新型低对称BaTeMo_2O_9单晶电学、电光性能研究及压电器件的设计与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于晶体材料具有独特的物理特性,可以实现电、光、声、热、磁、力等不同形式能量的相互作用和转换,因此是光电技术、激光技术和微电子技术的物质基础。晶体功能的多样化和稳定的性能,使其应用已经遍布当今社会的各个领域。从军用到民用,从科学研究到实际应用,从日常生活到国计民生,晶体已经成为我们生活当中不可缺少、至关重要的基础材料。随着科技发展,人们对晶体材料的要求越来越高,使得新晶体材料的研究成为当前的一个热点领域。
     近年来,在二阶姜—泰勒效应(SOJT)理论指导下,一系列既含有d0过渡金属离子又含有孤对电子阳离子的化合物引起了人们的关注和重视。在这类化合物中,阳离子由于SOJT的影响使得配位多面体发生畸变,离子偏离中心,从而使得该类化合物具有非中心对称性,为该类化合物具有某些特定的宏观物理性能提供了结构上的前提。P.ShivHalasyamani、Alex Norquist、Jiang-Gao Mao和J. Gopalakrishnan等研究小组在这一研究领域做了大量的工作。其中P. Shiv Halasyamani等人合成了一系列表现出良好的铁电性和压电性的钨青铜型化合物;Alex Norquist则主要利用畸变较大的Mo6+,合成一系列零维至三维的多氧钼酸盐;而Mao则主要利用含有非成键孤对电子的阳离子,合成了大量具有非中心对称结构的化合物。在这一系列化合物中,BaTeMo2O9因其结构特点引起了我们浓厚的研究兴趣:此化合物中既含有d0过渡金属中畸变最大的Mo元素,又含有含孤对电子的Te元素。目前已经报道的文献也显示BaTeMo2O9粉末具有很强的倍频效应。但关于此化合物的研究目前还仅仅局限于化合物的单晶结构和多晶粉末的基础物理性质,其主要的晶体物理性能还未有报道。我们课题组在该化合物的大尺寸单晶生长领域已经取得了重大的突破,在国际上首次生长`了该化合物的大尺寸单晶(30x23x18mm3)。本论文在生长高质量大尺寸BaTeMo2O9单晶的基础上,对该晶体的压电、介电、弹性、电光、热释电等性能进行了系统的研究,制作了一种压电器件并研究了其性能。依据对此晶体低对称性的分析,从张量出发研究了低对称性晶体的一些性能特征,并根据这些特点定义了低对称性晶体的范围。本论文的主要内容包括:
     1:概述了晶体的定义及其特征。按照功能对现有的晶体进行了简单的分类,并且概述了发展现状。介绍了SOJT及其在新功能材料中的应用和意义,并在SOJT理论的指导下,挑选出BaTeMo2O9作为研究对象,阐述了其研究意义与发展历程。
     2:BaTeMo2O9晶体生长
     晶体结构分析表明,BaTeMo2O9晶体具有畸变较大的八面体和四面体结构,结合对配位多面体内的键长和键角变化的分析,我们推测该晶体极有可能是一种新型多功能单晶。根据本实验室已经成熟的多晶合成和单晶生长工艺,合成了多晶BaTeMo2O9,进行了(010)籽晶定向生长,得到了质量较好的大块单晶。高质量的晶体为以后进行的物理性能研究奠定了坚实的基础。
     3:BaTeMo2O9晶体介电、压电和弹性性能研究
     压电晶体有两个重要的研究方向:大的压电系数和弹性系数零温度系数。通过对BaTeMo2O9晶体对称性的分析,利用坐标旋转的方法设计了测试晶体介电、压电和弹性性能的样品切型,并利用谐振法和传输法详细研究了室温下其全部介电、压电和弹性性能,以及介电常数和介电损耗随温度、频率的变化。设计并搭建了测量晶体弹性系数温度效应的实验装置,并利用此装置测得了BaTeMo2O9晶体弹性系数随温度的变化。从晶体结构出发,我们分析解释了BaTeMo2O9晶体具有优秀压电性能的起源。最后,依据所得数据对晶体压电性能进行了综合评价。
     4:BaTeMo2O9晶体电光性能研究
     确定了晶体的电光坐标系,利用坐标旋转方法设计了测试BaTeMo2O9晶体电光性能所需的样品切型,用干涉法测得了其电光系数,并在测试过程中排除了BaTeMo2O9晶体逆压电效应的影响,得到了可靠的实验数据。以介电隔离张量为参数,得到了BaTeMo2O9晶体施加电场后的折射率椭球,并对其做了分析研究。结合所得数据的分析和优秀电光晶体的要求,对BaTeMo2O9晶体的电光性能作了综合评价。
     5:BaTeMo2O9晶体热释电性能研究
     通过电荷积分的方法获得了BaTeMo2O9晶体在30℃—260℃范围内的热释电系数,分析了和热释电性能相关的参数,并从温度对电阻率和自发极化影响的角度对热释电系数的变化规律做了分析与解释。最后与常见的热释电晶体各参数做了比较,对BaTeMo2O9晶体的热释电性能进行了综合评价。
     6:BaTeMo2O9晶体压电器件的设计和表征
     由于BaTeMo2O9晶体的低对称性,其晶体介电、压电和弹性系数矩阵元较多,器件中难免会引入交叉系数的影响,这些交叉系数对器件的信号会起到干扰作用。我们通过坐标旋转法成功的消除了这些不利影响,设计了两种振动模式的压电谐振器,并对器件相关参数谐振频率、机电耦合系数、机械品质因子、频率漂移以及温度漂移与室温谐振频率比值等进行了全面的表征。该研究是对低对称性晶体走向实用的一个有益探索,在低对称性晶体的应用领域具有重要的启发意义。
     7:以BaTeMo2O9为代表的低对称性晶体的三阶张量和四阶张量研究
     低对称性晶体对称要素较少,空间不同象限内参数无法全部根据对称要素外推得到。我们通过对BaTeMo2O9晶体三阶张量压电系数、电光系数、二阶非线性光学系数以及四阶张量弹性系数的分析,研究了晶体在三维坐标系下各分量在相邻象限内符号的变化,以及这些变化对测试、器件特征和有效值计算的影响。通过和对称性较高晶系(正交晶系)三阶张量的对比,从张量的意义出发定义了低对称性晶体的范围。
Crystal materials are a kind of special solid materials in which different energy forms, for examples, electrical/optical/acoustic/thermal/magnetic, can interact and transform to each other due to their unique physical characteristics. Therefore, crystal materials are the substaintial base of laser, optical-electric and microelectronics technologies. The variety of functions, as well as their good stability made crystal materials been widely used in nowaday society. Such as for civil and military applications, scientific research and industrial developments, people's daily life and the economic development, crystal have become the indispensable, vital and key materials. As the developments of science and technologies, crystal materials with higher quality are needed. Thereby, research of new crystal materials has become a focused subject currently.
