodic Properties of LiCoi.yRhyO2 (0≤y≤0.2) and LiRhO2. J.Electrochem.Soc.2001,148:1279-1286.
    [26]H. Kobayashi, S. Shigemura, M. Tabuchi. Electrochemical Properties of Hydrothermally Obtained LiCo1-xFexO2 as a Positive Electrode Material for Rechargeable Lithium Batteries. J. Electrochem. Soc.2000,147:960-969.
    [27]M. M. Thackeray, W. I. F. David, P. G. Bruce, et al., Lithium Insertion into Manganese Spinels. Materials Research Bulletin,1983.18(4):461-472.
    [28]Y. N. Nuli, S. L. Zhao, Q. Z. Qin. Nano-crystalline tin oxides and nickel oxide film anodes for Li-ion batteries. J. Power Sources.2003,114:113-120.
    [29]G. Amatucci, A. Du Pasquier, A. Blyr, et al., The elevated temperature performance of the LiMn2O4/C system:failure and solutions. Electrochimica Acta,1999.45(1-2): 255-271.
    [30]Y. Y. Xia, T. Sakai, T. Fujieda. et al., Correlating capacity fading and structural changes in Li1+yMn2-yO4-delta spinel cathode materials-A systematic study on the effects of Li/Mn ratio and oxygen deficiency. J. Electrochem. Soc.2001.148(7): A723-A729.
    [31]Y. Y. Xia and M. Yoshio, An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds. J. Electrochem. Soc.1996.143(3):825-833.
    [32]Y. Y. Xia, Y. H. Zhou, and M. Yoshio, Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J. Electrochem. Soc.1997.144(8):2593-2600.
    [33]G. G. Amatucci, N. Pereira, T. Zheng, et al., Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zF2 solid solution. J. Electrochem. Soc.2001.148(2):A171-A182.
    [34]Y. Y. Xia, N. Kumada, and M. Yoshio, Enhancing the elevated temperature performance of Li/LiMn2O4 cells by reducing LiMn2O4 surface area. J. Power Sources, 2000.90(2):135-138.
    [35]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc.1997,144(4):1188-1194.
    [36]S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, T. Konishi, A.Yoshino. Cathode properties of phosphor-olivine LiMPO4 for lithium secondary batteries. J. Power Sources,2001,97-98:430-432.
    [37]J. Olfenstine, J. Allen. Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources.2005, 142(1-2):389-390.
    [38]M. Jun, Q. Z. Qin. Electrochemical performance of nanocrystalline LiMPO4 thin-films prepared by electrostatic spray deposition. J.Power Sources.005,148:66-71.
    [39]倪江锋,苏光耀,周恒辉,锂离子电池正极材料LiMPO4的研究进展.化学进展.2004,16(4):554-560.
    [40]N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand.Electroctivity of natural and synthetic triphylite. J. Power Sources.2001, 97-98:503-507.
    [41]S.Y. Chung, J.T. Bloking, Y.M. Chiang. Electronically conductive phosphoolivines as lithium storage electrodes. Nature Mater.,2002,1:123-128.
    [42]S.Y. Chung, Y.M. Chiang. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem. Solid-State Lett.2003,6:278-281.
    [43]Y. H. Sun, D. Q. Liu, J. Yu. Synthesis and electrochemical properties of Ti-doped nonstoichiometric LiFePO4 for lithium-ion battery application. Chin. J. Inorg. Chem., 2006,22(9):1711-1714.
    [44]A. D. Wadslely. Crystal chemistry of non-stoichiometric pentavalent vanadium oxides: crystal structure of Li1+xV3O8. Acta Cryst.,1957,10:261-267.
    [45]J. O. Besenhard, R. Schollorn. The Discharge Reaction Mechanism of Molybdenum(VI) Oxide Electrode in Organic Electrolytes. J. Power Sources.1977,1(3):267-276.
    [46]S. C. Yin, H.Grondey, P.Strobel. Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries. J. Am. Chem. Soc.,2003,125 (2): 326-327.
    [47]R. Kanno, Y. Kawamoto, Y. Takeda, et al., Carbon-Fiber as a Negative Electrode in Lithium Secondary Cells. J. Electrochem. Soc.,1992.139(12):p.3397-3404.
    [48]M. Mohri, N. Yanagisawa, Y. Tajima, et al., Rechargeable Lithium Battery Based on Pyrolytic Carbon as a Negative Electrode. J. Power Sources,1989.26(3-4):p.545-551.
    [49]T. Zheng, J. N. Reimers, J. R. Dahn, Effect of Turbostratic Disorder in Graphitic Carbon Hosts on the Intercalation of Lithium. Phys.l Rev. B,1995.51(2):p.734-741.
    [50]D. Aurbach, B. Markovsky, M.D. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen. New into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power Sources,1999,81:95-111.
    [51]M. Yashio, H. Wang. Effect of carbon coating on electrochemical performance of treated natural as LIB anode material. J. Electrochem. Soc.2000,147:1245-1250.
    [52]R. Tossici, M. Berrettoni, V. Nalimova, R. Marassi, B. Scrosati. A High-Rate Carbon Electrode for Rechargeable Lithium-Ion Batteries. J. Electrochem. Soc.1996,143(3): L64-L67.
    [53]H.H. Lee, C.C. Wan, Y.Y. Wang. Identity and thermodynamics of lithium intercalated in graphite. J. Power Sources,2003,114:285-291.
    [54]K. Sato, M. Noguchi, A. Demachi. A mechanism of lithium storage in disordered carbons. Science.1994,264:556-558.
    [55]Y.H. Liu, J.S. Xue, T. Zheng, J.R. Dahn. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon,1996,34 (12):193-200.
    [56]Z.S. Wen, K. Wang, L.B. Chen, J.Y. Xie, A new ternary composite lithium silicon nitride as anode material for lithium ion batteries, Electrochem Commun.2006,8:1349
    [57]Q. Sun, Z.W Fu, An anode material of CrN for lithium-ion batteries, Electrochem. Solid State Lett.2007,10(8):A189
    [58]F. Gillot, L. Monconduit, M. Morcrette, M.L. Doublet, L. Dupont, J.M. Tarascon, Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-lon batteries Chem Mater.2005,17:3627
    [59]Tsutomu Ohzuku, Atsushi Ueda, Why transition metal (di) oxides are the most attractive materials for batteries.Solid State Ionics,1994,69:201-211.
    [60]K. Zaghib, M. Armand, M. Gauthier, Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries. J. Electrochem. Soc.,1998,145:3136-3140.
    [61]D. Peramunage, K. M. Abraham, Preparation of Micron-Sized Li4Ti5O12 and Its Electrochemistry in Polyacrylonitrile Electrolyte-Based Lithium Cells. J. Electrochem. Soc.,1998,145:2609-2615.
    [62]C.M. Shen, X.G. Zhang, Y.K. Zhou. Preparation and characterization of nanocrystalline Li4Ti5012 by sol-gel method. J Mater. Chem.,2002,78:437-440
    [63]M. Venkateswarlu, C. H. Chen, J. S. Do, Elect rochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy. J Power Sources,2005,146:204-210
    [64]L. Cheng, H.J.Liu, J.J Zhang, et al. Nanosized Li4Ti5O12 prepared by molten salt as an elect rode material for hybrid electrochemical supercapacitor. J. Electrochem. Soc., 2006,153(8):1472.
