Cu基难混溶合金核壳结构的形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
难混溶合金由液-液相分离反应生成两个难混溶液相,在一定条件下可凝固形成核壳组织,拓展了该合金体系的应用领域。本文在前人研究成果的基础上,进一步研究核壳结构难混溶合金形成的影响因素及作用机理,取得以下进展:
     (1)现有文献中制备得到的核壳组织最外层一般被低表面能相包裹。针对该现象,采用浇铸法研究了难混溶区外的亚偏晶和偏晶成分的40Sn60Cu-Bi难混溶合金,得到富Cu-Sn相包裹富Bi相的核壳组织。对比制备了Cu-Pb偏晶合金,得到的合金结构整体为富Cu相枝晶,富Pb相分布在枝晶晶界处。分析认为这种组织差异是合金在偏晶反应后生成的液相与固相间的润湿性差异造成的。
     (2)采用浇铸法研究了难混溶区合金成分对40Sn60Cu-Bi合金凝固组织的影响。随着富Bi相含量的增加,40Sn60Cu-45%Bi、40Sn60Cu-62.5%Bi和40Sn60Cu-72.5%Bi合金的组织最外层均为富Bi相,并依次形成三层核壳组织、两层核壳组织和富Cu-Sn相弥散分布的组织。
     (3)采用浇铸法研究了冷却速率对40Sn60Cu-62.5%Bi合金核壳组织形成的影响。计算了三个尺寸合金柱体中富Cu-Sn相液滴的Marangoni对流速率Vm和富Bi相凝固界面推进速率Vi,得到当Vm≥Vi时的临界液滴尺寸。计算和实验结果显示,直径5mm的合金柱体具有最小的临界液滴尺寸,形成的核壳组织的核心面积最大。
     (4)采用浇铸法研究了稀土元素Ce对40Sn60Cu-60.0%Bi合金核壳组织的影响。结果显示,Ce的掺杂可显著提高合金的界面张力温度系数,使第二相液滴的Marangoni对流运动加强,使形成的核壳组织的核心面积分数提高了20%。
     (5)研究了气动悬浮条件下Fe-(43±10x)%Cu(x=0、1、2、3)合金的相分离特点。合金凝固组织的形成不仅与第二相液滴的对流运动有关,合金熔体在悬浮状态下的旋转方向也起重要作用。合金组织内部的典型形貌主要分为3类:第二相液滴在基体相中弥散分布的组织、核壳组织和两液相平行分层的组织。其中Fe-23%Cu合金的组织内部为富Fe相包裹富Cu相的核壳结构,可用作金属相变胶囊。
Homogeneous immiscible alloys decompose into two immiscible liquids due tothe liquid-liquid decomposition reaction when being cooled into the immiscible zone,and form core-shell structures under certain conditions, which can be applied asmetallic composites in various industrial fields. A substantial research effort has beenundertaken to investigate the formation mechanism of core-shell structuredimmiscible alloys. However, the formation mechanism has not been clarified. Someeffects on the formation mechanism have been studied in this thesis. The followingconclusions have been made.
     (1) Core-shell immiscible alloys reported have usually been coated by a lay ofone phase with low surface energy, which restricted the potential application fields ofimmiscible alloys. Hypomonotectic and monotectic40Sn60Cu-Bi alloys have beenprepared by a casting method in this work. A core-shell structure which consists of ashell of CuSn-rich phase and a core of Sn-rich phase has been obtained. MonotecticCu-Pb alloy has been casted as well. The morphology of monotectic Cu-Pb alloy wasa network structure formed by Cu dendrites and Pb was distributed at the grainboundary or in the interdendritic regions. The reason for structure difference betweenmonotectic40Sn60Cu-Bi (wt.%) and Cu-Pb alloy was considered to be the differenceof wetting property between the liquid and solid produced by monotectic reaction inthe two alloys.
     (2) The effect of composition on the formation of40Sn60Cu-Bi hypermonotecticalloys has been studied by the casting method. With the content of Bi increasing, athree-layer core-shell structure, a two-layer core-shell structure and a dispersedstructure with CuSn-rich phase have been observed in40Sn60Cu-45%Bi,40Sn60Cu-62.5%Bi and40Sn60Cu-72.5%Bi alloys, respectively. The periphery of allthe alloys is composed of Bi-rich phase.