     Recently, under the guide of the second order Jahn-Teller (SOJT) effect, a novel kind of compounds including both d0 transition metal cations and lone-pair electrons cations have attracted people's huge attention. In such kind of compounds, the coordination polyhedra are easily distored due to the SOJT effect, which induces the ions off-center, thus makes the compounds with noncentrosymmetric structures. If the vectors generated by the structure distortion can not be completely offset, the crystals will show the external macro-asymmetry which indicates the emergence of third-order tensor physical properties. It has been reported that many of these compounds exhibit piezoelectric/ferroelectric/strong power second harmonic generation (SHG) efficiency. BaTeMo2O9 is one of these compounds, since it includes both the d0 transition metal Mo cations and the Te cation with lone-pair electrons. Especially, Mo is the transition metal which can impose the biggest distortion on the coordination polyhedra, therefore BaTeMo2O9 is an extremely potential functional crystal material. It has already been reported that the powders of BaTeMo2O9 has relatively large power second-harmonic generation efficiencies. Howerve, up to date the researches on BaTeMo2O9 are still limited in the crystal structure and the basic physical properties of polycrystalline powers, while the primary physical properties of BaTeMo2O9 single crystals haven't been reported yet. Our group has successfully prepared the first high-quality and large size (30 x 23 x 18 mm3) of BaTeMo2O9 single crystal in the world. In this thesis, based on the growth of high-quality and large size of BaTeMo2O9 crystal, the piezoelectric/dielectric/elastic/electro-optic/pyroelectric properties have been studied in detail, moreover, a piezoelectric resonator has also been designed and evaluated. According to the analysis of this low symmetrical crystal, we have defined the scope of low symmetrical crystals from third-order tensor. The main contents are as follows:
     1. The definition, characters, classification, development and current status of crystals are introduced and summarized. Under the guidance of the SOJT effect, BaTeMo2O9 has been selected as the object of study. A simple introduction of BaTeMo2O9, as well as the significance of reseaches on BaTeMo2O9 single crystal has been elucidated.
     2. Structure analysis and the crystal growth of BaTeMo2O9
     The crystal structure of BaTeMo2O9 has been analyzed. The octahedral and tetrahedral structures in the crystal structure, as well as the bond length and angles, have been studied. The results indicated that BaTeMo2O9 is not only a potential nonlinear optical crystal, but also a multifunction crystal. Based on the well-developed flux system and the crystal growth parameters obtained in our group, we have successfully grown high-quality and large size BaTeMo2O9 single crystal by using the orientational seed method, which is the material basis for our sequent research.
     3. Dielectric, piezoelectric and elastic properties on BaTeMo2O9 crystal
     By analyzing the crystal symmetry of BaTeMo2O9 crystal, the piezoelectric coordinate system has been established according to IEEE standard. The appropriate samples for determining the dielectric/piezoelectric/elastic properties have been designed by using coordinate rotation method. The dielectric, piezoelectric and elastic properties have been studied by resonance method and transmission method in detail at room temperature. The temperature dependence and frequency dependence of the elastic constants, dielectric constants and dielectric loss diversification have also been studied. From the sight of crystal structure, we have explained the origin of good piezoelectric properties. Compared with the commonly used piezoelectric crystals, a comprehensive evaluation has been given to BaTeMo2O9 crystal.
     4. The electro-optic properties on BaTeMo2O9 crystal
     The electro-optic coordinate system has been established. Appropriate samples for the determination of electro-optic properties have been designed. The electro-optic coefficients have been determined by interference method, while the inverse piezoelectric effect has been eliminated so as to achieve the reliable results. The refractive index ellipsoid of BaTeMo2O9 crystal under electric field has been obtained and analyzed by using dielectric isolation tensor as the parameters. By comparing with the requirements of electro-optic crystals, a comprehensive evaluation has been given to BaTeMo2O9 crystal.
     5. Pyroelectric properties of BaTeMo2O9 crystal
     The pyroelectric coefficients are obtained by using charge integral method at the temperature range from 30℃to 260℃. We have explained the variation rule of pyroelectric coefficient by analyzing the influences of temperature on the resistivity and spontaneous polarization. The parameters related to the pyroelectric properties have been analyzed and compared with common pyroelectric crystals. Finally a comprehensive evaluation of BaTeMo2O9 crystal was given.
     6. Design and characterization of piezoelectric devices based on BaTeMo2O9 crystal
     The low symmetry of monoclinic system BaTeMo2O9 crystal induces lots of difficulties in designing of the devices, since as the reduction of the symmetry, forms of piezoelectric and elastic coefficients matrix become complex, which may affect the available coefficients, and thus interfere the signals of the devices. We have successfully cleared out the negative affections and designed valuable practical devices by using coordinate rotation method. The parameters such as resonant frequency, electromechanical coupling coefficients, mechanical quality factor, frequency drift and temperature drift of the resonator have also been determined and evaluated. This research is a significant grope for the real application of low symmetrical crystals, and opens up a new application field for low symmetrical crystals.