    [65]L. Cheng, X.L. Li, H. J. Liu, et al. Carbon-coatedLi4Ti5O12 as a high rate electrode material for Li-ion interlation. J Electrochem Soc,2007,154 (7):692
    [66]K. Amezawa, N. Yamamoto, Y. Tomii, et al., Single-Electrode Peltier Heats of Li-Si Alloy Electrodes in Licl-Kcl Eutectic Melt. J. Electrochem. Soc.,1998.145(6):p. 1986-1993.
    [67]T. D. Hatchard, J. R. Dahn, In Situ Xrd and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. J. Electrochem. Soc.,2004.151(6):p. A838-A842.
    [68]M. N. Obrovac, L. Christensen, Structural Changes in Silicon Anodes During Lithium Insertion/Extraction. Electrochem. Solid State Letters,2004.7(5):p. A93-A96.
    [69]S. Bourderau, T. Brousse, D. M. Schleich, Amorphous Silicon as a Possible Anode Material for Li-Ion Batteries. J. Power Sources,1999.82:p.233-236.
    [70]J. Graetz, C. C. Ahn, R. Yazami, et al., Highly Reversible Lithium Storage in Nanostructured Silicon. Electrochem. Solid State Letters,2003.6(9):p. A194-A197.
    [71]H. J. Jung, M. Park, S. H. Han, et al., Amorphous Silicon Thin-Film Negative Electrode Prepared by Low Pressure Chemical Vapor Deposition for Lithium-Ion Batteries. Solid State Commun,2003.125(7-8):p.387-390.
    [72]H. J. Jung, M. Park, Y. G. Yoon, et al., Amorphous Silicon Anode for Lithium-Ion Rechargeable Batteries. J. Power Sources,2003.115(2):p.346-351.
    [73]H. C. Shin, J.G. W. Zhou, H. Li, H. P. Sun, et al., Controlled Li Doping of Si Nanowires by Electrochemical Insertion Method. App. Phy. Lett.,1999.75(16): p.2447-2449.
    [74]B. Gao, S. Sinha, L. Fleming, et al., Alloy Formation in Nanostructured Silicon. Adv.Mater.,2001.13(11):p.816.
    [75]H. Li, X. J. Huang, L. Q. Chen, et al., The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature. Solid State Ionics,2000.135(1-4):p.181-191.
    [76]B. Gao, S. Sinha, L. Fleming, et al., Alloy Formation in Nanostructured Silicon. Adv. Mater.,2001.13(11):p.816-
    [77]H. Li, X. J. Huang, L. Q. Chen, et al., The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature. Solid State Ionics,2000.135(1-4):p.181-191.
    [78]L. Y. Beaulieu, K. W. Eberman, R. L. Turner, et al., Colossal Reversible Volume Changes in Lithium Alloys. Electrochem Solid State Lett,2001.4(9):p. A137-A140.
    [79]M. Winter, J. O. Besenhard, Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites. Electrochimica Acta,1999.45(1-2):p.31-50.
    [80]L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, et al., Reaction of Li with Alloy Thin Films Studied by in Situ Afm. J. Electrochem. Soc.,2003.150(11):p. A1457-A1464.
    [81]L. Y. Beaulieu, K. C. Hewitt, R. L. Turner, et al., The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys. J. Electrochem. Soc.,2003.150(2):p. A149-A156.
    [82]T. D. Hatchard, J. M. Topple, M. D. Fleischauer, et al., Electrochemical Performance of Sialsn Films Prepared by Combinatorial Sputtering. Electrochem Solid State Lett, 2003.6(7):p. A129-A132.
    [83]T. D. Hatchard, J. R. Dahn, Study of the Electrochemical Performance of Sputtered Si1-xSnx Films. J. Electrochem. Soc.,2004.151(10):p. A1628-A1635.
    [84]G. X. Wang, L. Sun, D. H. Bradhurst, et al., Nanocrystalline NiSi Alloy as an Anode Material for Lithium-Ion Batteries. J. Alloy. Compd,2000.306(1-2):p.249-252.
    [85]G. X. Wang, L. Sun, D. H. Bradhurst, et al., Innovative Nanosize Lithium Storage Alloys with Silica as Active Centre. J. Power Sources,2000.88(2):p.278-281.
    [86]W. J. Weydanz, M. Wohlfahrt-Mehrens, R. A. Huggins, A Room Temperature Study of the Binary Lithium-Silicon and the Ternary Lithium-Chromium-Silicon System for Use in Rechargeable Lithium Batteries. J. Power Sources,1999.82:p.237-242.
    [87]J. O. Besenhard, J. Yang, M. Winter, Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries?. J. Power Sources,1997.68(1):p.87-90.
    [88]M. Winter, J. O. Besenhard, M. E. Spahr, et al., Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv. Mater.,1998.10(10):p.725-763.
    [89]K. C. Hewitt, L. Y. Beaulieu, J. R. Dahn, Electrochemistry of InSb as a Li Insertion Host Problems and Prospects. J. Electrochem. Soc,2001.148(5):p. A402-A410.
    [90]J. T. Vaughey, J. O'hara, M. M. Thackeray, Intermetallic Insertion Electrodes with a Zinc Blende-Type Structure for Li Batteries:A Study of LixInSb (0<=X<=3). Electrochem. Solid State Lett.,2000.3(1):p.13-16.
    [91]J. M. Tarascon, M. Morcrette, L. Dupont, et al., On the Electrochemical Reactivity Mechanism of CoSb3 Vs. Lithium. J. Electrochem. Soc,2003.150(6):p. A732-A741.
    [92]X. B. Zhao, G. S. Cao, C. P. Lv, et al., Electrochemical Properties of Some Sb or Te Based Alloys for Candidate Anode Materials of Lithium-Ion Batteries. J. Alloy. Compd, 2001.315(1-2):p.265-269.
    [93]R. Alcantara, F. J. Fernandez-Madrigal, P. Lavela, et al., Electrochemical Reaction of Lithium with the CoSb3 Skutterudite. J. Mater. Chem.,1999.9(10):p.2517-2521.
    [94]L. M. L. Fransson, J. T. Vaughey, R. Benedek, et al., Phase Transitions in Lithiated Cu2Sb Anodes for Lithium Batteries:An in Situ X-Ray Diffraction Study. Electrochem. Commun.,2001.3(7):p.317-323.
    [95]H. Okuda, S. Senba, H. Sato, et al., Electronic Structure of MnSb and MnP. J. Electron Spectro. Rel. Phen.,1999.103:p.657-660.
    [96]J. T. Yin, M. Wada, S. Tanase, et al., Nanocrystalline Ag-Fe-Sn Anode Materials for Li-Ion Batteries. J. Electrochem. Soc,2004.151(4):p. A583-A589.
    [97]Y. L. Kim, S. J. Lee, H. K. Baik, et al., Sn-Zr-Ag Alloy Thin-Film Anodes. J. Power Sources,2003.119:p.106-109.