     (3) The effect of cooling rate on the formation of core-shell structure in40Sn60Cu-62.5%Bi alloy has been discussed. The Marangoni moving velocity VmofCuSn-rich droplets and the advancing velocity Viof Bi-rich phase solidification interface have been calculated. For three samples with different radi, the criticaldroplet radius has been got when Vm≥Vi. The least critical droplet radius was gainedand a largest core was obtained as well in the sample with a diameter of5mm.
     (4) The effect of Ce addition on the formation of core-shell structure in40Sn60Cu-60.0%Bi alloy has been investigated. The results show that the addition ofCe improved the temperature coefficient of liquid-liquid interfacial tension, andtherefore sped up the Marangoni velocity of CuSn-rich droplets. The core fraction hasbeen enlarged by20%with the addition of Ce.
     (5) Phase separation of Fe-(43±10x) at.%Cu (x=0、1、2、3) alloys underaerodynamic levitation has been studied. Structures of Fe-Cu alloys were determinedby the movement of minor-phase droplets and the rotation direction of alloy spheresin the state of levitated. Three typical kinds of structures have been obtained: adispersed structure, a core-shell structure and a parallel-layer structure. A core-shellstructure with a shell of Fe-rich phase and a core of Cu-rich phase formed inFe-23%Cu alloy, which can be used as metallic phase change capsules.
引文
Brandes E A, Brook G B, Smithells C J. Smithells Metals Reference Book, seventh ed.Butterworth-Heinemann: University of Virginia,1998
    Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy.Journal of Chemical Physics,1958,28:258~267
    Cao C D, Wei B B. Microstructure evolution of Cu-Pb monotectic alloys processed indrop tube. Journal of Materials Science&Technology,2002,18:73~76
    Chatain D, Eustathopoulos N, Desre P. The interfacial tensions and wetting in thetwo-liquids region of a regular solution. Journal of Colloid and Interface Science,1981,83:384~392
    Chen Q, Jin Z P. Fe-Cu phase diagram calculation for miscible gap. Metallurgical andmaterials transactions A,1995,26:417-426
    Dai R, Zhang J F, Zhang S G, et al. Liquid immiscibility and core-shell morphologyformation in ternary Al-Bi-Sn alloys. Materials Characterization,2013,81:49~55
    Dai R, Zhang S, Guo X, et al. Formation of core-type microstructure in Al-Bimonotectic alloys. Materials Letters,2011,65:322~325
    Dai R, Zhang S, Li Y B, et al. Phase separation and formation of core-typemicrostructure of Al-65.5mass%Bi immiscible alloy. Journal of Alloys andCompounds,2011,509:2289~2293
    Dai R, Zhang S G, Li J G. One-Step Fabrication of Al/Sn-Bi Core-Shell Spheres viaPhase Separation. Journal of Electronic Materials,2011,40:2458~2464
    Fang F, Deng H Q. Surface segregation of Al-Pb immiscible alloy system with MonteCarlo simulation. Materials science and Engineering B,2003,98:265~268
    Han X J, Wang N, Wei B B. Phase separation and microstructural characteristics ofundercooled Cu-Pb immiscible alloy. Progress in Natural Science,2001,11:602~611
    Jozwiak W K, Kaczmarek E, Maniecki T P, et al. Reduction behavior of iron oxides inhydrogen and carbon monoxide atmospheres. Applied Catalysis A: General,2007,326:17~27
    Kaptay G. On the temperature gradient induced interfacial gradient force, acting onprecipitated liquid droplets in monotectic liquid alloys. Materials Science Forum,2006,508:269~274
    Kaptay G. A calphad-compatible method to calculate liquid/liquid interfacial energiesin immiscible metallic systems. Computer coupling of phase diagrams andthermochemistry,2008,32:338~352
    Kotadia H R, Das A, Doernberg E, et al. A comparative study of ternary Al-Sn-Cuimmiscible alloys prepared by conventional casting and casting underhigh-intensity ultrasonic irradiation. Materials Chemistry and Physics,2011,131:241~249
    Li Z Q, Wang W L, Zhai W, et al. Formation mechanism of layered microstructureand monotectic cell within rapidly solidified Fe-62.1Sn-27.9Si-10alloy. ActaPhysica Sinica,2011,60:108101
    Lida I, Guthrie R. The Physical Properties of Liquid Metal. Oxford: Clarendon press,1993
    Liu N. Investigation on the phase separation in undercooled Cu-Fe melts. Journal ofNon-Crystalline Solids,2012,358:196~199
