Fe对Sn_xCo_y/C负极材料的结构和电性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文重点研究了过度金属元素Fe对锂离子电池锡钴合碳负极材料的结构和电性能的影响。采用固相烧结的方法首先制备SnxCoy/C复合材料,然后制备了SnxCoyFe0.2/C复合材料,在最优体系的基础上制备SnCoFex/C复合材料。
     XRD分析发现,在SnxCoy/C复合材料中,Sn2Co/C由CoSn2、CoSn相和少量Sn单质组成;SnCo/C含有CoSn相;Sn2Co3/C含有Co3Sn2相。在SnxCoyFe0.2/C样品中,Sn2CoFe0.2/C由CoSn2、CoSn相和少量Sn单质组成;SnCoFe0.2/C含有CoSn相,少量的Co3Sn2相形成;Sn2Co3Fe0.2/C只含有Co3Sn2相。添加的Fe元素以置换固溶的形式存在,添加Fe元素有助于细化晶粒。在SnCoFey/C样品中随着Fe含量的增大,SnCoFe0.1/C和SnCoFe0.2/C在CoSn主相基础上,新形成Co3Sn2相,随着Fe含量的继续增大先又形成少量FeSn2相以及Co和Sn相。并且随着Fe含量的增加晶粒尺寸也在减小。另外对所有烧结样品进行球磨,晶粒都得到了一步的细化。
     电性能测试表明,在SnxCoy/C复合材料中,首次放电容量和首次充放电效率都随着Sn含量的增加,Sn2Co/C样品的首次放电容量和首次充放电效率最大,分别为551mAh/g和77.5%;而循环性能则随着Sn含量的增加而减小,其中Sn2Co3/C的循环性能最好,经过25次充放电后,放电容量保持了首次放电容量的88.4%;在SnxCoyFe0.2/C样品中,电性能与SnxCoy/C样品的电性能规律类似,Sn2CoFe0.2/C首次放电容量和首次充放电效率最大,分别为565mAh/g和86.7%;而循环性能则随着Sn含量的增加而减小,其Sn2Co3Fe0.2/C的循环性能最好,经过25次充放电后,放电容量保持了首次放电容量的90.9%。与SnxCoy/C相比,添加Fe后,放电容量、充放电效率和循环性能均有提升。在SnCoFey/C样品中,随着Fe含量的增加,SnCoFex/C的首次放电容量和充放电效率呈现先增加后减小,SnCoFe0.3/C的首次放电容量和充放电效率接近最大值,分别为359mAh/g和74%,经过25次充放电后放电容量保持了首次放电容量的91.4%。
A novel investigate the influence of Fe on structures and electrochemical performance of Sn、Co and C anode composite material. Using solid-phase sintering and then ball milling, SnxCoy/C composite material,are prepared and then SnxCoyFe0.2/C composite material are prepared. In the optimal system, SnCoFex/C composite material are prepared.
     The results of X-ray diffraction indicated that in SnxCoy/C composite material, Sn2Co/C consists of CoSn2、CoSn phase and a small amount of elementary substance of Sn; SnCo/C contains SnCo phase; Sn2Co3/C contains Sn2Co3 phase. In SnxCoyFe0.2/C samples, Sn2CoFe0.2/C consists of CoSn2、CoSn phase and a small amount of elementary substance of Sn; SnCoFe0.2/C contains SnCo phase and a small amount of Sn2Co3 phase. Sn2Co3Fe0.2/C contains Sn2Co3 phase. Fe exist with the form of solid solution, and contributes to grain refinement. In SnCoFey/C samples, with increasing content of Fe, Co3Sn2 is formed firstly on the matrix of CoSn phase Then a little amounts of FeSn2、Co and Sn are formed. And with increasing content of Fe, grain sizes reduce. Besides, grain of sintered samples using milling could be further refined.
     Electrical performance test showed that in SnxCoy/C composite material, initial discharge capacity and initial charge-discharge efficiency are both improved with increasing content of Sn, ,while the cycle performance is decreasing. In SnxCoyFe0.2/C samples, initial discharge capacity and initial charge-discharge efficiency are also improved with increasing content of Sn,, while the cycle performance is decreasing; Compared with SnxCoy/C, initial discharge capacity、initial charge-discharge efficiency and the cycle performance are improved. In SnCoFey/C samples, with increasing content of Fe, the initial discharge capacity and initial charge-discharge efficiency are both improved first and then are decreasing, and the cycle performance is improved first and then tended to be stable;The initial discharge capacity and initial charge-discharge efficiency of SnCoFe0.3/C are the largest, and they are respectively 359mAh/g and 74%,and the reversible capacity remains above 91.4% of the initial discharge capacity after 25 charge-discharge cycles.