     7. Research on tensors
     For crystals with low symmetry, there are less symmetric elements, and it is not possible to obtain the physical parameters in different quadrants by the extrapolation method. By analyzing the third-order tensors for the piezoelectric, electro-optic and second-order nonlinear optical properties, as well as the fourth-order tensor for the elastic properties of BaTeMo2O9 crystal, we have discussed the sign changing of the tensor components in different quadrant, as well as the influences of such sign changing on the performance of the devices and the virtual values calculations. This work will significantly promote the application of BaTeMo2O9 crystal. Finaly, by comparing the tensors of BaTeMo2O9 with those of crystals with higher symemetry (orthorhombic), we have defined the scope of low symmetrical crystal according tothe third-order tensor.
引文
[1]肖定全、王民,晶体物理学,四川大学出版社(1989).
    [2]蒋民华,晶体物理,山东科技出版社(1980).
    [3]陈纲、廖理几、郝伟,晶体物理学基础,科学出版社(2007).
    [4]肖学峰、杜懋陆,人工晶体材料的研究进展,科技创新导报,8,6-7,(2009).
    [5]张克从,近代物理学基础,科学出版社(1987).
    [6]谭浩然,无机功能晶体材料研究进展,中国科学院院刊,3,208-211(1991).
    [7]T.H.Maima, Stimulated optical radiation in ruby,187,493-494 (1960).
    [8]Chen C,Wu B, Jiang A,You G, et al., New nonlinear-optical crystal:LiB3O5, J. Opt. Soc. Am. B,6,616-621 (1989).
    [9]Zhang T, and Yonemura M, Properties of CsLiB6O10 and KBe2BO3F2 Crystals for Second-Harmonic Generation with Ultrashort Laser Pulses, Jpn. J. Appl. Phys.,36, 6353-6359 (1997).
    [10]Chen C, Xu Z, Deng D, Zhang J, Wong G, Wu B, Ye N, Tang D, The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal, Appl. Phys. Lett.,68,2930-2932 (1996).
    [11]W. L. Smith, KDP and ADP transmission in the vacuum ultraviolet, Appl. Opt.,16, 1798-1798(1977).
    [12]Ren De-Ming, Huang Jin-Zhe, Qu Yan-Chen, Hu Xiao-Yong, Andreev Yuri, Geiko Pavel, Badikov Valerii and Shaiduko Anna. Optical properties and frequency conversion with AgGaGeS4 crystal. Chinese Phys.13,1468-1473 (2004).
    [14]F.Rotermund, V.Petrov, F.Noack and P.Schunemann. Characterization of ZnGeP2 for parametric generation with near-infrared femtosecond pumping, Fiber and Integrated Optics,20,139-150 (2001).
    [15]Bei-jun Zhao, Shi-fu Zhu, Feng-liang Yu, et al. Polycrystalline Synthesis and Single Crystal Growth of AgGaS2. Cryst. Res. Technol.,33,943-948 (1998).
    [16]Boyd G D, Kasper HM, McFee JH. Linear and nonlinear optical properties of LiInS2. J. Appl. Phys,44(6),2809-2812 (1973).
    [17]R.C. Alferness, Appl. Phys. Lett.36,513 (1980).
    [18]I. P. Kaminov, E. H. Turner, Proc. IEEE.54,1374 (1966).
    [19]A. Garzarella, R. J. Hinton, S. B.Qadri, Dong Ho Wu, Appl. Phys. Lett.92,22111 (2008).
    [20]X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, Phys. Rev. Lett.85,3404 (2000).
    [21]T. Volk, D. Isakov, M. Wo(?)hlecke, L. Ivleva, Appl. Phys. Lett.83,2220 (2003).
    [22]D. F. Holshouser, H. Von Foerster, and G. L. Clark, Microwave modulation of light using the Kerr effect, J. Opt. Soc. Amn.,51,1360-1365 (1961).
    [23]K. D. Froome and R. H. Bradsell, "Distance measurement bymeans of a light ray modulated at a microwave frequency," J. Sci. Istr.,38,458-462 (1961).
    [24]尹鑫,王继扬,张少军,La3Ga5SiO14晶体电光Q开关的研究,中国激光,31,29-32(2004).
    [25]陈福深,光通信中的LiNb03集成波导电光器件,压电与声光,13,5-12(1991).
    [26]Wei Shi, Yujie J.Ding and Xiaodong Mu, Electrio-optic and electromemechanical properties of poled polymer thin films, Appl.Phys.Lett.,79,3749-3751 (2001).
    [27]W.P.Mason, piezoelectric Crystals and Their Application to Ultrasionics, D.Van Nostrand Inc.New York (1950).
    [28]张福学,压电与热释电材料,电子软科学,1,52-58(1990).
    [29]钱锥铝,石英晶体传感器在现代军事工程中的应用,压电晶体技术,3,1(1994).
    [30]黄广伦,肖永革,声表面波谐振器及其应用,压电与声光,6,79(1984).
    [31]张福学,王丽坤,现代压电学,北京:科学出版社(2001).
    [32]R. W. Whatmore, P. C. Osbond, and N. M. Shorrocks, Ferroelectric Materials for Thermal IR Detectors, Ferroelectrics,76,351-67 (1987).
    [33]Sosnin A A. Sosnin, Image Infrared Converters Based on Ferroelectric-Semiconductor Thin-Layer Systems, Semicond. Phys., Quant Electron. Optoelectro.,3,489-95 (2000).
    [34]R.Renner, Z. Phys.92 (1934).
    [35]H.A.Jahn; E.Teller, Proc. R. Soc. London A,161 (1937).
    [36]H.A.Jahn, Proc. R. Soc. London A,164 (1938).
    [37]Bersuker, I. B., The Jahn-Teller Effect. Cambridge University Press:London, (2006).
    [38]U.Opik; M.H.L.Pryce, Proc. R. Soc. London A,238 (1957).