    Liu N, Liu F, Chen Z, et al. Liquid-phase separation in rapid solidification ofundercooled Fe-Co-Cu melts. Journal of materials science and Technology,2012,28:622~625
    Liu N, Yang G C, Yang W, et al. Microstructure evolution of undercooled Fe-Co-Cualloys. Physica B,2011,406:957~962
    Liu X R, Lu X Y, Wei B B. Rapid monotectic solidification under free fall condition.Science in China Series E-Engineering&Materials Science,2004,47:409~420
    Liu X R, Wang N, Wei B B. Rapid growth of Cu-Pb monotectics under containerlesscondition. Acta Physica Sinica,2005,54:1671~1678
    Liu Y, Li Y X, Guo J J, et al. Numerical simulation of macro-segregation formationduring solidification process of immiscible alloys. Acta Metallurgica Sinica,2003,39:679~685
    Liu Y, Li Y X, Guo J J, et al. Liquid phase separating mechanism and preparationtechniques of immiscible alloys. Transactions of Nonferrous Metals Society ofChina,2002,12:357~365
    Lu W, Zhang S, Li J. Segregation driven by collision and coagulation of minordroplets in Al-Bi immiscible alloys under aerodynamic levitation condition.Materials Letters,2013,107:340~343
    Lu X Y, Cao C D, Kolbe M, et al. Microstructure analysis of Co-Cu alloysundercooled prior to solidification. Materials Science and Engineering A,2004,375:1101~1104
    Lu X Y, Cao C D, Wei B. Microstructure evolution of undercooled iron-copperhypoperitectic alloy. Materials Science and Engineering A,2001,313:198~206
    Luo B C, Liu X R, Wei B. Macroscopic liquid phase separation of Fe-Sn immisciblealloy investigated by both experiment and simulation. Journal of Applied Physics,2009,106:053523
    Massalski T B, Okamoto H. Binary Alloy Phase Diagram. University of California:ASM International,1990
    Mattern N, Loeser W, Eckert J. Influence of cooling rate on crystallization andmicrostructure of the monotectic Ni54Nb23Y23alloy. Philosophical MagazineLetters,2007,87:839~846
    Merkwitz M, Hoyer W. Liquid-liquid interfacial tension in the demixing metalsystems Al-Pb and Al-In. Zeitschrift Fur Metallkunde,1999,90:363~370
    Merkwitz M, Weise J, Thriemer K, et al. Liquid-liquid interfacial tension in thedemixing metal systems Ga-Hg and Ga-Pb. Zeitschrift Fur Metallkunde,1998,89:247~255
    Min S, Park J, Lee J. Surface tension of the60%Bi–24%Cu–16%Sn alloy and thecritical temperature of the immiscible liquid phase separation. Materials Letters,2008,62:4464~4466
    Nagashio K, Sasaki J, Kuribayashi K. Phase selection in undercooled Y3Al5O12melt.Materials Transactions,2004,45:2723~2727
    Nagashio K, Takamura Y, Kuribayashi K. Containerless solidification of peritectic andeutectic ceramics using aero-acoustic levitation. Materials Science Forum,2000,329-330:173~178
    Ohnuma I, Saegusa T, Takaku Y, et al. Microstructural evolution of alloy powder forelectronic materials with liquid miscibility gap. Journal of Electronic Materials,2009,38:2~9
    Oliveira J C R E, Braga M H, Travasso F D M. Simulation of the spinodal phaseseparation dynamics of the Bi-Zn system. Journal of Non-Crystalline Solids,2008,354:5340~5342
    Ozawa S, Motegi T. Solidification of hyper-monotectic Al-Pb alloy undermicrogravity using a1000-m drop shaft. Materials Letters,2004,58:2548~2552
    Park J, Min S, Lee J. Effect of REM addition on the surface tension and the criticaltemperature of the immiscible liquid phase separation of the60%Bi-24%Cu-16%Sn alloy. Korean Journal of Materials Research,2009,19:111~114
    Plevachuk Y, Didoukh V, Sokolovskii B. Miscibility gap and liquid-liquid equilibriumin the system In-Tl-Se. Journal of Phase Equilibria,1999,20:404~406
    Plevachuk Y, Didoukh V, Sokolovskii B. The miscibility gap region in liquid ternaryalloys. Journal of Non-Crystalline Solids,1999,250:325~328
    Plevachuk Y, Sklyarchuk V. Experimental investigations of phase equilibrium inliquid immiscible ZnPb alloys. Journal of Molecular Liquids,2003,105:215~219
    Plevachuk Y, Sklyarchuk V, Alekhin O, et al. Experimental studies of phase equilibriain high-temperature ternary immiscible metallic melts. Journal ofNon-Crystalline Solids,2007,353:3310~3313
    Plevachulk Y, Sklyarchuk V, Alekhin O, et al. Liquid-liquid phase equilibrium internary immiscible In-Tl-Te melts. Journal of Molecular Liquids,2006,127:33~36