引文
[1] Bruo Scrosati. Challenge of portable power[J]. Nature, 1995, 373(16): 557.
    [2] Yoshio Nishi. Lithium ion secondary batteries-past 10 years and the future [J]. Journal of Power Sources, 2001, 101-106.
    [3]任建国,王科,何向明等.锂离子电池合金负极材料的研究进展[J].化学进展, 2005, 17(4): 597-603.
    [4]吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社, 1992.
    [5]杨遇春.二次锂电池进展[J].电池, 1993, 23(5): 230-233.
    [6] M Armand. In materials for advanced batteries[M]. Plenum Press,New York, 1980.
    [7] J J Auborn,Y L Barberio. Lithium intercalation cells without metallic Lithium MO2/LiCoO2 and WO2/LiCoO2[J]. J.Electrochem Soc, 1987, 134(3): 638-641.
    [8] M tarascon, M Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
    [9]任学佑.锂离子电池及其发展前景[J].电池, 1996, 26(1): 38-40.
    [10]安晓雨,谭玲生.空间飞行器用锂离子蓄电池储能电源的研究进展[J]电源技术, 2006, 130(1):70.
    [11]刘建睿,王猛.高能锂离子电池的研究进展[J].材料导报, 2001, 15(7): 32.
    [12] Feng X M, Ai X P,Yang H X. A positive-temperature-coefficient elecreode with themal cut-off mechanism for use in rechargeable lithium batteries[J] Electrochemistry Communications, 2004, 6: 1021-1024.
    [13]黄拥理,潘春跃,黄可龙.聚合物锂离子蓄电池技术与市场[J].电源技术, 2001, 25(5): 371-374.
    [14]毛国龙.锂离子动力电池现状及应用前景[J]中国电子商情, 2009: 14-20.
    [15]汽车能源改革正在酝酿2010年锂离子电池取代石油[J].电源技术, 2009, (03) :156.
    [16] A Mabuchi, K Tokimitsu, H Fujimto, et al. Charge-discharge characteristics of the meso-carbon microbeads heat-treated at different temperatures[J]. J. Electorchem Soc, 1995, 142(4): 1041-1049P.
    [17]徐仲榆,郑红河.锂离子蓄电池碳负极/电解液相容性研究进展Ⅰ碳电极界面化学与碳负极/电解液的相容性[J]电源技术, 2004, (3): 171-177.
    [18] Kepler K D,Vaughey J T,Thackeray M M,et al. Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system[J]. J Power Sources, 1999, 81-82: 383-387.
    [19]索尼公司.负极活性材料和使用该负极活性材料的电池:中国, 200510107034.1[P], 2006-4-5.
    [20]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:化学工业出版社, 2002.
    [21] XIA Y, SAKAI T, FUJIEDAT, etal. Flake Cu-Sn alloys as negative electrode materials for rechargeable lithium batteries [J]. Electrochemical Society, 2001, 148(5):A471-A481.
    [22]蒲薇华,任建国,万春荣,等.电沉积制备的锂离子电池Sn-Cu合金负极及性能研究[J].无机材料学报, 2004, 19(1): 86-92.
    [23] LEE H Y, JANG S W, LEE S M, etal. Lithium storage properties of nanocrystal line Ni3Sn4 alloys prepared by mechanical alloying [J] J Power Source, 2002, 121(1):8-12.
    [24] Ehrlich G M,Durand C , et al . Metallic negative electrode materials for rechargeable nonaqueous batteries[J] J Electrochem Soc, 2000, 147(3): 886.
    [25]舒杰,程新群,史鹏飞.锂离子电池用Sn2Ni合金负极的研究[J].电池2004, 34(4): 235-237.
    [26]黄学杰,李泓,王庆等.纳米储锂材料和锂离子电池[J].物理, 2002, 31(7): 444-449.
    [27] YANG J, WACHTLER M, WINTER M, et al.Sub-microcrystaline Sn and Sn-Sn/Sb powders as lithium storage materials for lithium-ion batteries[J]. Electrochemical and Solid State Letters, 1999, 2(4): 161-163.
    [28] YANG J, TAKEDA Y, IMANISHI N, et al. Ultraifne Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries [J]. Electrochemical Society, 1999, 146: 4009-4013.
    [29] WANG Z, TIAN W H, LI X G.. Synthesisand and electro-chemistry properties of Sn-Sb ultrafine particles as anode of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2007, 439: 350-354.
    [30]王小东,李雪鹏,孙占波等.锂离子电池合金负极材料的研究进展[J].电池, 2007, 37(2): 161-163.
