Co源对SnCo/C负极材料结构和电性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
商业化的锂离子电池多以碳作为负极材料。但是随着人们对电池容量要求的不断提高,商业化的电池已经不能满足人们的需求。而Sn基具有比容量高、安全性能好等特点,使得它成为了人们研究的热点。在Sn基引入Co可以提高循环性能,本文以不同的Co源和Sn粉、炭黑为原料,采用不同温度固相烧结后球磨的方法制备锂离子电池负极锡钴碳复合材料,并采用XRD,SEM对复合材料进行了表征,并对材料的电性能进行了测试。
     在SnCo_x/C(Co_x=Co_3O_4、CoC_2O_4、CoCO_3),600℃固相烧结体系中,XRD分析发现,SnCo_3O_4/C体系的主相为SnO_2,SnCoC_2O_4/C体系的主相为SnO_2和Sn,SnCoCO_3/C体系的主相为Sn。电化学分析表明,当钴化合物为CoCO_3时,制备的SnCoCO_3/C复合材料的首次脱锂比容量为257mAh/g,首次充放电效率为71.8%,循环25次后容量保持率为65.76%。
     由于SnCoCO_3/C样品具有较高的可逆容量和最佳的循环性能,因此本文优选在SnCoCO_3/C材料中添加单质Co,以考察单质Co对材料的结构和电性能的影响规律。
     在Sn(CoCO_3)_yCo_(1-y)/C(y=1、0.75、0.5、0.25、0.125、0.0625、0),850℃固相烧结体系中,XRD分析发现Sn(CoCO_3)_yCo_(1-y)/C体系的7个样品的主相都是CoSn相。并且他们的主相的晶粒尺寸都小于100nm,均属于纳米晶复合材料。电性能分析发现,随着CoCO_3在样品中的摩尔含量的增加,Sn(CoCO_3)_yCo_(1-y)/C样品的首次充放电效率呈现逐渐增加的趋势,SnCoCO_3/C最大,达到了64%。随着单质Co在样品中的摩尔含量的增加,Sn(CoCO_3)_yCo_(1-y)/C样品的循环性能呈现逐渐增加的趋势,SnCo/C的循环性能最优,为79.3%。Sn(CoCO_3)_(0.75)Co_(0.25)/C的首次放电容量为297mAh/g,循环25次容量保持率为60%,具有优秀可逆性和较好的循环性
Commercialized Li-ion battery used carbon as the anode materials. But with the demand of people improving, commercialized battery has not met the demand of people. Sn has the high capacity and the good safety performance, which make it become the focus of research.The introduction of Co in the Sn-based can improve cycling performance. The SnCo/C composites as anode materials for lithium-ion batteries were synthesized from different Cobalt,Sn powders and carbon black using solid-state sintering at different temperatures firstly and then ball milling.The characterization of the composite was carried out by XRD,SEM and electricalproperties measurement.
     In SnCo_x/C(Co_x=Co_3O_4、CoC_2O_4、CoCO_3) system using solid-state sintering at 600 temperatures,XRD analyses reveal that the main phase of SnCo_3O_4/C system is SnO_2, the main phase of SnCo_3O_4/C system are SnO_2 and Sn, the main phase of SnCoCO_3/C system is Sn. Electrochemical analysis shows that the first lithium deintercalation capacity of the composite when Co Compounds selected CoCO_3 was 257mAh/g and initial charge-discharge efficiency was 71.8%,The capacity retention achieved 65.76% after 25 cycles.
     Element Co is added into SnCoCO_3/C sample because of its higher capacity and best cycle performance,and study the influence of element Co on structures and electrochemcial performance of material.
     In Sn(CoCO_3)_yCo_(1-y)/C(y=1、0.75、0.5、0.25、0.125、0.0625、0) system using solid-state sintering at 850 temperatures,XRD analysis showed that the main phase of all the Sn(CoCO_3)_yCo_(1-y)/C is CoSn. And the grain size of Sn(CoCO_3)_yCo_(1-y)/C composites are less than 100nm,belong to nanocrystalline composite.Electrochemical analysis shows that with the molar mass of CoCO_3 is increased, the first charge-discharge efficiency of Sn(CoCO_3)_yCo_(1-y)/C samples is improved,SnCoCO_3/C sample reaches to the maximum,the first charge-discharge efficiency is 64%.With the increasing of molar mass of elemental Co,the cycle performance of Sn(CoCO_3)_yCo_(1-y)/C samples is improved,SnCo/C sample reaches to the maximum,reaching 79.3%.The initial discharge capacity of Sn(CoCO_3)_(0.75)Co_(0.25)/C is 297mAh/g, The capacity retention achieved 60% after 25 cycles,It had good capacity and best cycle performance.