    Powell R W. Further measurements of the thermal and electrical conductivity of ironat high temperature. Proceedings of the Physical Society,1939,51:407~418
    Rathz T J, Robinson M B, Li D, et al. Study of the containless undercooling of Ti-Ceimmiscible alloys. Journal of Materials Science,2001,36:1183~1188
    Ratke L. Liquid immiscible alloys. Materials Science and Engineering R,1995,15:263~347
    Ratke L, Korekt G. Solidification of Al-Pb-base alloys in low gravity. Zeitschrift FurMetallkunde,2000,91:919~927
    Ratke L, Korekt G, Drees S. Phase separation and solidification of immisciblemetallic alloys under low gravity. Advances in Space Research,1998,22:1227~1236
    Robinson M B, Li D, Rathz T J, et al. Undercooling, liquid separation andsolidification of Cu-Co alloys. Journal of Materials Science,1999,34:3747~3753
    Schaffer P L, Mathiesen R H, Arnberg L. L2droplet interaction with α-Al duringsolidification of hypermonotectic Al-8wt.%Bi alloys. Acta Materialia,2009,57:2887~2895
    Schaffer P L, Mathiesen R H, Arnberg L. Liquid decomposition, droplet coagulationand droplet-interface interactions in hypermonotectic Al-Bi alloys. Transactionsof the Indian Institute of Metals,2009,62:437~442
    Schaffer P L, Mathiesen R H, Arnberg L. In Situ investigation of liquid-liquid phaseseparation in hypermonotectic alloys. Materials Science Forum,2010,649:149~158
    Schaffer P L, Mathiesen R H, Arnberg L, et al. In situ investigation of spinodaldecomposition in hypermonotectic Al-Bi and Al-Bi-Zn alloys. New journal ofPhysics,2008,10:053001
    Shi R P, Wang C P, Wheeler D, et al. Formation mechanisms of self-organizedcore/shell and core/shell/corona microstructures in liquid droplets of immisciblealloys. Acta Materialia,2013,61:1229~1243
    Sugo H, Kisi E, Cuskelly D. Miscibility gap alloys with inverse microstructures andhigh thermal conductivity for high energy density thermal storage applications.Applied Thermal Engineering,2013,51:1345~1350
    Tomellini M. A model kinetics for nucleation and diffusion-controlled growth ofimmiscible alloys. Journal of Materials Science,2008,43:7102~7114
    Wall J J, Weber R, Kim J, et al. Aerodynamic levitation processing of a Zr-based bulkmetallic glass. Materials Science and Engineering A,2007,445-446:219~222
    Wang C P, Liu X J, Jiang M, et al. Thermodynamic database of the phase diagrams incopper base alloy systems. Journal of Physics and Chemistry of Solids,2005,66:256~260
    Wang C P, Liu X J, Ohnuma I, et al. Formation of immiscible alloy powders withegg-type microstructure. Science,2002,297:990~993
    Wang C P, Liu X J, Ohnuma I, et al. Self-formed pencil-like bulk composite materialsconsisting of copper alloy and stainless steel. Journal of Materials Research,2011,23:933~940
    Wang C P, Liu X J, Shi R P, et al. Design and formation mechanism of self-organizedcore/shell structure composite powder in immiscible liquid system. AppliedPhysics Letters,2007,91:141904
    Wang C P, liu X J, Takaku Y, et al. Formation of Core-Type Macroscopic in Cu-FeBase Alloys with Liquid Miscibility Gap. Metallurgical and materialstransactions A,2004,35A:1243~1253
    Wang N, Wei B. Phase separation and structural evolution of undercooled Fe-Snmonotectic alloy. Materials Science and Engineering A,2003,345:145~154
    Wang N, Zhang L, Zheng Y P, et al. Shell phase selection and layer numbers ofcore-shell structure in monotectic alloys with stable miscibility gap. Journal ofAlloys and Compounds,2012,538:224~229
    Wang W L, Li Z Q, Wei B. Macrosegregation pattern and microstructure feature ofternary Fe-Sn-Si immiscible alloy solidified under free fall condition. ActaMaterialia,2011,59:5482~5493
    Wang W L, Zhang X M, Qin H Y, et al. Macroscopic phase separation and primaryFeSi compound growth within undercooled ternary Fe-Sn-Si monotectic alloy.Philosophical Magazine Letters,2009,89:683~693
    Wille G, Millot F, Rifflet J C. Thermophysical properties of containerless liquid ironup to2500K. International Journal of Thermophysics,2002,23:1197~1206
    Wu M, Ludwig A, Ratke L. Modeling the decomposition and microstructure evolutionduring solidification of hypermonotectic alloys. Modeling of casting, Weldingand Advanced Solidification Processes-X,2003.