    [39]Pearson, R. G., A SYMMETRY RULE FOR PREDICTING MOLECULAR STRUCTURES. Journal of the American Chemical Society,91,4947-4955 (1969).
    [40]Halasyamani, P. S.; Poeppelmeier, K. R., Noncentrosymmetric oxides. Chemistry of Materials,10,2753-2769 (1998).
    [41]Kunz, M.; Brown, I. D., Out-of-Center Distortions around Octahedrally Coordinated d0 Transition Metals. Journal of Solid State Chemistry,115,395-406 (1995).
    [42]Halasyamani, P. S., Asymmetric cation coordination in oxide materials:Influence of lone-pair cations on the intra-octahedral distortion in d(0) transition metals. Chemistry of Materials,16,3586-3592 (2004).
    [43]Kang Min Ok and P. Shiv Halasyamani, Distortions in Octahedrally Coordinated d0 Transition Metal Oxides:A Continuous Symmetry Measures Approach, Chem. Mater., 18,3176-3183(2006).
    [44]Kwon, Y.-U.; Lee, K.-S.; Kim, Y. H. AVSeO5 (A= Rb, Cs) and AV3Se2O12 (A= K, Rb, Cs, NH4):Hydrothermal Synthesis in the V2O5-SeO2-AOHSystem and Crystal Structure of CsVSeO5, Inorg. Chem.,35,1161-1167 (1994).
    [45]Vaughey, J. T.; Harrison, W. T. A.; Dussack, L. L.; Jacobson, A. J. A New Layered Vanadium Selenium Oxide with a Structure Related to Hexagonal Tungsten Oxide: NH4(VO2)3(SeO3)2, Inorg. Chem.,33,4370-4375 (1994).
    [46]Harrison, W. T. A.; Dussack, L. L.; Jacobson, A. J. Hydrothermal investigation of the barium/molybdenum(Ⅵ)/selenium(Ⅳ) phase space:Single-crystal structures of BaMoO3SeO3 and BaMo2O5,J. Solid State Chem,125,234-242 (1996).
    [47]Harrison, W. T. A.; Dussack, L. L.; Jacobson, A. J. Syntheses, Crystal Structures, and Properties of New Layered Molybdenum (Ⅵ) Selenites:(NH4)2(MoO3)3SeO3 and Cs2(MoO3)3SeO3, Inorg. Chem.,33,6043-6049 (1994).
    [48]Dussack, L. L.; Harrison, W. T. A.; Jacobson, A. J. Hydrothermal syntheses and characterization of two layered molybdenum selenites, Rb2(MoO3)3SeO3 and Tl2MoO3)3SeO3, Mater. Res. Bull.,31,249-255 (1996).
    [49]Joanna Goodey, Jake Broussard, and P. Shiv Halasyamani, Synthesis, Structure, and Characterization of a New Second-Harmonic-Generating Tellurite:Na2TeW2O9. Chem. Mater.,14,3174-3180 (2002).
    [50]Hyun-Seup Ra, Kang Min Ok, and P. Shiv Halasyamani, Combining Second-Order Jahn-Teller Distorted Cations to Create Highly Efficient SHG Materials:Synthesis, Characterization, and NLO Properties of BaTeM2O9 (M=Mo6+ or W6+), J. AM. CHEM. SOC.,125,7764-7765 (2003).
    [51]H. Y. Chang, T. Sivakumar, K. M. Ok, and P. Shiv Halasyamani, Polar Hexagonal Tungsten Bronze-Type Oxides:KNbW2O9, RbNbW2O9, and KTaW2O9. Inorg. Chem.,47, 8511-8517(2008).
    [52]Eun Ok Chi, Kang Min Ok, Yetta Porter, and P. Shiv Halasyamani Na2Te3Mo3O16:A New Molybdenum Tellurite with Second-Harmonic Generating and Pyroelectric Properties. Chem. Mater.,18,2070-2074 (2006).
    [53]Jun-Ho Kim, Jaewook Baek, and P. Shiv Halasyamani, (NH4)2Te2WO8:A New Polar Oxide with Second-Harmonic Generating, Ferroelectric, and Pyroelectric Properties, Chem. Mater.,19,5637-5641 (2007).
    [54]W. Eerenstein, N. D. Mathur, Multiferroic and magnetoelectric materials J. F. Scott, Nature,442,759 (2006).
    [55]M. R. Suchomel, C. I. Thomas, M. Allix, M. J. Rosseinsky, A. M.Fogg, M. F. Thomas, High pressure bulk synthesis and characterization of the predicted multiferroic Bi(Fe1/2Cr1/2)O3, Appl. Phys. Lett.,90,112909 (2007).
    [56]R.Nechache, L.-P. Carignan, L. Gunawan, C. Harnagea, G. A. Botton,D. Menard, A. Pignolet, Epitaxial Thin Films of Multiferroic Bi2FeFrO6 With B-Site Cationic Order., J. Mater. Res.,22,2102,(2007).
    [57]N. A. Hill, J. Phys. Chem. B,104,6694 (2000).
    [58]G. Blasse, Mater. Res. Bull.,2,497 (1967).
    [59]L. E. Cross, Ferroelectrics,151,305 (1994).
    [60]G. Xu, Z. Zhong, Y.Bing, Z.-G. Ye, G. Shirane, Nat. Mater.5,134 (2006)
    [61]Rohini Mani, Srungarpu N.Achary, Keka R.Chakraborty,Sudhanshu K. Deshpande,Joby E.Joy, Abanti Nag,Jagannatha Gopalakrishnan,and Avesh K.Tyagi,FeTiTaO6:A Lead-Free Relaxor Ferroelectric Based on the Rutile Structure,20, 1-5 (2008).
    [62]Vidyavathy, Vidyasagar, K., Syntheses and Characterization of Novel Three-Dimensional Tellurites, Na2MTe4O12 (M= W, Mo), with Intersecting Tunnels. Inorganic Chemistry,38 (25),5809-5813 (1999).