    [98]Y. Y. Xia, T. Sakai, T. Fujieda, et al., Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc,2001.148(5):p. A471-A481.
    [99]J. Wolfenstine, S. Campos, D. Foster, et al., Nano-Scale Cu6Sn5 Anodes. J. Power Sources,2002.109(1):p.230-233.
    [100]D. G. Kim, H. Kim, H. J. Sohn, et al., Nanosized Sn-Cu-B Alloy Anode Preparedby Chemical Reduction for Secondary Lithium Batteries. J. Power Sources,2002.104(2): p.221-225.
    [101]H. Kim, J. Cho, Synthesis and electrochemical properties of Sn87Co13 alloys by NaBH4 and sodium naphthalenide reduction methods, Electrochim. Acta.2007, 52:4197
    [102]J.R. Dahn, R.E. Mar, A. Abouzeid, Combinatorial study of Sn1-xCox (0    [103]G. M. Ehrlich, C. Durand, X. Chen, et al., Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries. J. Electrochem. Soc,2000.147(3):p.886-891.
    [104]O. Crosnier, T. Brousse, X. Devaux, et al., New Anode Systems for Lithium Ion Cells. J. Power Sources,2001.94(2):p.169-174.
    [105]Y. L. Kim, H. Y. Lee, S. W. Jang, et al., Nanostructured Ni3Sn2 Thin Film as Anodes for Thin Film Rechargeable Lithium Batteries. Solid State Ionics,2003.160(3-4):p. 235-240.
    [106]Q. F. Dong, C. Z. Wu, M. G. Jin, et al., Preparation and Performance of Nickel-Tin Alloys Used as Anodes for Lithium-Ion Battery. Solid State Ionics,2004.167(1-2):p. 49-54.
    [107]H. Y. Lee, S. W. Jang, S. M. Lee, et al., Lithium Storage Properties of Nanocrystalline Ni3Sn4 Alloys Prepared by Mechanical Alloying. J. Power Sources, 2002.112(1):p.8-12.
    [108]H. Mukaibo, T. Sumi, T. Yokoshima, et al., Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries. Electrochem. Solid State Lett,2003.6(10):p. A218-A220.
    [109]X. Q. Cheng, P. F. Shi, Electroless Cu-Plated Ni3Sn4 Alloy Used as Anode Material for Lithium Ion Battery. J. Alloy. Compd,,2005.391(1-2):p.241-244.
    [110](1). H. Mukaibo, T. Momma, M. Mohamedi, et al., Structural and Morphological Moditications of a Nanosized 62% Atom Percent Sn-Ni Thin Film Anode During Reaction with Lithium. J. Electrochem. Soc,2005.152(3):p. A560-A565. (2). J. Hassoun, S. Panero, P. Simon, P.L. Taberna, B. Scrosati, High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries Adv. Mater..2007,19:1632, (3). Y. Wang, J.Y. Lee, One-step, confined growth of bimetallic tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ion storage, Angew Chem Int Ed. 2006,45:7039) (4). K. Wang, X.M. He, J.G. Ren, L. Wang, C.Y. Jiang, C.R. Wan, Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides, Electrochim Acta.2006,52:1221
    [111]M.Z. Xue, J. Yao, S.C. Cheng, Z.W. Fu, Lithium electrochemistry of a novel SnSe thin-film anode, JElectrochem Soc.2006,153(2):A270-A274
    [112]H. Li, L. H. Shi, W. Lu, et al., Studies on Capacity Loss and Capacity Fading of Nanosized Snsb Alloy Anode for Li-Ion Batteries. J. Electrochem. Soc,2001.148(8):p. A915-A922.
    [113]X. D. Wu, Z. X. Wang, L. Q. Chen, et al., Surface Compatibility in a Carbon-Alloy Composite and Its Influence on the Electrochemical Performance of Lihon Batteries. Carbon,2004.42(10):p.1965-1972.
    [114]W. X. Chen, J. Y. Lee, Z. L. Liu, The Nanocomposites of Carbon Nanotube with Sb and SnSbo.s as Li-Ion Battery Anodes. Carbon,2003.41(5):p.959-966.
    [115]W. X. Chen, J. Y. Lee, Z. L. Liu, Electrochemical Lithiation and De-Lithiation of Carbon Nanotube-Sn2Sb Nanocomposites. Electrochem. Commun.,2002.4(3):p. 260-265.
    [116]G. A. Roberts, E. J. Cairns, J. A. Reimer, An Electrochemical and Xrd Study of Lithium Insertion into Mechanically Alloyed Magnesium Stannide.J. Electrochem. Soc, 2003.150(7):p. A912-A916.
    [117]H. Sakaguchi, H. Honda, T. Esaka, Synthesis and Anode Behavior of Lithium Storage Intermetallic Compounds with Various Crystallinities. J. Power Sources,1999.82:p. 229-232.
    [118]J. T. Yin, M. Wada, S. Yoshida, et al., New Ag-Sn Alloy Anode Materials for Lithium-Ion Batteries. J. Electrochem. Soc,2003.150(8):p. A1129-A1135.
    [119]D. Larcher, L. Y. Beaulieu, O. Mao, et al., Study of the Reaction of Lithium with Isostructural a(2)B and Various A1xB Alloys. J. Electrochem. Soc,2000.147(5):p. 1703-1708.
    [120]A. Kawabata, Y. Xia, T. Sakai, New V-Sn Alloys Prepared by Matallurgy for Lithium Battery Negative Electrode. Japan. Soc. of Powder Metallurgy,2002.49:p.37-43.
    [121]Y. L. Kim, S. J. Lee, H. K. Baik, et al., Sn-Zr-Ag Alloy Thin-Film Anodes. J. Power Sources,2003.119:p.106-109.
    [122]A. Bonakdarpour, K. C. Hewitt, R. L. Turner, et al., Electrochemical and in Situ Xrd Studies of the Li Reaction with Combinatorially Sputtered Mo1-xSnx (0<=X<=0.50) Thin Films. J. Electrochem. Soc,2004.151(3):p. A470-A483.
    [123]C. H. Mi, X. G. Zhang, G. S. Cao, Synthesis and Characteristics of CoSn and Cu-Sn Alloys as Anode Materials in Lithium-Ion Cell. Chin. J. Inorg. Chem.,2003.19(3):p. 283-286.
    [124]L. Fang, B. V. R. Chowdari, Sn-Ca Amorphous Alloy as Anode for Lithium Ion Battery. J. Power Sources,2001.97-8:p.181-184.
    [125]S.H. Ng, dos Santos DI, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou, H.K. Liu, Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage, Electrochem Commun.2007,9:915-919
    [126]Y. Wang, H.C. Zeng, J.Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers, Adv. Mater.2006,18:645
    [127]Y. Yu, C.H. Chen, Y. Shi, A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries, Adv. Mater.2007,19:993
    [128]O. Mao, R. A. Dunlap, J. R. Dahn, Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries-I. The Sn2Fe-C System. J. Electrochem. Soc, 1999.146(2):p.405-413.
    [129]O. Mao, J. R. Dahn, Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries-Ii. The SnFe System. J. Electrochem. Soc,1999.146(2):p. 414-422.