    Wu M H, Ludwig A, Ratke L. Modelling the solidification of hypermonotectic alloys.Modelling and Simulation in Materials Science and Engineering,2003,11:755~769
    Xie H, Sun J, Yang G C, et al. Liquid phase separation and its thermodynamicdescription in undercooled Ni-Pb hypermonotectic melts. Materials Science andEngineering A,2007,457:33~37
    Xu J F, Dai F P, Wei B B. Phase separation of Cu-Pb monotectic alloy during rapidsolidification. Acta Physica Sinica,2007,56:3996~4003
    Yan N, Hong Z Y, Geng D L, et al. Phase separation and structure evolution of ternaryAl-Cu-Sn immiscible alloy under ultrasonic levitation condition. Journal ofAlloys and Compounds,2012,544:6~12
    Yan N, Wang W, Xia Z, et al. Solute redistribution profiles during rapid solidificationof undercooled ternary Co-Cu-Pb alloy. Science China-Physics Mechanics&Astronomy,2014,57:393~399
    Yan N, Wang W L, Wei B. Complex phase separation of ternary Co-Cu-Pb alloyunder containerless processing condition. Journal of Alloys and Compounds,2013,558:109~116
    Yang G C, Xie H, Hao W X, et al. Liquid-liquid phase separation in highlyundercooled Ni-Pb hypermonotectic alloys. Transactions of Nonferrous MetalsSociety of China,2006,16:290~293
    Yang W, Chen S H, Yu H, et al. Effects of liquid separation on the microstructureformation and hardness behavior of undercooled Cu-Co alloy. Applied Physics A,2012,109:665~671
    Yang W, Xu Z F, Li W J, et al. Comparisons of grain refinement and recalescencebehavior during the rapid solidification of undercooled Cu-Co and Cu-Ni alloys.Physica B,2011,406:3710~3714
    Yang W, Yu H, Wang J H, et al. Application of dendrite fragmentation to fabricate thehomogeneous dispersed structure in undercooled Cu-Co immiscible alloy.Journal of Alloys and Compounds,2011,509:9675~9678
    Yu Y, Wang C, Liu X, et al. Thermodynamics and kinetics in liquid immiscibleCu-Cr-Si ternary system. Materials Chemistry and Physics,2011,127:28~39
    Zeng K J, Hamalainen M. Thermodynamic analysis of stable and metastableequilibria in the Cu-Cr system. Calphad,1995,19:93~104
    Zhang X, Ruan Y, Wang W, et al. Rapid solidification and dendrite growth of ternaryFe-Sn-Ge and Cu-Pb-Ge monotectic alloys. Science in China Series G,2007,50:491~499
    Zhang Y K, Gao J, Nagamatsu D, et al. Reduced droplet coarsening inelectromagnetically levitated and phase-separated Cu-Co alloys by imposition ofa static magnetic field. Scripta Materialia,2008,59:1002~1005
    Zhao J, Li H, He J, et al. Solidification of Cu-Co alloy under rapid cooling conditions.Acta Metallurgica Sinica,2008,44:693~697
    Zhao J, Li H, Wang Q, et al. Rapid directional solidificaion of Al-Pb alloy under astatic magnetic field. Acta Metallurgica Sinica,2009,45:1344~1348
    Zhao J Z, Hu Z Q, Ratke L. Modeling of the liquid-liquid phase transformation ofimmiscible alloys. Acta Metallurgica Sinica,2004,40:27~30
    Zhao J Z, Kolbe M, Li H L, et al. Formation of the microstructure in a rapidlysolidified Cu-Co alloy. Metallurgical and Materials Transactions A,2007,38:1162~1168
    Zhao J Z, Ratke L, Jia J, et al. Modeling and simulation of the microstructureevolution during a cooling of immiscible alloys in the miscibility gap. Journal ofMaterials Science&Technology,2002,18:197~205
    Zhao L, Zhao J. Microstructure Formation in a Gas-Atomized Drop of Al-Pb-SnImmiscible Alloy. Metallurgical and Materials Transactions A,2012,43:5019~5028
    Zhou F M, Sun D K, Zhu M F. Lattice Boltzmann modelling of liquid-liquid phaseseparation of monotectic alloys. Acta Physica Sinica,2010,59:3394~3401
    Zhou L, Wang N, Zhang L, et al. The effects of the minority phase on phaseseparation in Fe-Sn hypermonotectic alloy. Journal of Alloys and Compounds,2013,555:88~94
    Zhu J, Wang T, Cao F, et al. In situ study on solidification controlled by electriccurrent pulse in Al-Bi immiscible alloy via synchrotron radiation imagingtechnology. In:11thInternational Conference on X-ray Microscopy. Shanghai:Journal of Physics: Conference Series,2013.463:012036
    曹敏敏.快速冷却条件下铜铁合金的凝固组织及性能研究:[硕士学位论文].重庆:重庆理工大学,2012
    陈焕铭.用电磁力模拟空间微重力效应装置制备Al-Bi偏晶合金.宁夏大学学报(自然科学版),1998,19(3):241-243.