    [63]Chi, E. O., Ok, K. M.; Porter, Y.,Halasyamani, P. S., Na2Te3Mo3O16:A new molybdenum tellurite with second-harmonic generating and pyroelectric properties. Chemistry of Materials,18 (8),2070-2074 (2006).
    [63]Balraj. V., Vidyasagar, K., Low-temperature syntheses and characterization of novel layered tellurites, A2Mo3TeO12 (A= NH4, Cs), and "zero-dimensional" tellurites, A4Mo6Te2O24center dot 6H2O (A= Rb, K). Inorganic Chemistry,37,4764-4774 (1998).
    [64]Laligant, Y, X-Ray and TEM Studies of CdTeMoO6 and CoTeMoO6:A New Superstructure of Fluorite Type with Cation and Anion Deficiencies ([square, square, filled]CoTeMo)([square, open]2O6). Journal of Solid State Chemistry,160,401-408 (2001).
    [65]Forzatti, P.,Tittarelli, P., Metal telluromolybdates of the type MTeMoO6. Journal of Solid State Chemistry,33 (3),421-427 (1980).
    [66]Jiang, H. L., Xie, Z., Mao, J. G., Ni3(Mo2O8)(XO3) (X= Se, Te):The first nickel selenite-and tellurite-containing Mo-4 clusters. Inorganic Chemistry,46,6495-6501 (2007).
    [67]Goodey, J., Broussard, J., Halasyamani, P. S., Synthesis, structure, and characterization of a new second-harmonic-generating tellurite:Na2TeW2CO9. Chemistry of Materials,14 (7),3174-3180 (2002).
    [68]Goodey, J.,Ok, K. M., Broussard, J., Hofmann, C., Escobedo, F. V., Halasyamani, P. S., Syntheses, structures, and second-harmonic generating properties in new quaternary tellurites:A2TeW3O12 (A= K, Rb, or Cs). Journal of Solid State Chemistry,175,3-12 (2003).
    [69]Kim, J. H.; Baek, J., Halasyamani, P. S., (NH4)2Te2WO8:A new polar oxide with second-harmonic generating, ferroelectric, and pyroelectric properties. Chemistry of Materials,19,5637-5641 (2007).
    [70]ChamparnaudMesjard, J. C.; Frit, B., Chagraoui, A.,Tairi, A., New anion-excess, fluorite-related ordered structure:Bi2Te2W3O16.Journal of Solid State Chemistry,127, 248-255 (1996).
    [71]Mao, J.-G,Jiang, H.-L.,Kong, F., Structures and Properties of Functional Metal Selenites and Tellurites. Inorganic Chemistry,47,8498-8510 (2008).
    [72]Darriet, J., Structure cristalline de la phase LiVTeO5. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie,96,3 (1973).
    [73]KVTeO5 and a redetermination of the Na homologue. Acta Crystallographica Section C,58(9),i111-i113(2002).
    [74]Hong, Y. S., Darriet, J., Yoon, J. B.; Choy, J. H., X-ray absorption near edge structure and X-ray diffraction studies of new cubic CsVTeO5 and CsVTeO6 compounds. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,38 (3A), 1506-1509(1999).
    [75]Hong, Y. S., Zakhour, M.Subramanian, M. A., Darriet, J., Synthesis and characterisation of the new cubic phase CsVTeO5 and re-investigation of the pyrochlore CsVTeO6. Journal of Materials Chemistry,8 (8),1889-1892, (1998).
    [76]Harrison, W. T. A., Buttery, J. H. N., Synthesis and crystal structure of Cs(VO2)(3)(TeO3)(2), a new layered cesium vanadium(V) tellurite. Zeitschrift Fur Anorganische Und Allgemeine Chemie,626 (4),867-870 (2000).
    [77]Barium divanadium(Ⅴ) tellurite(Ⅳ). Acta Crystallographica Section C,61 (6), i59-i60 (2005).
    [78]W.Kolis, C. R. F. J., V2MnTeO7. Acta Crystallographica Section C,54 (9), 1217-1219(1998).
    [79]Hai-Long Jiang, S.-P. H., Yang Fan, Jiang-Gao Mao, Wen-Dan Cheng,, Explorations of New Types of Second-Order Nonlinear Optical Materials in Cd(Zn)-VV-TeIV-O Systems. Chemistry-A European Journal,14(6),1972-1981 (2008).
    [80]Johnston, M. H., WTA, Li(VO2)3(TeO3)2. Acta Crystallographica Section C,63 (8), i57-i59 (2007).
    [81]Sivakurnar, T., Chang, H. Y., Baek, J., Halasyamani, P. S., Two new noncentrosymmetric polar oxides:Synthesis, characterization, second-harmonic generating, and pyroelectric measurements on TlSeVO5 and TlTeVO5. Chemistry of Materials,19,4710-4715 (2007).
    [82]Ok, K. M., Halasyamani, P. S., Mixed-metal tellurites:Synthesis, structure, and characterization of Na1.4Nb3Te4.9O18 and NaNb3Te4O16. Inorganic Chemistry,44 (11), 3919-3925(2005).
    [83]Kang Min, O., Lei, Z., Halasyamani, P. S., Synthesis, characterization and dielectric properties of new unidimensional quaternary tellurites:LaTeNbO6, La4Te6Nb2O23, and La4Te6Ta2O23.Journal of Solid State Chemistry|Journal of Solid State Chemistry,175 (2), 264-71 (2003)
    [84]Ok, K. M.,Halasyamani, P. S., Asymmetric cationic coordination environments in new oxide materials:Synthesis and characterization of Pb4Te6M10O41 (M= Nb5+ or Ta5+). Inorganic Chemistry,43,4248-4253 (2004).
    [85]Blanchandin, S., Champarnaud-Mesjard, J. C., Thomas, P., Frit, B., Crystal structure of BiNbTe2O8. Solid State Sciences,2 (2),223-228 (2000).
    [86]张卫国,新型非线性光学晶体BaTeMo2O9的生长及性能研究,山东大学博士学位论文,(2008).