    [130]O. Mao, J. R. Dahn, Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries-Iii. Sn2Fe:SnFe3C Active/Inactive Composites. J. Electrochem. Soc,1999.146(2):p.423-427.
    [131]L. Y. Beaulieu, J. R. Dahn, The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying. J. Electrochem. Soc,2000.147(9):p.3237-3241.
    [132]L. Y. Beaulieu, D. Larcher, R. A. Dunlap, et al., Reaction of Li with Grain-Boundary Atoms in Nanostructured Compounds. J. Electrochem. Soc,2000.147(9):p. 3206-3212.
    [133]L. Beaulieu, D. Larcher, R. A. Dunlap, et al., Nanocomposites in the Sn-Mn-C System Produced by Mechanical Alloying. J. Alloy. Compd,,2000.297(1-2):p. 122-128.
    [134]A.D.W. Todd, P.P. Ferguson, J.G. Barker, M.D. Fleischauer, J.R. Dahn, Comparison of Mechanically Milled and Sputter Deposited Tin-Cobalt-Carbon Alloys Using Small Angle Neutron Scattering, J. Electrochem. Soc.2009,156, A1034.
    [135]J. Hassoun, S. Panero, G. Mulas, B. Scrosati, An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries, J. Power Sources, 2007,171,928.
    [1]马礼敦,高等结构分析,复旦大学出版社:上海,2001
    [2]张鹏,复旦大学博士学位论文
    [3]严风霞,王筱敏,现代光学仪器分析选论,华东师范大学出版社:上海,1992
    [4]陈国珍,黄贤智,刘文远,分光光度法(上册),原子能出版社:北京,1980
    [5]赵藻藩,周性尧,张悟铭,赵文宽.仪器分析.北京:高等教育出版社,1990.
    [6]王培铭,许乾慰.材料研究方法.北京:科学出版社,2005.
    [7]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1990.
    [8]周伟舫,电化学测量,上海科学技术出版社,1983
    [9]吴浩青,李永舫,电极过程动力学,高等教育出版社:北京,1998
    [10]藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测定方法,北京大学出版社:北京,1995,p204.
    [11]田昭武,电化学研究方法,科学出版社:北京,1984
    [12]查全性等,电极过程动力学导论,科学出版社:北京,1984
    [1]P. G. Bruce, B. Scrosati, J. M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.,2008,47:2930-2946.
    [2]K. T. Lee, Y. S. Jung, S. M. Oh, Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries. J. Am. Chem. Soc., 2003,125,5652-5653.
    [3]M.Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion Electrode Materials for Rechargeable Lithium Batteries.Adv. Mater.,1998,10:725-763.
    [4]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batterie.Nature,2001,414:359-367.
    [5]M. Yoshio, H. Y. Wang, K. Fukuda, Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material. Angew. Chem., Int. Ed.,2003, 42:4203-4206.
    [6]Y. Idota, T. Kubota, A. Matsufuji, Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material. Science,1997.276(5317): 1395-1397.
    [7]H. Li, Q. Wang, L. H. Shi, L. Q. Chen, X. J. Huang, Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery. Chem. Mater.,2002,14,103-108.
    [8]Y. Wang, J. Y. Lee, One-Step, Confined Growth of Bimetallic Tin-Antimony Nanorods in Carbon Nanotubes Grown In Situ for Reversible Li+Ion Storage. Angew. Chem., Int. Ed.,2006,45:7039-7042.
    [9]M. Winter, J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta,1999,45,31-50.
    [10]R. A. Huggins, Lithium alloy negative electrodes. J. Power Sources,1999,81-82: 13-19.
    [11]K. D. Kepler, J. T. Vaughey, M. M. Thackeray, LixCu6Sn5 (0    [12]G. Ceder, Y. M. Chiang, D. R. Sadoway, M. K. Aydinol, Y. I. Jang, B. Huang, Identification of cathode materials for lithium batteries guided by first-principles calculations.Nature,1998,392:694-696.
    [13]J. J. Zhang, Y. Y. Xia, Co-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc.,2006,153:A1466-A1471.
    [14]C. P. Lee, C. Y. Lin, Y. W. Yen, The 260 C phase equilibria of the Sn-Sb-Cu ternary system and interfacial reactions at the Sn-Sb/Cu joints. Intermetallics, 2007,15:1027-1037.
    [15]J. R. Dahn, I. A. Courtney,O. Mao, Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods. Solid State Ionics,1998,111,289-294.
    [16]G. M. Ehrlich, C. Durand, X. Chen, T. A. Hugener, F. Spiess, S. L. Suib, Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries. J. Electrochem. Soc,2000,147:886-891.
    [17]G. X. Wang, L. Sun, D. H. Bradhurst, S. X. Dou, H. K. Liu, Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling. J. Alloys Compd.,2000,299:L12-L15.
    [18]J. Wolfenstine, S. Campos, D. Foster, J. Read, W. K. Behl, Nano-scale Cu6Sn5 anodes. J. Power Sources,2002,109:230-233.
    [19]X. Y. Fan, F. S. Ke, G. Z. Wei, L. Huang, S. G. Sun, Micro spherical Cu6Sn5 Alloy Anode for Lithium-Ion Battery. Electrochem. Solid-State Lett.,2008, 11:A195-A197.
    [20]K. Wang, X. M. He, L. Wang, J. G. Ren, C. Y. Jiang, C. R. Wan, Preparation of Cu6Sn5-Encapsulated Carbon Microsphere Anode Materials for Li-ion Batteries by Carbothermal Reduction of Oxides. J. Electrochem. Soc.,2006,153: A1859-A1862.
    [21]Z. P. Guo, Z. W. Zhao, H. K. Liu, S. X. Dou, Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites. Carbon,2005,43:1392-1399.
    [22]T. P. Kumar, R. Ramesh, Y. Y. Lin, G. T. K. Fey, Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochem. Commun.,2004, 6:520-525.
    [23]E. Kim, D. Son, T. G. Kim, J. Cho, B. Park, K. S. Ryu, S. H. Chang, A Mesoporous/Crystalline Composite Material Containing Tin Phosphate for Use as the Anode in Lithium-Ion Batteries. Angew. Chem., Int. Ed.,2004,43, 5987-5990.
    [24]W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng, L. S. Zhong, W. G. Song, L. J. Wan, Tin-nanoparticles encapsulated elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater.,2008, 20:1160-1165.
    [25]D. Larcher, L. Y. Beaulieu, O. Mao, Study of the Reaction of Lithium with Isostructural a(2)B and Various AlxB Alloys. J. Electrochem. Soc.,2000.147(5): 1703-1708.
    [26]D.T. Birnbaum, J.D. Kosmala, D.B. Henthorn, Controlled release of β-estradiol from PLAGA microparticles:The effect of organic phase solvent on encapsulation and release. J. Control. Release.2000,65:375-387.
    [27]B.A. Heelan, Characterization of drug release from diltiazem-loaded polylactide microspheres prepared using sodium caseinate and whey protein as emulsifying agents, J. Microencapsul.,2001,18(3):335-345.
    [28]W.J. Lin, R. Douglas, R. Flanagan, J. Linhardt Robert, A novel fabrication of poly(<<-caprolactone) microspheres from blends of poly(s-caprolactone) and poly(ethylene glycol)s, Polym.,1999,40:1731-1735.