    陈君,张群莉,姚建华,等.金属材料的激光吸收率研究.应用光学,2008,29(5):793~798
    陈娓.偏晶合金的快速凝固及相分离研究:[硕士学位论文].西安:西安理工大学,2008
    崔红保.高温度梯度定向凝固Al-In和Cu-Pb合金组织演化:[博士学位论文].哈尔滨:哈尔滨工业大学,2007
    崔红保,王海燕,郭景杰.偏晶合金定向凝固过程中第二相规则与非规则转变理论分析.热加工工艺,2010,39(23):41~44
    崔红保,郭景杰,毕维生,等.高温度梯度下Al-In偏晶合金定向凝固组织的演化规律.金属学报,2004,40(12):1253~1256
    崔红保,历长云,王狂飞,等.Al-17.5In偏晶合金定向凝固规则第二相纤维的失稳判据.特种铸造及有色合金,2009,29(12):1082~1084
    崔红保,历长云,王狂飞,等.凝固速度对高温度梯度定向凝固Al-17.5In合金组织的影响.特种铸造及有色合金,2008,S1:81~84
    崔红保,历长云,王狂飞,等.化学成分对定向凝固Al-In偏晶合金显微组织的影响.铸造技术,2009,30(05):642~645
    崔红保,历长云,王狂飞,等.定向凝固Cu-Pb偏晶合金摩擦磨损性能的研究.热加工工艺,2009,38(16):12~15
    达道安,姜万顺,王毓敏.用电磁力模拟空间微重力效应制备二元偏晶合金.中国空间科学技术,1988,06:20~23
    丁建民,代富平.自由落体条件下Ni-Pb-Si/Ge合金的组织形成规律.有色金属,2010,62(02):11~16
    郭景杰,崔红保,苏彦庆,等.难混溶合金及其制备技术研究进展.特种铸造及有色合金,2004,01:1~8
    韩欢.强磁场下Fe-Sn偏晶合金凝固行为研究:[硕士学位论文].辽宁:东北大学,2008
    郝维新,杨根仓,谢辉.深过冷Cu-37.4%Pb偏晶合金凝固行为和微观组织.铸造技术,2004,25(02):105~107
    郝维新,杨根仓,谢辉.过冷过偏晶Cu-40wt%Pb合金凝固组织的演化.材料导报,2004,18(04):98~100
    郝维新,杨根仓,谢辉,等.深过冷Cu-Pb偏晶合金的快速凝固行为和凝固组织.材料研究学报,2004,18(04):357~364
    郝维新,杨根仓,谢辉,等.过偏晶Cu-40%Pb合金凝固组织的深过冷细化.铸造技术,2004,25(04):255~258
    郝维新,杨根仓,谢辉,等.过偏晶Cu-40wt%Pb合金的均质化凝固.材料导报,2004,18(07):90~92
    郝维新,杨根仓,谢辉,等.过冷Cu-37.4%Pb偏晶合金凝固组织对磨损行为的影响.铸造技术,2004,25(07):541~543
    何杰,赵九洲,王晓峰,等. Al基难混溶合金快速定向凝固研究.金属学报,2007,43(06):561~566
    何杰,赵九洲,王晓峰,等. Al基难混溶合金快速定向凝固研究Ⅱ.恒定磁场的影响.金属学报,2007,43(06):567~572
    何杰,赵九洲,王晓峰,等. Al基难混溶合金快速定向凝固研究Ⅲ.第三组元的影响.金属学报,2007,43(06):573~577
    洪振宇.声悬浮条件下Bi-Ga和Bi-In合金的液固相变研究:[硕士学位论文].西安:西北工业大学,2004
    洪振宇,吕勇军,解文军,等.声悬浮条件下Bi-Ga过偏晶合金的液相分离.科学通报,2006,51(23):2714~2718
    贾均,赵九洲,郭景杰,等.难混溶合金及其制备技术.哈尔滨:哈尔滨工业大学出版社,2002
    康智强,抑制Al-Bi过偏晶合金成分偏析的方法.见:第八届沈阳科学学术年会论文集.延吉:沈阳市委,2011
    康智强,王恩刚,张林,等.微重力条件下偏晶合金的研究进展.材料导报,2011,25(02):13~16