    [1]William T. A.; Harrison, laurie L.; Dussack, T. V.; Jacobson, A. J., Syntheses, Crystal Structures, and Properties of New Layered Molybdenum(VI) Selenites: (NH4)2(MoO3)3SeO3 and Cs2(MoO3)3SeO3, Inorg. Chem.,33,6043-6049 (1994).
    [2]William T. A.; Harrison, laurie L. Dussack, T. V. Jacobson, A. J. SYNTHESES, CRYSTAL-STRUCTURES, AND PROPERTIES OF NEW LAYERED TUNGSTEN(VI)-CONTAINING MATERIALS BASED ON THE HEXAGONAL-WO3 STRUCTURE-M2(WO3)3SEO3 (M=NH4, Rb, Cs), J. Solid State Chem.,120,112-120 (1995).
    [3]William T. A. Harrison, laurie L. Dussack,T. V.; Jacobson, A. J. Hydrothermal investigation of the barium/molybdenum(Ⅵ)/selenium(Ⅳ) phase space:Single-crystal structures of BaMoO3SeO3 and BaMo2O5(SeO3)2, J. Solid State Chem.,125,234-242 (1996).
    [4]Balraj, V.; Vidyasagar, K. Low-temperature syntheses and characterization of novel layered tellurites, A2Mo3TeO12 (A= NH4, Cs), and "zero-dimensional" tellurites, A4Mo6Te2O24center dot 6H2O (A= Rb, K), Inorg. Chem.,37,4764-4774 (1998).
    [5]Halasyamani, P. S.; Poeppelmeier, K. R. Noncentrosymmetric oxides, Chem. Mater., 10,2753-2769(1998).
    [6]Porter, Y.; Ok, K. M.; Bhuvanesh, N. S. P.; Halasyamani, P. S. Synthesis and characterization of Te2SeO7:A powder second-harmonic-generating study of TeO2, Te2SeO7, Te2O5, and TeSeO4, Chem. Mater,13,1910-1915 (2001).
    [7]Welk, M. E.; Norquist, A. J.; Arnold, F. P.; Stern, C. L.; Poeppelmeier, K. R. Out-of-center distortions in d(0) transition metal oxide fluoride anions, Inorg. Chem.,41, 5119-5125(2002).
    [8]Goodey, J.; Broussard, J.; Halasyamani, P. S. Synthesis, structure, and characterization of a new second-harmonic-generating tellurite:Na2TeW2O9, Chem. Mater.,14, 3174-3180(2002).
    [9]Porter, Y.; Halasyamani, P. S. New alkali-metal-molybdenum(Ⅵ)-selenium(Ⅳ) oxides:syntheses, structures, and characterization of A2SeMoO6 (A=Na+, K+, or Rb+), J. Solid State Chem,174,441-449 (2003).
    [10]Goodey, J.; Ok, K. M.; Broussard, J.; Hofmann, C.; Escobedo, F. V.; Halasyamani, P. S. Syntheses, structures, and second-harmonic generating properties in new quaternary tellurites:A2TeW3O12 (A= K, Rb, or Cs), J. Solid State Chem.,175,3-12 (2003).
    [11]Ra, H.-S.; Ok, K. M.; Halasyamani, P. S. Combining second-order Jahn-Teller distorted cations to create highly efficient SHG materials:Synthesis, characterization, and NLO properties of BaTeM2O9 (M= Mo6+ or W6+), J. Am. Chem. Soc.,125,7764-7765 (2003).
    [12]Rohini Mani, Srungarpu N. Achary, Keka R. Chakraborty, Sudhanshu K. Deshpande, Joby E. Joy, Abanti Nag, Jagannatha Gopalakrishnan,and Avesh K. Tyagi, FeTiTaO6:A Lead-Free Relaxor Ferroelectric Based on the Rutile Structure,20,1-5 (2008).
    [13]H. Y. Chang, T. Sivakumar, K. M. Ok, and P. Shiv Halasyamani, Polar Hexagonal Tungsten Bronze-Type Oxides:KNbW2O9, RbNbW2O9, and KTaW2O9 Inorglnorg. Inorganic Chemistry,47,19,8511-8517 (2008).
    [14]张卫国,新型非线性光学晶体BaTeMo2O9的生长及性能研究,山东大学博士学位论文,(2008).
    [1]Curie, J.; Curie, P. Bull. Soc. Miner. Fr.,3,90 (1880).
    [2]张福学,王丽坤,现代压电学,北京:科学出版社(2001).
    [3]蒋民华,晶体物理,济南:山东科学技术出版社(1999).
    [4]Robert Service F. Shape-changing crystals get shifter, Science,275:1878-1878 (1997).
    [5]Fu Huaxiang, Cohen Ronald E. Polarization rotation mechanism for ultrahign electromechanical response in single crystal peizoelectrics, Nature,403:281-283 (2000).
    [6]J.Kuwata, K.Uchino, S.nomura, Phase transitions in the Pb(Znl/3Nb2/3)O3-PbTiO3 system, Ferroelectrics,37:579-582 (1981).
    [7]T.R.Shrout, Z.P.Chang, N.Kim,et al.,Dielectric behavior of single crystals near the (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 morphotropic phase boundary, Ferro.lett.,12:63-69, (1990).
    [8]Y.Yamashita, Y, Yokohama, Saitoh S. United States Patent,5 410 209,1995.
    [9]罗豪甦,沈关顺,王评初等,新型压电材料-弛豫铁电体单晶的研究,无机材料学报,12,767(1997).
    [10]S.E. Park, T.R.Shrout, Relaxor based ferroelectric single crystals for electro-mechanical actuators, Mat.Res.Innovat.,1:20-25 (1997).
    [11]D.Viehland and J.Powers, Effect of uniaxial stress on the electromechanical properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 crystals and ceramics, J.Appl.Phys.,89: 1820-1825(2001).
    [12]D.Viehland, L.Ewart and J.Powers, et al., Stress dependence of the electromechanical properties of<001>-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals:performance advantages and limitations, J. Appl.Phys.,90:2479-2483 (2001).