    [29]J. Herrmann, R. Bodmeier, Somatostatin containing biodegradable microspheres prepared by a modified solvent evaporation method based on W/O/W-multiple emulsions. Int. J.Pharmaceut.,1995,126:129-138.
    [30]M. Mladenov, P. Zlatilova, I. Dragieva, K. Klabunde, Low temperature synthesis and characterization of nanoscale Cu6Sn5 particles as lithium anode material. J. Power Sources,2006,162:803-808.
    [31]Y. Y. Xia, T. Sakai, T. Fujieda, M. Wada, H. Yoshinaga, Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc.,2001,148:A471-A481.
    [32]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990.
    [33]H. L. Zhao, C. L. Yin, H. Guo, W. H. Qiu, Microcrystalline SnSb Alloy Powder as Lithium Storage Material for Rechargeable Lithium-Ion Batteries. Electrochem. Solid-State Lett.,2006,9:A281-A284.
    [1]A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices Nat. Mater.,2005,4,366.
    [2]P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries Angew. Chem. Int. Ed.,2008,47,2930.
    [3]J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries Nature,2001,414,359.
    [4]M. Yoshio, H.Y. Wang, K. Fukuda, Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material.Angew. Chem. Int. Ed.,2003,42,4203.
    [5]K.D. Kepler, J.T. Vaughey, M.M. Thackeray, Lix-Cu6Sn5 (0    [6]G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Identification of cathode materials for lithium batteries guided by first-principles calculations Nature,1998,392,694.
    [7]J.J. Zhang, Y.Y. Xia, Co-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries J .Electrochem. Soc.2006,153, A1466.
    [8]J. Hassoun, G. Derrien, S. Panero, B. Scrosati, A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance, Adv. Mater.,2008,20,3169.
    [9]C.M. Park, W.S. Chang, H. Jung, J.H. Kim, H.J. Sohn, Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries, Electrochem. Commun.,2009,11,2165.
    [10]K.T. Lee, Y.S. Jung, S.M. Oh, Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries J. Am. Chem. Soc. 2003,125,5652.
    [11]W.M. Zhang, J.S. Hu, Y.G. Guo, S.F. Zheng, L.S. Zhong, W.G. Song, L.J. Wan, Tin-nanoparticles encapsulated elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries.Adv.Mater.,2008,20, 1160.
    [12]W.J. Cui, F. Li, H.J. Liu, C.X. Wang, Y.Y. Xia, Core-shell carbon-coated Cu6Sn5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries, J. Mater. Chem.,2009,19,7202.
    [13]K. Wang, X.M. He, L. Wang, J.G. Ren, C.Y. Jiang, C.R. Wan, Preparation of Cu6Sn5-Encapsulated Carbon Microsphere Anode Materials for Li-ion Batteries by Carbothermal Reduction of Oxides.J. Electrochem. Soc.,2006,153, A1859.
    [14]J. Barker, M.Y. Saidi, J.L. Swoyer, A Carbothermal Reduction Method for the Preparation of Electroactive Materials for Lithium Ion Applications, J. Electrochem. Soc.,2003,150,A684.
    [15]J. Hassoun, G. Derrien, S. Panero, B. Scrosati, A SnSb-C nanocomposite as high performance electrode for lithium ion batteries, Electrochim. Acta,2009,54, 4441.
    [16]H.L. Zhao, C.L. Yin, H. Guo, W.H. Qiu, Microcrystalline SnSb Alloy Powder as Lithium Storage Material for Rechargeable Lithium-Ion Batteries, Electrochem. Solid State Lett.,2006,9, A281.
    [17]K. Wang, X.M. He, J.G. Ren, L. Wang, C.Y. Jiang, C.R. Wan, Preparation of Cu6Sn5-Encapsulated Carbon Microsphere Anode Materials for Li-ion Batteries by Carbothermal Reduction of Oxides, Electrochim. Acta,2006,52,1221.
    [18]H.M. Xiong, D.P. Liu, H. Zhang, J.S. Chen, Polyether-grafted SnO2 nanoparticles designed for solid polymer electrolytes with long-term stability J. Mater. Chem., 2004,14,2775.
    [19]C.L. Carnes, J. Stipp, K.J. Klabunde, Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide, Langmuir,2002,18, 1352.
    [20]M. Mladenov, P. Zlatilova, I. Dragieva, K. Klabunde, Low temperature synthesis and characterization of nanoscale Cu6Sn5 particles as lithium anode material J. Power Sources,2006,162,803.
    [21]H. Guo, H.L. Zhao, X.D. Jia, X. Li, W.H. Qiu, A novel micro-spherical CoSn2/Sn alloy composite as high capacity anode materials for Li-ion rechargeable batteries Electrochim. Acta,2007,52,4853.
    [22]D. Larcher, L.Y. Beaulieu, D.D. MacNeil, J.R. Dahn, Study of the Reaction of Lithium with Isostructural a(2)B and Various AlxB Alloys.J.Electrochem. Soc., 2000,147,1658.
    [23]K.X. Wang, M.D. Wei, M.A. Morris, H.S. Zhou, J.D. Holmes, Mesoporous titania nanotubes:Their preparation and application as electrode materials for rechargeable lithium batteries, Adv. Mater.,2007,193,016.
    [24]Y.Y. Xia, T. Sakai, T. Fujieda, M. Wada, H. Yoshinaga, Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc.,2001,148.A471.
    [25]G.L. Cui, Y.S. Hu, L.J. Zhi, D.Q. Wu, I. Lieberwirth, J. Maier, K. Mullen, A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries Small,2007,3,2066.
    [26]W.J. Cui, F. Wang, J. Wang, H.J. Liu, C.X. Wang, Y.Y. Xia, A Modified Carbothermal Reduction Method for Preparation of High Performance Nano-scale Core-Shell Cu6Sn5 Alloy Anodes in Li-ion Batteries, J. Power Sources,196,3633-3639,2011
    [27]J.L. Liu, W.J. Cui, C.X. Wang, Y.Y. Xia, Electrochemical Reaction of lithium with CoCl2 in Nonaqueous Electrolyte, Electrochem. Commun..13,269-271, 2011.
    [1]J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in Carbonaceous, Materials, Science,1995,270,590.
    [2]K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo,:A mechanism of Lithium Storage in Distored Carbons, Science,1994,64,556.
    [3]D. Guerard, A. Herold, Intercalation of Lithium Into Graphite and Other Carbons, Carbon,1975,13,337.
    [4]Y.Y. Xia, T. Sakai, T. Fujieda, M. Wada, H. Yoshinaga, Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc.2001,148, A471.
    [5]H.Y. Lee, S.W. Jang, S.M. Lee, S.J. Lee, H.K. Baik, Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying, J. Power Sources,2002,112,8.
    [6]O. Mao, R.A. Dunlap, J.R. Dahn, Mechanically alloyed Sn-Fe (-C) powders as anode materials for Li-ion batteries-I. The Sn2Fe-C system,J. Electrochem. Soc., 1999,146,405.
    [7]L.Y. Beaulieu, J.R. Dahn, The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying, J. Electrochem. Soc.,2000,147,3237.