    [31] Hansu K, Junghee C, Hum-Joon S, et al . The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries [J]. J Electrochem soc,1999, 146(12): 4401-4405.
    [32] Xie J, Zhao X B, Cao G S, et al , Electrochemical Li - uptake properties of nanosized NiSb2 prepared by solvothemal route[J]. J Alloy Compd ,2005, 393: 283-286.
    [33] Xie J, Cao G S, Zhong Y D,et , al. Capacity fade mechanism of CoSb3 intermetallic compound[J ]. J Electroanal Chem, 2004, 568: 323-327.
    [34] Hamon Y,Brousse T,Jousse F ,et al . Aluminum negative electrode in lithium-ion batteries [J]. J Power Sources, 2001. 97-98: 185-187.
    [35] Y. ldota.T. Kubota,A. Matsufuji, Y. Maekawa, T.Miyasaka, Tin-based amorphous oxide:A high- capacity lithium-lion-storage material [J] .Science,1997,276:1395.
    [36]张利华,陈永坤,王剑华等.锂离子电池锡基负极材料研究进展[J].云南冶金.2006,35(1):45-48.
    [37] O Tsutomu, U Atstshi, Y Norihiro. Zreo-strain insertion materials of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Electrochemical Society, 1995, 140:1431-1435.
    [38]杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究[J]电化学, 2000, 6(3): 350-356
    [39] N Nishijima, T Kagohashi, Y Takeda, et al. Electrochemical Studies of a New Anode Material, Li3-xMxN(M=Ni, Cu, Co)[J]. Power Sources, 1997, 68: 510-514.
    [40]蒋小兵,赵新兵,曹高劭等.新型锂离子电池负极材料CoFe3Sb12[J]材料研究学报, 2001, 15(04): 469~472.
    [41]马江虹,翟玉春,田彦文等. WS2纳米纤维的制备及电化学性能[J]材料与冶金学报, 2004, 3: 39~42.
    [42] Vassilev G P , Lilova K I , Gachon J C Calorimetric andphase diagram studies of the Co-Sn system Intermetallics ,2007 , 15 : 115621162.
    [43]张敬君,夏永姚. Co-Sn合金作为锂离子电池负极材料的研究[J]高等学校化学学报, 2006, 27(10): 1923-1926.
    [44]谢健,赵新兵,佘红明等.纳米Co-Sn金属间化合物的合成、表征及电化学吸放锂行为[J].物理化学学报, 2006, 22(11): 1409-1412.
    [45]米常焕,张校刚,曹高邵.锂离子电池负极合金CoSn和Co-Sn的制备与表征[J].无机化学学报, 2003, 3(19): 283-286.
    [46]黄令,江宏宏.新型三维网状锡-钴合金负极材料的结构与性能[J].物理化学学报, 2006, 22(12): 1537-1541.
    [47] Ke F S, Huang L, Wei H B, et al. Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium-ion batteries[J]. J. Power Sources, 2007, 170: 450-455.
    [48] Taumra N, Fujimoto M, Kamino M. et al. Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries[J]. Electrochimica Acta,2004,49: 1949-1956.
    [49] A D W Tod, R E Mar, J R Dahn. Combinatorial study of tin-transition metal alloys as negative electrodes for lithium-ion batteries[J]. J. Electrochemical Society, 2006, 153(10): A1998-A2005.
    [50] A D W Tod, R E Mar, J R Dahn. Tin–transition metal–carbon systems for lithium-ion battery negative electrodes[J]. J. Electrochemical Society, 2007, 154(6): A597-A604.
    [51] R B Lees, A Timmons, Mar R E, et al. In situ AFM measurements of the expansion and contraction of amorphous Sn-Co-C films reacting with lithium[J]. J. Electrochemical Society, 2007, 154(3): A213-A21.
    [52] K Hyunjung, C Jaephil. Synthesis and morphological, electrochemical characterization of Sn92Co8 nanoalloys for anode materials in Li secondary batteries[J]. J. Electrochemical Society, 2007, 154(5): A462-A466.
    [53] Smart M.C.,Ratnakumar B.V.,Surampudi S. et al J.Electrpcje.Soc.,1990,146(11),3963.
    [54]米常焕,张校刚,曹高邵.锂离子电池负极合金CoSn和Cu-Sn的制备与表征[J].无机化学学报, 2003, 3(19): 283-286.
    [55]谢健,赵新兵,佘红明等.纳米Co-Sn金属间化合物的合成、表征及电化学吸放锂行为[J].物理化学学报, 2006, 22(11): 1409-1412.
    [56]黄良余.铝及其合金的晶粒细化处理简述[J] .特种铸造及有色合金, 1997,3,41.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.