引文
[1]鲁楠,梁子超.绿色能源开发与应用[J].可再生能源,1985,(01) :29-30
    [2]王春华.绿色能源环保发电[J].太阳能, 2005, (04): 55-56
    [3]任建国,王科,何向明等.锂离子电池合金负极材料的研究进展[J].化学进展, 2005, 17(4): 597-603.
    [4]吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社, 1992.
    [5]杨遇春.二次锂电池进展[J].电池, 1993, 23(5): 230-233.
    [6] M Armand. In materials for advanced batteries[M]. Plenum Press,New York, 1980.
    [7] J J Auborn,Y L Barberio. Lithium intercalation cells without metallic Lithium MO_2/LiCoO_2 and WO_2/LiCoO_2[J]. J.Electrochem Soc, 1987, 134(3): 638-641.
    [8] M tarascon, M Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
    [9]任学佑.锂离子电池及其发展前景[J].电池, 1996, 26(1): 38-40.
    [10]安晓雨,谭玲生.空间飞行器用锂离子蓄电池储能电源的研究进展[J]电源技术, 2006, 130(1):70.
    [11]刘建睿,王猛.高能锂离子电池的研究进展[J].材料导报, 2001, 15(7): 32.
    [12] Feng X M, Ai X P,Yang H X. A positive-temperature-coefficient elecreode with themal cut-off mechanism for use in rechargeable lithium batteries[J] Electrochemistry Communications, 2004, 6: 1021-1024.
    [13]黄拥理,潘春跃,黄可龙.聚合物锂离子蓄电池技术与市场[J].电源技术, 2001, 25(5): 371-374.
    [14]毛国龙.锂离子动力电池现状及应用前景[J]中国电子商情, 2009: 14-20.
    [15]汽车能源改革正在酝酿2010年锂离子电池取代石油[J].电源技术, 2009, (03) :156.
    [16] A Mabuchi, K Tokimitsu, H Fujimto, et al. Charge-discharge characteristics of the meso-carbon microbeads heat-treated at different temperatures[J]. J. Electorchem Soc, 1995, 142(4): 1041-1049P.
    [17]徐仲榆,郑红河.锂离子蓄电池碳负极/电解液相容性研究进展Ⅰ碳电极界面化学与碳负极/电解液的相容性[J]电源技术, 2004, (3): 171-177.
    [18] Kepler K D,Vaughey J T,Thackeray M M,et al. Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system[J]. J Power Sources, 1999, 81-82: 383-387.
    [19] Yoshio Nishi. Lithium ion secondary batteries-past 10 years and the future [J]. Journal of Power Sources, 2001, 101-106.
    [20]沈丁,杨绍斌,张淑凯.锂离子电池锡钴和锡钴碳负极材料的研究进展[J].化工进展, 2007,27(12):1892-1896
    [21]沈丁,杨绍斌,杨芳等.固相烧结法制备Sn-Co合金及储锂性能研究[J].电源技术,2010,134(4):371-374
    [22]杨绍斌,沈丁,李强.Sn0.35-0.5xCo0.35-0.5xZn_xC0.30复合材料的制备及电化学性能[J].金属学报,2010,46(01):6-12
    [23]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:化学工业出版社,2002.
    [24] XIA Y, SAKAI T, FUJIEDAT, etal. Flake Cu-Sn alloys as negative electrode materials for rechargeable lithium batteries [J]. Electrochemical Society, 2001, 148(5):A471-A481.
    [25]蒲薇华,任建国,万春荣,等.电沉积制备的锂离子电池Sn-Cu合金负极及性能研究[J].无机材料学报, 2004, 19(1): 86-92.
    [26] LEE H Y, JANG S W, LEE S M, etal. Lithium storage properties of nanocrystal line Ni3Sn4 alloys prepared by mechanical alloying [J] J Power Source, 2002, 121(1):8-12.
    [27] Ehrlich G M,Durand C , et al . Metallic negative electrode materials for rechargeable nonaqueous batteries[J] J Electrochem Soc, 2000, 147(3): 886.
    [28]舒杰,程新群,史鹏飞.锂离子电池用Sn_2Ni合金负极的研究[J].电池2004, 34(4): 235-237.
    [29]黄学杰,李泓,王庆等.纳米储锂材料和锂离子电池[J].物理, 2002, 31(7): 444-449.
    [30] YANG J, WACHTLER M, WINTER M, et al.Sub-microcrystaline Sn and Sn-Sn/Sb powders as lithium storage materials for lithium-ion batteries[J]. Electrochemical and Solid State Letters, 1999, 2(4): 161-163.
    [31] YANG J, TAKEDA Y, IMANISHI N, et al. Ultraifne Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries [J]. Electrochemical Society, 1999, 146: 4009-4013.
    [32] WANG Z, TIAN W H, LI X G.. Synthesisand and electro-chemistry properties of Sn-Sb ultrafine particles as anode of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2007, 439: 350-354.
    [33]王小东,李雪鹏,孙占波等.锂离子电池合金负极材料的研究进展[J].电池, 2007, 37(2): 161-163.