    [8]W.J. Cui, F. Li, H.J. Liu, C.X. Wang, Y.Y. Xia, Core-shell carbon-coated Cu6Sn5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries, J. Mater. Chem.,2009,19,7202.
    [9]W.J. Cui, F. Wang, J. Wang, H.J. Liu, C.X. Wang, Y.Y. Xia, A modified carbothermal reduction method for preparation of high-performance nano-scale core/shell CuSn5 alloy anodes in Li-ion batteries, J. Power Sources,2011,196, 3633-3639
    [10]A.D.W. Todd, P.P. Ferguson, M.D. Fleischauer, J.R. Dahn, Tin-based materials as negative electrodes for Li-ion batteries:Combinatorial approaches and mechanical methods, Int. J. Energy Res.,2010,34,535.
    [11]P. Guilmin, P. Guyot, G. Marchal, Amorphization of crysatalline Co and Sn Multilayers by solid-state reaction, Phys. Lett. A,1985,109,174.
    [12]J. Hassoun, P. Ochal, S. Panero, G. Mulas, C.B. Minella, B. Scrosati, The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells, J. Power Sources,2008,180,568.
    [13]J. Hassoun, S. Panero, G. Mulas, B. Scrosati, An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries, J. Power Sources,2007,171,928.
    [14]J.C. He, H.L. Zhao, J. Wang, J. Wang, J.B. Chen, Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries, J. Alloys Compd,2010,508,629.
    [15]J.J. Zhang, Y.Y. Xia, Co-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries J. Electrochem. Soc.,2006,153, A1466.
    [16]R. Alantara, I. Rodriguez, J.L. Tirado, Structural and electrochemical properties of micro-and nano-crystalline CoSn electrode materials, Chem. Phys. Chem., 2008,9,1171.
    [17]A.D.W. Todd, P.P. Ferguson, J.G. Barker, M.D. Fleischauer, J.R. Dahn, Comparison of Mechanically Milled and Sputter Deposited Tin-Cobalt-Carbon Alloys Using Small Angle Neutron Scattering, J. Electrochem. Soc.2009,156, A1034.
    [18]P.P. Ferguson, A.D.W. Todd, J.R. Dahn, Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries, Electrochem. Commun.2008,10,25.
    [19]J.C. He, H.L. Zhao, M.W. Wang, X.D. Jia, Preparation and characterization of Co-Sn-C anodes for lithium-ion batteries, Mater. Sci. Eng. B:Solid,2010,171, 35.
    [20]F. Huang, Z.Y. Yuan, H. Zhan, Y.H. Zhou, J.T. Sun, A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries, Mater. Lett.,2003,57,3341.
    [21]M. Mladenov, P. Zlatilova, I. Dragieva, K. Klabunde, Low temperature synthesis and characterization of nanoscale CuSn5 particles as lithium anode material J. Power Sources,2006,162,803.
    [22]J. Barker, M.Y. Saidi, J.L. Swoyer, A Carbothermal Reduction Method for the Preparation of Electroactive Materials for Lithium Ion Applications, J. Electrochem. Soc,2003,150, A684.
    [23]H.M. Xiong, D.P. Liu, H. Zhang, J.S. Chen, Polyether-grafted SnO2 nanoparticles designed for solid polymer electrolytes with long-term stability J. Mater. Chem., 2004,14,2775.
    [24]J.J. Zhang, Y.Y. Xia, Chem. CoSn alloys as negative electrode materials for lithium-ion batteries, J. Chin. Univ.,2006,27,1923.
    [25]G.L. Cui, Y.S. Hu, L.J. Zhi, D.Q. Wu, I. Lieberwirth, J. Maier, K. Mullen, A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries Small.2007,3,2066.
    [26]M.M. Thackeray, J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek, L.M.L. Fransson, K. Edstrom, J. Power Sources 2003,113,124.
    [27]J. Hassoun, G. Derrien, S. Panero, B. Scrosati, A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance,Adv. Mater.,2008,20,3169.
    [28]K.T. Lee, Y.S. Jung, S.M. Oh, Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries J. Am. Chem. Soc., 2003,125,5652.
    [1]Y. Idota, T. Kubota, A. Matsufiji, Y. Maekawa, T. Miyasaka, Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material. Science, 1997,276:1395-1397.
    [2]Y. Idota, M. Nishima, Y. Miyaki, T. Kubota, T. Miyasaka, Eur.Pat. Appl.,1995, 651,450.
    [3]I.A. Courtney, J.R. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. J. Electrochem. Soc., 1997,144:2045-2052.
    [4]I.A. Courtney, J.R. Dahn, Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2BPO6 Glass. J. Electrochem. Soc.,1997, 144:2943-2948.
    [5]I.A. Courtney, W.R. McKinnon, J.R. Dahn, On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. J. Electrochem.Soc.,1999,146:59-68.
    [6]M. Nagayama, T. Morita, H. Ikuta, M. Wakihara, M. Takano, S. Kawasaki, A new anode material SnSO4 for lithium secondary battery. Solid State Ionics,1998, 106:33-38.
    [7]J.Y. Lee, Y. Xiao, Z. Liu, Amorphous Sn2P2O7, Sn2B2O5 and Sn2BPO6 anodes for lithium ion batteries. Solid State Ionics,2000,133:25-35.
    [8]F.J. Ferna'ndez Madrigal, C. Pe'rez Vicente, J.L. Tirado, On the Structure and Electrochemical Reactions with Lithium of Tin (II) Phosphate Chloride. J.Electrochem. Soc.,2000,147:1663-1667.
    [9]Y.W. Xiao, J.Y. Lee, A. Yu, Z.L. Liu, Electrochemical Performance of Amorphous and Crystalline Sn2P2O7 Anodes in Secondary Lithium Batteries. J. Electrochem. Soc.,1999,146:3623-3629.
    [10]M. Yoshiyagawa, M. Tomozawa, Electrical Properties of Rapidly Quenched Lithium-Silicate Glasses J. Phys. Colloque.1982, C 9:411-414.
    [11]M. Tatsumisago, K. Yoneda, N. Machida, T. Minami, Ionic conductivity of rapidly quenched glasses with high concentration of lithium ions. J. Non-Cryst. Solids,1987,95-96:857-864.
    [12]S. Smedley, C.A. Angell, Fast Li+ conduction in fluoroborate glasses. Mater. Res. Bull.,1980,15:421-425.
    [13]S.W. Martin, C.A. Angell, Dc and ac conductivity in wide composition range Li2O---P2O5 glasses. J. Non Cryst. Solids,1986,83:185-207.
    [14]A. Pradel, T. Pagnier, M. Ribes, Effect of rapid quenching on electrical properties of lithium conductive glasses. Solid State Ionics,1985,17:147-154.
    [15]O. Anderson, D. Stuart, Dependence of ultimate strength of glass under constant load on temperature, ambient atmosphere, and time. J. Am. Ceram. Soc.,1953,36, 416.
    [16]D. Ravaine, J.L. Souquet, Thermodynamic approach to ionic-conductivity in oxide glasses 1. Correlation of ionic-conductivity with chemical potential of alkali oxide in oxide glasses, Phys. Chem. Glasses,1977,18,27.