    [13]K.H.Lam, H.L.W.Chan, H.S.Luo, et al., Cymbal actuators fabricated using PMN-PT single crystal, Ferroelectrics,263,235-240 (2001).
    [14]何大珍.四硼酸锂单晶的弹性、压电及介电性能,压电与声光,11(3),49-54(1989).
    [15]Yakovkin I B,Tazlev R M, Kozlov A S et al. Numerical and experimental investigation SAW in Langasite,1995 IEEE Ultra Symp,389-392 (1995).
    [16]O.A.Buzanov, A.V.Nanmov, V. V Nechaev,et al.A new approach to the growth of langasite crystals, IEEE International Frequency Control Symposium,131-136 (1996).
    [17]Masatoshi Adachi, Tomoaki Karaki and Wataru Miyamoto. Surface Acoustic Wave Properties of La3Ga5SiO14(langasite) Single Crystals, Jpn J Appl.Phys.,38:3283-3287, (1999).
    [18]Chou M M C, Jen S, Chai B H T, Investigation of crystal growth and material constants of ordered langasite structure compounds,2001 IEEE International Frequency Control Symposium and PDA Exhibition,250-254 (2001).
    [19]张沛霖,钟维烈等.压电材料与器件物理,济南:山东大学技术出版社(1996).
    [20]张福学,孙慷,压电学,北京:国防工业出版社(1984).
    [21]尹鑫,袁多荣,蒋民华,干涉法测量Cd(c4H8N2S)3C12晶体的压电系数,人工晶体学报,18,337-340(1989).
    [22]易明,廖理几,用布里渊散射法测量Li38407单晶的弹性系数和压电系数,北京大学学报18,23-29(1992),
    [23]IEEE Standard on Piezoelectricity, ANSI/IEEE Standards 176-1987,1-66.
    [24]王越,常新安,刘国庆,蒋毅坚.ADP及KDP晶体纵向压电系数d33的计算,人工晶体学报,29,152-156(2000).
    [25]张自嘉,施文康.压电晶体最大特征系数切向判定方法,上海交通大学学报,38,99-102(2004).
    [26]王弘,徐斌,韩建儒,李体俊,霍泺云,α-AlPO4晶体弹性温度特性的研究,物理学报,35,889-895(1986).
    [27]P. Shiv Halasyamani, Asymmetric Cation Coordination in Oxide Materials:Influence of Lone-Pair Cations on the Intra-octahedral Distortion in d0 Transition Metals, Chem. Mater.,16,3586-3592 (2004).
    [28]Kang Min Ok and P. Shiv Halasyamani, Distortions in Octahedrally Coordinated d0 Transition Metal Oxides:A Continuous Symmetry Measures, Approach, Chem. Mater., 18,3176-3183(2006).
    [29]W.G. Zhang, X.T. Tao, C.Q. Zhang, Z.L. Gao, Crystal Growth & Design,8,304 (2008).
    [30]S.C. Mayo, P.A. Thomas, S.J. Teat, G.M. Loiacono, D.N. Loiacono,Acta Cryst. B. 50,655 (1994).
    [1]中国大百科全书,中国大百科全书出版社(2000).
    [2]H. Futama and R.Pepinsky, J. Phys. Soc. Japan,17,725 (1962).
    [3]H. Twasaki, K. Sugii, N. Niizeki and H. Toyada, Ferroelectrics,3,157, (1972).
    [4]R.C. Alferness, Appl. Phys. Lett.36,513 (1980).
    [5]I. P. Kaminov, E. H. Turner, Proc. IEEE.54,1374 (1966).
    [6]A. Garzarella, R. J. Hinton, S. B.Qadri, Dong Ho Wu Appl. Phys. Lett.92,22111 (2008).
    [7]X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, Phys. Rev. Lett.85,3404 (2000).
    [8]T. Volk, D. Isakov, M. Wo"hlecke, L. Ivleva, Appl. Phys. Lett.83,2220 (2003).
    [9]D. F. Holshouser, H. Von Foerster, and G. L. Clark, Microwave modulation of light using the Kerr effect, J. Opt. Soc. Amn.,51,1360-1365 (1961).
    [10]K. D. Froome and R. H. Bradsell, Distance measurement bymeans of a light ray modulated at a microwave frequency, J. Sci. Istr.,38,458-462 (1961).
    [11]尹鑫,王继扬,张少军,La3Ga5SiO14晶体电光Q开关的研究,中国激光,31,,29-32(2004).
    [12]陈福深,光通信中的LiNb03集成波导电光器件,压电与声光,13,5-12.(1991).
    [13]Wei Shi, Yujie J.Ding and Xiaodong Mu, Electrio-optic and electromemechanical properties of poled polymer thin films, Appl. Phys. Lett.,79,23,3749-3751 (2001).
    [14]肖定全,王民等晶体物理学成都:四川大学出版社(1989).
    [15]张卫国,新型非线性光学晶体BaTeMo2O9的生长及性能研究,山东大学博士学位论文(2008).
    [16]蒋民华,晶体物理济南:山东科学技术出版社(1980).
    [17]王晓洋KTP晶体生长及电光性能的研究,武汉理工大学硕士学位论文.
    [18]M.B.Klein, Electro-Optic and Photorefractive Materials:Photorefractive Properties of BaTiO3, Berlin, Heidelberg:Spring-Verlag (1983).
    [19]P.G.Schunemann, et al. J.Opt.Soc.Am., B 5:1685-1702 (1988).
    [20]K.Onuki, N.Uchida, et al., J.Opt.Soc.Amer.,62,1030 (1972).
    [21]Xinqiang Wang, Dong Xu, Mengkai Lv et al.Crystal growth and physical properties of UV nonlinear optical crystal zinc cadmium thiocynate, ZnCd(SCN)4, Chemical Physcis Letters,346,393-406 (2001).