    康智强,王恩刚,张林,等.磁场作用下偏晶合金凝固组织演变的数值分析.材料研究学报,2011,25(02):124~128
    李海丽,张镝,赵九洲. Al-Pb偏晶合金凝固过程中贫Pb层的形成机理.沈阳理工大学学报,2011,30(02):44~48
    李海丽,赵九洲.磁场作用下Al-Pb偏晶合金的凝固过程.金属学报,2011,47(01):81~87
    李海丽,赵九洲,栗争光,等.恒定磁场作用下Al-Pb合金的凝固过程.特种铸造及有色合金,2012,32(09):866~868
    李志强,王伟丽,翟薇,等.快速凝固Fe_(62.1)Sn_(27.9)Si_(10)合金的分层组织和偏晶胞形成机理.物理学报,2011,60(10):705~714
    刘向荣,王楠,魏炳波.无容器条件下Cu-Pb偏晶的快速生长.物理学报,2005,54(04):1671~1678
    刘向荣,鲁晓宇,魏炳波.自由落体条件下快速偏晶凝固.中国科学E,2004,34(11):1234~1246
    刘源,郭景杰,贾均,等.快速凝固Al-In偏晶合金的显微结构.金属学报,2000,36(12):1233~1236
    鲁晓宇.包晶合金的深过冷与快速凝固研究:[博士学位论文].西安:西北工业大学,2000
    罗炳池,王海鹏,魏炳波.自由落体条件下三元Ni-Pb-Cu偏晶合金的快速凝固.中国有色金属学报,2009,19(02):279~287
    罗炳池,王海鹏,魏炳波.液态三元Ni-Cu-Pb偏晶合金相分离的相场模拟.科学通报,2009,54(01):7~11
    秦涛,王海鹏,魏炳波.壳核组织形成过程的数值模拟研究.中国科学,2007,37(03):409~416
    任利娜,王伟丽,魏炳波. Fe-Sn-Si偏晶合金的快速凝固研究.西北工业大学学报,2007,25(06):843~849
    任群,王楠,张莉,等.调幅分解及形核对相分离作用机理研究.物理学报,2012,61(19):196401
    阮莹,王楠,曹崇德,等.落管中Ag60Sb34Cu6三元合金的快速凝固机制.科学通报,2004,49(18):1830-1834
    史俊芳,钟云波,任忠鸣,等.强磁场对Cu-90%Pb合金凝固中比重偏析的影响.上海金属,2006,28(01):22~27
    宋涛,王同敏,赵九洲,等.均质难混溶合金制备技术研究进展.铸造,2007,56(10):1025~1030
    苏彦庆,郭景哲,刘畅,等.定向凝固技术与理论研究的进展.特种铸造及有色合金,2006,26(01):25~30
    王恩刚,张林,刘长春,等.均恒强磁场对Cu-Pb偏晶合金凝固组织的影响.见:2004年材料科学与工程新进展.北京:中国材料研究学会,2004
    王恩刚,左小伟,张林,等.强磁场作用下偏晶合金取向凝固组织的形成.特种铸造及有色合金,2008,S1:478~481
    王海鹏,曹崇德,魏炳波.自由落体条件下的快速偏晶凝固.科学通报,2003,48(24):2505~2509
    王江,钟云波,任维丽,等.强磁场复合交变电流作用下Zn-30wt%Bi偏晶合金的凝固.物理学报,2009,58(02):893~900
    王江,钟云波,汪超,等.电磁复合场制备匀质Zn-Bi偏晶合金的物理模拟.物理学报,2011,60(07):494~502
    谢辉,王锦程,樊建锋,等.均质偏晶合金的研究进展.热加工工艺,2003,04:49~50
    徐锦锋,代富平,魏炳波.急冷条件下Cu-Pb偏晶合金的相分离研究.物理学报,2007,56(7):3996~4003
    徐锦锋,范于芳,陈娓,等.急冷条件下Ni-Pb偏晶合金的相分离研究.铸造,2009,58(08):775~779
    闫娜,王伟丽,魏炳波.落管中Ni-Pb偏晶型合金的快速凝固组织特征及形成机制.航空学报,2011,32(02):351~359