    [17]R. Mercier, J.P. Malugani, B. Fahys, A. Saida, Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ionics,1981,5:663-666.
    [18]V. Michellledos, A. Pradel, M. Ribes, Lithium Conductive Selenide Glasses. Eur. J. Solid State Inorg. Chem.1992,29,301-310.
    [19]M. Ribes, B. Barrau, J.L. Souquet, Sulfide glasses:Glass forming region, structure and ionic conduction of glasses in Na2S---XS2 (X---Si; Ge), Na2S---P2S5 and Li2S---GeS2 systems. J. Non-Cryst. Solids,1980,38-39:271-276.
    [20]A. Pradel, M. Ribes, Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching. Solid State Ionics,1986, 18-19:351-355.
    [21]A. Leavasseur, R. Olazcuaga, M. Kbala, M. Zahi, P. Hagenmuller, C. R. Acad. Sci. Paris,1981,293,563.
    [22]M. Behm, J. T. S. Irvine, Influence of structure and composition upon performance of tin phosphate based negative electrodes for lithium batteries Electrochim. Acta,2002,47:1727-1738.
    [23]C M. Burba, R. Frech, Electrochemical, Spectroscopic, and Thermal Investigations of LiSn2(PO4)3 and Sn3(PO4)2 Anodes during the First Discharge. J. Electrochem. Soc.,2005,152:A1233-A1240.
    [24]C M. Burba, R. Frech, A. Seidel, L. Haggstrom, A. Nyten, J.O. Thomas, Detecting unalloyed tin in LiSn2(PO4)3-based anodes with Mossbauer spectroscopy. J Solid State Electrochem.,2009,13:1267-1272.
    [25]J.K. Feng, H. Xia, M. O. Lai, L.Lu, NASICON-Structured LiGe2(PO4)3 with Improved Cyclability for High-Performance Lithium Batteries. J.Phys.Chem.C., 2009,113:20514-20520.
    [26]H. C. Liu, S. K. Yen, Electrolytic Li3PO4 coating on Pt. J. Power Sources 2006, 159:245-248.
    [27]H. M.Xiong, W. Z.Shen, Z. D.Wang, X. Zhang, Y. Y. Xia, Liquid Polymer Nanocomposites PEGME-SnO2 and PEGME-TiO2 Prepared through Solvothermal Methods. Chem. Mater.,2006,18:3850-3854.
    [28]Y. Kim, H. Hwang, K. Lawler, S. W. Martin, J. Cho, Electrochemical behavior of Ge and GeX2 (X=O,S) glasses:Improved reversibility of the reaction of Li with Ge in a sulfide medium. J. Electrochim. Acta,2008,53:5058-5064.
    [29]H.Y. Wang, M. Yoshio, Graphite, a suitable positive electrode material for high-energy electrochemical capacitors. Electrochem. Commun.2006, 8:1481-1486.
    [30]M. Wilkening, V. Epp, A. Feldhoff, P. Heitjans, Tuning the Li Diffusivity of Poor Ionic Conductors by Mechanical Treatment:High Li Conductivity of Strongly Defective LiTaO3 Nanoparticles. J. Phys. Chem.C,2008,112:9291-9300.
    [31]C. Gejke, L. Borjesson, K. Edstrom, Cycling performance and temperature stability of a tin-borate glass anode, Electrochem. Commun.2003,5,27-31
    [32]A. Martinez, J. M. Rojo, J. E. Iglesias, J. Sanz, R. M. Rojas, Formation Process of LiSn2(PO4)3, a Monoclinically Distorted NASICON-Type Structure. Chem. Mater.,1994,6:1790-1795.
    [33]A. Martinez, J. M. Rojo, J. E. Iglesias, J. Sanz, Reversible monoclinic-rhombohedral transformation in LiSn2(PO4)3 with NASICON-type structure. Chem. Mater.,1995,7:1857-1862.
    [34]D. E. Conte, A. Aboulaich, F. Robert, J. Olivier-Fourcade, J. C. Jumas, C. Jordy, P. Willmann, Sn-x[BPO4](1-x) composites as negative electrodes for lithium ion cells: Comparison with amorphous SnB0.6P0.4O2.9 and effect of composition. J. Solid State Chem.,2010,183:65-75.
    [35]N. Du, H. Zhang, J. Chen, J. Sun, B. Chen, D. Yang, Metal oxide and sulfide hollow spheres:layer-by-layer synthesis and their application in lithium-ion battery. J. Phys. Chem. B,2008,112:14836-14842.
    [36]H. Yamamoto, M. Tabuchi, T. Takeuchi, H. Kageyama, O. Nakamura, Ionic conductivity enhancement in LiGe2(PO4)3 solid electrolyte. J. Power Sources, 1997,68:397-401.
    [37]A. Martinez-Juarez, C. Pecharroman, J. E. Iglesias, J. M. Rojo, Relationship between Activation Energy and Bottleneck Size for Li+Ion Conduction in NASICON Materials of Composition LiMM'(PO4)3; M, M'=Ge, Ti, Sn, Hf. J. Phys. Chem. B.1998,102:372-375.
    [38]Y. S. Lin, J. G. Duh, H. S. Sheu, The phase transformations and cycling performance of copper-tin alloy anode materials synthesized by sputtering. J. Alloys Compd.,2011,509:123-127.
    [39]L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo, L. Christensen, K.W. Eberman, L.J. Krause, J.R. Dahn, The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys. J. Electrochem. Soc.,2003, 150:A149-A156.
    [40]J. R. Dahn, I. A. Courtney, O. Mao, Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods. Solid State Ionics,1998,111:289-294.
    [41]I. S. Courtney, J. S. Tse, O. Mao, J. Hafner, J. R. Dahn, Inner modulation mechanism for the stability of quasicrystals. Phys. Rev. B,1998,58:23-26.
    [42]E. Pollak, G. Salitra, V. Baranchugov, D. Aurbach, In Situ Conductivity, Impedance Spectroscopy, and Ex Situ Raman Spectra of Amorphous Silicon during the Insertion/Extraction of Lithium. J. Phys. Chem.C,2007, 111:11437-11444.
    [43]Y. Sharma, N. Sharma, G. V. Subba Rao, B. V. R. Chowdari, Studies on Nano-CaO·SnO2 and Nano-CaSnO3 as Anodes for Li-Ion Batteries. Chem. Mater., 2008,20:6829-6839.
    [44]R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, Y. Cui, Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes. J.Phys. Chem. C,2009,113: 11390-11398.
    [45]H. L. Zhang, C. H. Sun, F. Li, C. Liu, J. Tan, H. M. Cheng, New Insight into the Interaction between Propylene Carbonate-Based Electrolytes and Graphite Anode Material for Lithium Ion Batteries. J.Phys. Chem. C,2007,111:4740-4748.
    [46]Y. M. Li, J. H. Li, Macroporous Sn2P2O7/carbon Composites as Anode Materials for Li-ion Battery.J. Phys. Chem. C,2008,112:4216-14219.
    [47]Z. Edfouf, M. J. Aragon, B. Leon, C. P. Vicente, J. L. Tirado, Tin Phosphate Electrode Materials Prepared by the Hydrolysis of Tin Halides for Application in Lithium Ion Battery. J. Phys. Chem. C,2009,113:5316-5323.