    [22]Xin Yin, Jiyang Wang, Huaidong Jiang, Measurement of electro-optic coefficients of low symmetry crystal GdCaO(BO3)3, Optical & lasers Technology,33,563-566 (2001).
    [1]P. J. Lock, Doped Triglycine Sulfate for Pyroelectric Applications, Appl. Phys. Lett.19, 10,390-391 (1971).
    [2]A. M. Glass, Ferroelectric Srl-xBaxNb2O6 as A fast and Sensitive Detector of Infrared Radiation,Appl. Phys. Lett.13,147-149 (1968).
    [3]E. H. Putley, Infrared applications of pyroelectric effect, Optics and Laser Technology, 3,150-156,(1971).
    [4]Born M., Rev. Mod. Phys., On the Quantum Theory of Pyroelectricity,17,245-251, (1945).
    [5]Gladki V V, Zheladev I S., Kristallografiya,10,1975,63.
    [6]Lang S B., Pyroelectric Coefficient of Lithium Sulfate Monohydrate (4.2-320°K), Phy. Rev. B,4,3603 (1971).
    [7]Szigeti B, Phys. Rev. Lett., Temperature Dependence of Pyroelectricity,40,1532-1534 (1975)
    [8]N. D, Gavrilova, S. N.Drozhdin and V. K. Novik, E. G.Maksimov, Relationship between the pyroelectric coefficient and the lattice dynamics of the pyroelectrics, Solid State Communications,48,129-133 (1983).
    [9]J.M.Lloyd, Thermal Imaging Systems, New York:A Division of plenum Publishing Corpotation (1982).
    [10]Bijun Fang, Jinhua Li, Haiqing Xu and Haosu Luo, Growth and pyroelectric properties of [001]-oriented (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals, Appl. Phys. Lett.91,062902, (2007).
    [11]JZhang Deyin, Huang Dagui and Li Jinhua, Pyroelectric coefficient measurement of novel lithium tantalite thin film, Journal of electronic measurement and instrument,23, 80-84 (2009).
    [12]张福学,王丽坤,现代压电学,北京:科学出版社(2001)
    [13]肖定全,王民,晶体物理学,成都:四川大学出版社(1989).
    [14]蒋民华,晶体物理,济南:山东科学技术出版社(1980).
    [15]Whatmore R W, R. W. Whatmore, Pyroelectric Devices and Materials, Rep. Prog. Phys.,49,1335-86(1986).
    [16]R. W. Whatmore, P. C. Osbond, and N. M. Shorrocks, Ferroelectric Materials for Thermal IR Detectors, Ferroelectrics,76,351-67 (1987).
    [17]Sosnin A A. Sosnin, Image Infrared Converters Based on Ferroelectric-Semiconductor Thin-Layer Systems, Semicond. Phys., Quant Electron. Optoelectron.,3,489-95 (2000).
    [18]李远,秦自楷,周志刚,压电与铁电材料测量,北京:科学出版社(1984).
    [1]W.P.Mason, piezoelectric Crystals and Their Application to Ultrasionics, D.Van Nostrand Inc.New York (1950).
    [2]张福学,压电与热释电材料,电子软科学,1,52-58(1990).
    [3]钱锥铝,石英晶体传感器在现代军事工程中的应用,压电晶体技术,3,1,(1994).
    [4]黄广伦,肖永革,声表面波谐振器及其应用,压电与声光,6,79(1984).
    [5]张福学,王丽坤,现代压电学,北京:科学出版社(2001).
    [6]H.Matthews, Surface Wave Filters, John Wiley and Sons, New York, (1977).
    [7]James Karki, Signal Conditioning Piezoelectric Sensors, Texas Instruments,1-6 (2007).
    [8]Bruant I, Gallimard L, Nikoukar S, Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm, Journal of Sound and Vibration,329, 1615-1635(2010).
    [9]Wang ZH, Miao JM, Tan CW, et al. Fabrication of piezoelectric MEMS devices-from thin film to bulk PZT wafer, J. Electroceram.,24,25-32 (2010).
    [10]Abdollahi A, Jiang Z, Arabshahi SA, Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis, IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL,54,2446-2455 (2007).
    [11]Adachi M, Shiosaki T, Ohtsuka K et al, Leaky SAW propagation properties LiB4O7 substrates, Proc IEEE Freq.Contr.Symp,296-300 (1994).
    [12]Ehata Y, Koshino H. SAW resonator and resonator filter on LiB4O7 substrate. J. Appl. Phys.24,25-27 (1987).
    [13]Chu SY, Chen TY, Tsai IT, et al., Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device, Sensors and Actuators, A:Physical,113,198-203 (2004).
    [14]Hechner J, Soluch W, Wrobel T, The methods of limiting the influence of harmful effects in SAW sensors, Optoelectronic and Electronic Sensors,3730,62-66 (1999).
    [15]Byoung Chul Kim; Young Han Kim, Sensitivity determination of a quartz crystal resonator for practical materials, Japanese Journal of Applied Physics,7490-5 (2007).
    [16]张沛霖,钟维烈等,压电器件与物理,济南:山东大学出版社(1997).
    [1]肖定全,王民等晶体物理学成都:四川大学出版社(1989).
    [2]蒋民华,晶体物理,济南:山东科学技术出版社(1999).
    [3]张沛霖,钟维烈等.压电材料与器件物理,济南:山东大学技术出版社(1996).
    [4]H.Ito, H.Naito,and H.Inaba,New phase-matchable nonlinear optical crystals, IEEE J. Quantum Electron, QE-10,247-252 (1974).
    [5]H.Ito, Generalized study on angular dependence of induced second-order nonlinear polarizations and phase matching in biaxial crystals, J.Appl.Phys.,49,3992-3998 (1975).
    [6]Yin Xin, Zhang Shaojun, and Tian Zhaobing, Investigation of the nonsymmetry of effective nonlinear optical coefficient expressions for low-symmetry crystals, J.Opt.Soc.Am.B,22,2185-2191 (2005).
    [7]于庆霞,山东大学硕士论文(2010).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.