    [34] Hansu K, Junghee C, Hum-Joon S, et al . The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries [J]. J Electrochem soc,1999, 146(12): 4401-4405.
    [35] Xie J, Zhao X B, Cao G S, et al , Electrochemical Li - uptake properties of nanosized NiSb2 prepared by solvothemal route[J]. J Alloy Compd ,2005, 393: 283-286.
    [36] Xie J, Cao G S, Zhong Y D,et , al. Capacity fade mechanism of CoSb3 intermetallic compound[J ]. J Electroanal Chem, 2004, 568: 323-327.
    [37] Hamon Y,Brousse T,Jousse F ,et al . Aluminum negative electrode in lithium-ion batteries [J]. J Power Sources, 2001. 97-98: 185-187.
    [38] Y. ldota.T. Kubota,A. Matsufuji, Y. Maekawa, T.Miyasaka, Tin-based amorphous oxide:A high- capacity lithium-lion-storage material [J] .Science,1997,276:1395.
    [36]张利华,陈永坤,王剑华等.锂离子电池锡基负极材料研究进展[J].云南冶金.2006,35(1):45-48.
    [39] O Tsutomu, U Atstshi, Y Norihiro. Zreo-strain insertion materials of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Electrochemical Society, 1995, 140:1431-1435.
    [40]杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究[J]电化学, 2000, 6(3): 350-356
    [41] N Nishijima, T Kagohashi, Y Takeda, et al. Electrochemical Studies of a New Anode Material, Li3-xMxN(M=Ni, Cu, Co)[J]. Power Sources, 1997, 68: 510-514.
    [42]蒋小兵,赵新兵,曹高劭等.新型锂离子电池负极材料CoFe3Sb12[J]材料研究学报, 2001, 15(04): 469~472.
    [43]马江虹,翟玉春,田彦文等. WS2纳米纤维的制备及电化学性能[J]材料与冶金学报, 2004, 3: 39~42.
    [44] Vassilev G P , Lilova K I , Gachon J C Calorimetric andphase diagram studies of the Co-Sn system Intermetallics ,2007 , 15 : 115621162.
    [45]张敬君,夏永姚. Co-Sn合金作为锂离子电池负极材料的研究[J]高等学校化学学报, 2006, 27(10): 1923-1926.
    [46]谢健,赵新兵,佘红明等.纳米Co-Sn金属间化合物的合成、表征及电化学吸放锂行为[J].物理化学学报, 2006, 22(11): 1409-1412.
    [47]米常焕,张校刚,曹高邵.锂离子电池负极合金CoSn和Co-Sn的制备与表征[J].无机化学学报, 2003, 3(19): 283-286.
    [48]黄令,江宏宏.新型三维网状锡-钴合金负极材料的结构与性能[J].物理化学学报, 2006, 22(12): 1537-1541.
    [49] Ke F S, Huang L, Wei H B, et al. Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium-ion batteries[J]. J. Power Sources, 2007, 170: 450-455.
    [50] Taumra N, Fujimoto M, Kamino M. et al. Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries[J]. Electrochimica Acta,2004,49: 1949-1956.
    [51] A D W Tod, R E Mar, J R Dahn. Combinatorial study of tin-transition metal alloys as negative electrodes for lithium-ion batteries[J]. J. Electrochemical Society, 2006, 153(10): A1998-A2005.
    [52] A D W Tod, R E Mar, J R Dahn. Tin–transition metal–carbon systems for lithium-ion battery negative electrodes[J]. J. Electrochemical Society, 2007, 154(6): A597-A604.
    [53] R B Lees, A Timmons, Mar R E, et al. In situ AFM measurements of the expansion and contraction of amorphous Sn-Co-C films reacting with lithium[J]. J. Electrochemical Society, 2007, 154(3): A213-A21.
    [54] K Hyunjung, C Jaephil. Synthesis and morphological, electrochemical characterization of Sn92Co8 nanoalloys for anode materials in Li secondary batteries[J]. J. Electrochemical Society, 2007, 154(5): A462-A466.
    [55] Lee S,Yoon S,Park C M,et al.Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anode for Li-ion batteries [J].Electrochim Acta,2008,54(2):364-369
    [56]常玉清,黄令,孙世刚.锂离子电池Sn-Co-Zn合金负极材料电沉积及其储锂性能[J].物理化学学报,2010,26(03):561-566
    [57]江宏宏,黄令,周顺维等.锡钴合金电沉积层的结构与锂离子嵌脱行为[J].电化学,2006,12(2):183-187.
    [58] N Taumra,M Fujimoto,M Kamino,et al. Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries[J].Electrochimica Acta,2004,49(12):1949-1956.
    [59] G F Ortiz,R Alcantara,I Rodriguez,et al. New tin-based materials containing cobalt and carbon for lithium-ion batteries[J]. Electroamal.Chem,2007,3(22):1-11
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.