    杨森,梁文心,贾均.磁场对偏晶合金定向凝固组织的影响.铸造技术,1999,05:44~46
    杨森,刘文今,贾均. Al-3.4wt%Bi偏晶合金定向凝固组织演变规律研究.自然科学进展,2001,11(07):59~64
    杨森,刘文今,贾均.定向凝固A1-Bi偏晶合金中第二相的粗化行为.材料科学与工艺,2002,10(01):19~22
    杨森,黄卫东,贾均.偏晶合金的研究现状和发展.机械工程材料,2000,24(02):5~7
    杨志增,孙倩,赵九洲. Al-Bi偏晶点成分合金定向凝固过程研究.金属学报,2014,50(01):25~31
    张林,王恩刚,王慧芹,等.水平稳恒磁场对Al-Bi偏晶合金中富Bi相迁移和分布的影响.稀有金属,2010,34(06):791~796
    张林,王恩刚,左小伟,等.偏晶合金凝固制备方法的研究进展.材料导报,2010,24(04):85~89
    张林,王恩刚,左小伟,等.强磁场对Cu-40%Pb偏晶合金凝固组织的影响.东北大学学报(自然科学版),2008,29(04):541~544
    张林,王恩刚,左小伟,等.强磁场对Cu-80%Pb过偏晶合金凝固组织的影响.金属学报,2008,44(02):165~171
    张林,王恩刚,左小伟,等.强磁场对Cu-80%Pb过偏晶合金中富Cu颗粒迁移行为的影响.金属学报,2010,46(04):423~428
    张林,王恩刚,康智强,等.水平稳恒磁场对Zn-10%Bi过偏晶合金第二相分布的影响.东北大学学报(自然科学版),2010,31(06):816~819
    张龙. Al-Ca合金气动悬浮凝固及气孔原位研究:[硕士学位论文].上海:上海交通大学,2012
    张龙,张曙光,余建定.气动悬浮冷速控制及Al-7.7Ga共晶合金的凝固组织.金属学报,2013,49(04):451~456
    张钦霞,赵九洲,何杰,等. Al-Pb合金的快速定向凝固及其模拟.金属学报,2007,43(09):925~929
    赵九洲.过偏晶合金快速定向凝固的数值模拟.见:2000年中国材料研讨会论文集.北京:中国材料研究学会,2000
    赵九洲. Al-Pb合金快速定向凝固的数值模拟.材料科学与工艺,2001,9(02):154~156
    赵九洲,李海丽.恒定磁场作用下偏晶合金凝固研究.见:2011中国材料研讨会论文摘要集.北京:中国材料研究学会,2011
    赵九洲,李海丽,王青亮,等.恒定磁场作用下Al-Pb合金快速定向凝固.金属学报,2009,45(11):1344~1348
    赵九洲,贾均,李庆春,等.电磁场下Al-Pb合金的凝固.铸造,1993,08:18~21
    赵莉,孙玉峰,沈宁福.快速凝固Al-Pb合金的显微组织.中国有色金属学报,2001,11(S2):72~76
    郑红星.过冷Ni-Pb偏晶合金凝固组织及凝固行为:[硕士学位论文].西安:西安理工大学,2002
    郑红星,马伟增,郭学锋,等.偏晶合金凝固研究进展.稀有金属材料与工程,2004,33(08):893~896
    郑天祥,钟云波,孙宗乾,等.电磁复合场对Zn-10wt%Bi过偏晶合金凝固组织的影响.物理学报,2012,61(23):525~534
    左小伟.强磁场作用下Fe-Sn和Cu-Fe合金凝固组织及性能的研究:[博士学位论文].辽宁:东北大学,2009
    左小伟,王恩刚,韩欢,等.强磁场下Fe-49%Sn偏晶合金凝固组织及磁性能.金属学报,2008,44(10):1219~1223
    左小伟,王恩刚,韩欢,等.强磁场下工艺制度对Fe-49Sn偏晶合金显微组织及磁性能的影响.特种铸造及有色合金,2008,S1:482~485
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.