    [48]何平,锂离子电池正极关键材料的若干基础问题研究,复旦大学博士学位论文,2009
    [49]J.J. Zhang, P. He, Y.Y. Xia, Electrochemical kinetics study of Li-ion in Cu6Sn5 electrode of lithium batteries by PITT and EIS, J. Electroanal. Chem..2008, 624,161-166.
    [50]C.C. Chang, S.J. Liu, J.J. Wu,.C.H. Yang, Nano-tin Oxide/Tin Particles on a Graphite Surface as an Anode Material for Lithium-Ion Batteries, J. Phys. Chem. C 2007,111,16423-16427
    [1]J.R. Owen, Rechargeable lithium batteries. Chem. Soc. Rev.,1997,26:259-267.
    [2]C.J. Patrissi, C.R. Martin, Sol-Gel-Based Template Synthesis and Li-Insertion Rate Performance of Nanostructured Vanadium Pentoxide. J. Electrochem. Soc. 1999,146:3176-3180.
    [3]H. Yan, S. Sokolov, J.C. Lytle, A. Stein, F. Zhang, W.H. Smyrl, Colloidal-Crystal-Templated Synthesis of Ordered Macroporous Electrode Materials for Lithium Secondary Batteries. J. Electrochem.Soc.,2003, 150:A1102-A1108.
    [4]J.C. Lytle, H. Yan, N.S. Ergang,W.H. Smyrl, A. Stein, Structural and electrochemical properties of three-dimensionally ordered macroporous tin(IV) oxide films. J. Mater. Chem.,2004,14:1616-1622.
    [5]L. Kavan, M. Zukalova, M. Kalbac, M. Graetzel, Lithium Insertion into Anatase Inverse Opal.J.Electrochem.Soc.,2004,151:A1301-A1307.
    [6]J.S. Sakamoto, B. Dunn, Hierarchical battery electrodes based on inverted opal structures. J. Mater. Chem.,2002,12:2859-2861.
    [7]N.S. Ergang, J.C. Lytle, H. Yan, A. Stein, Effect of a Macropore Structure on Cycling Rates of LiCoO2.J. Electrochem. Soc.,2005,152:A1989-A1995.
    [8]H. Yan, C.F. Blanford, J.C. Lytle, C.B. Carter, W.H. Smyrl, A. Stein, Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating. Chem.Mater,2001,13:4314-4321.
    [9]C.F. Blanford, H. W. Yan, R. C. Schroden, M. Al-Daous, A. Stein, Gems of chemistry and physics:Macroporous metal oxides with 3D order. Adv. Mater, 2001,13:4314-4321.
    [10]A. Stein, R.C. Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids:materials for photonics and beyond, Curr. Opin. Solid State Mater. Sci.2001,5,553.
    [11]R. Rengarajan, P. Jiang, V. Colvin, D. Mittleman, Optical properties of a photonic crystal of hollow spherical shells. Appl. Phys. Lett.,2000, 77:3517-3519.
    [12]G. Chai, S.B. Yoon, S. Kang, J.H. Choi, Y.E. Sung, Y.S. Ahn, H.S. Kim, J.S. Yu, Ordered uniform porous carbons as a catalyst support in a direct methanol fuel cell. Electrochim. Acta,2004,50:823-826.
    [13]K. Zhang, N.R. Washburn, C.G. Simon, Electrospun poly(-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials,2005,26: 4532-4539.
    [14]K.M. Kulinowski, P. Jiang, H. Vaswani, V.L. Colvin, Porous Metals from Colloidal Templates. Adv. Mater.,2000,12:833-838.
    [15]Y. Idota, Eur. Pat.1993,149, Al.
    [16]A. K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc,1997,144:1188-1194.
    [17]Z.C. Shi, Y.X. Li, W.L. Ye, Y. Yang, Mesoporous FePO4 with Enhanced Electrochemical Performance as Cathode Materials of Rechargeable Lithium Batteries. Electrochem. Solid-State Lett.2005,8:A396-A399.
    [18]P.P. Prosini, M. Lisi, S. Scaccia, M. Carewska, F. Cardellini, M. Pasquali, Synthesis and Characterization of Amorphous Hydrated FePO4 and Its Electrode Performance in Lithium Batteries. J.Electrochem. Soc.,2002,149:A297-A301.
    [19]P. Tang, N.A.W. Holzwarth, Electronic structure of FePO4, LiFePO4, and related materials. Phys. Rev. B,2003,68:165107.
    [20]P. P. Prosini, D. Zane, M. Pasquali, Improved electrochemical performance of a LiFePo4-based composite cathode. Electrochim. Acta,2001.46(23):3517-3523.
    [21]H. Liu, L. J. Fu, H. P. Zhang, J. Gao, C. Li, Y. P. Wu, H. Q. Wu, Effects of carbon coatings on nanocomposite electrodes for lithium-ion batteries. Electrochem. Solid-State Lett.,2006.9(12):A529-A533.
    [22]H. C. Shin, W. I. Cho, H. Jang, Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J. Power Sources,2006.159(2):1383-1388.
    [23]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater.2002.1(2): 123-128.
    [24]H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun.,2006. 8(10):1553-1557.
    [25]M.S. Whittingham, Lithium Batteries and Cathode Materials. Chem. Rev.,2004, 104:4271-4301.
    [26]B.T. Holland, C.F. Blanford, T. Do, A. Stein, Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites. Chem. Mater.,1999,11: 795-805.
    [27]H.W. Yan, C.F. Blanford, B.T. Holland, W.H. Smyrl, A. Stein, General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion. Chem. Mater.,2000,12:1134-1141.
    [28]L.V. Woodcock, Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures. Nature,1997,385:141-143.
    [29]C. Masquelier, A. K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, New cathode materials for rechargeable lithium batteries:The 3-D framework structures Li3Fe2(XO4)(3) (X=P, As). J. Solid State Chem.,1998,135:228-234.
    [30]S. Okada, T. Yamamoto, Y. Okazaki, J. Yamaki, M. Tokunaga, T. Nishida, Cathode properties of amorphous and crystalline FePO4. J. Power Sources,2005, 146:570-574.
    [31]Y.H. Deng, C. Liu, T. Yu, F. Liu, F.Q. Zhang, Y. Wan, L.J. Zhang, C.C. Wang, B. Tu, P.A. Webley, H.T. Wang, D.Y. Zhao, Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. Chem. Mater.,2007,19:3271-3277.
    [32]S. L. Zhang, L. Chen, S. X. Zhou, D. Y. Zhao, L. M. Wu, Facile Synthesis of Hierarchically Ordered Porous Carbon via in Situ Self-Assembly of Colloidal Polymer and Silica Spheres and Its Use as a Catalyst Support. Chem. Mater., 2010,22:3433-3440.
    [33]M. Ramzan, S. Lebegue, T. W. Kang, R. Ahuja, Hybrid Density Functional Calculations and Molecular Dynamics Study of Lithium Fluorosulphate, A Cathode Material for Lithium-Ion Batteries. J. Phys. Chem. C,2011, 115:2600-2603.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.