产纤维素酶菌株的筛选和枯草芽胞杆菌内切葡聚糖酶催化活性的改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去五十年里,许多学者对纤维素酶进行了大量的研究,试图转化地球上大量、可再生的纤维素资源为可利用的生物能源,以代替日益枯竭的石化能源。然而,纤维素酶生产的高成本严重制约了纤维素生物转化产业的发展,解决这一问题的关键就是寻找新的高产菌株或通过分子生物学技术改造纤维素酶的催化活性,以此来提高酶的生物转化效率。
     本研究从450株海洋菌以及陆地样品中,分别筛选出了46株和99株产纤维素酶的菌株。通过鉴定发现,其中大部分归类于芽胞杆菌属、盐单胞菌属和假单胞菌属。从中克隆了8株芽胞杆菌属菌株的内切葡聚糖酶(EG)基因,进化树分析表明它们在核苷酸和蛋白质水平上分属不同的分支,具有一定的多样性。其中含有来自枯草芽胞杆菌内切葡聚糖酶基因cel5A的克隆在纤维素平板上显示出较高的水解圈活性。
     采用易错PCR和DNA shuffling的体外定向进化技术,本研究建立了来源于Bacillus subtilis BME-15的内切葡聚糖酶基因cel5A突变体库。利用刚果红染色法对突变体库中的71000株克隆进行筛选,得到了7株高活性突变株。其中内切葡聚糖酶突变体M44-11,S75和S78水解羧甲基纤维素钠的活性分别是野生型的2.03、2.54和2.68倍;此外,M44-11的酸碱耐受性和热稳定性也得到提高。通过同源模建,用Swiss-model构建了重组内切葡聚糖酶和各种突变酶的三维结构图。通过对酶分子结构的分析,发现M44-11,S75,S78的大部分突变位点氨基酸残基位于保守区域之外,只有S75的V255A突变位点处于活性中心,且毗邻于亲核基团Glu257附近。
     为了进一步研究突变位点在酶突变体中所起的作用,本研究通过环式PCR法分别构建了120位赖氨酸残基和272位天冬氨酸残基的突变酶。通过检测突变酶的水解圈活性发现,120位赖氨酸残基突变为谷氨酸和272位天冬氨酸残基突变为甘氨酸都可以部分提高酶的活性。这一现象表明,在突变酶S78和M44-11中可能存在多个突变位点的协同叠加作用而促进了酶的催化效率,而不是单个氨基酸残基突变产生的作用。同时这一结果也揭示了处于非活性中心或非结合位点的突变位点可能通过改变整个酶分子的空间位阻、催化残基之间的氢键网络形成来提高酶的催化特性。此外,对可能与底物相互作用的69位色氨酸残基和263丙氨酸-264丝氨酸-265甘氨酸残基的饱和突变结果表明,69位色氨酸残基的改变对酶活性的影响较小,而263丙氨酸-264丝氨酸-265甘氨酸残基的突变则会导致突变酶的活性严重丧失,这说明了该位点对底物结合起着非常关键的作用。
     本项研究为采用定向进化的方法改造第五家族糖基水解酶提供了有价值的理论参考。
In the past 50 years much effort had gone into the studies of cellulases as a potential means to obtain sustainable biobased products to replace depleting fossil fuels from an abundant, renewable energy resource, plant biomass. However, the high cost of cellulases production seemed to be a very important and difficult challenge in the cellulose bioconversion process. The way to increase enzyme volumetric productivity was to isolate hyperproducers and to improve the necessary characteristics of cellulases.
     In this research, from more than 450 marine microorganisms and terrestrial soil samples, 46 and 99 isolates were found positive for cellulase production, respectively.Among these, cellulase-producing strains were mainly identified as Bacillus、Halomonasand Pseudomonas. Eight endo-β-1, 4-glucanase (EG) genes were cloned from Bacillus strains and showed different homology by DNA or protein phylogenetic tree analysis. Furthermore, the colony which harbored Bacillus subtilis BME-15 EG gene (cel5A) showed the highest halo-forming activity on CMC plates and was chose to be studied.
     Using directed evolution techniques of error-prone PCR and DNA shuffling, several Cel5A variants with improved catalytic activity had been screened from the mutant library, which contained 71,000 colonies. Compared with the wild-type enzyme, the variants (M44-11, S75 and S78) showed 2.03 to 2.68 folds increased activities toward sodium carboxymethyl cellulose (CMC), while the M44-11 also exhibited a wider pH tolerance and higher thermostability. Structural models of M44-11, S75, S78 and WT proteins revealed that most of the substitutions were not located in the strictly conserved regions, except the mutation V255A of S75, which was closed to the nucleophile Glu257 in the catalytic center of the enzyme.
     In order to study the functions of substitutions in the mutants, site-directed mutagenesis of K120 and D272 were constructed by using cycled PCR. By analyzing the halo-forming activities of the mutants and parents, substitutions K120E and D272G were found to show slight increased activity compared with wild type enzyme. This phenomenon implied that the increased activity of S78 and M44-11 was not due to the contribution of the single substitution, but due to the synergistic effect of multi-site substitutions. And it also revealed that mutations outside of the catalytic center or the binding sites resulted in increased catalytic activity by making new hydrogen bonds and repositioning of catalytic residues in the active site. Moreover, saturation mutagenesis of W69 and A263-S264-G265 sites were also constructed to study the reaction between Cel5A and substrate. The result showed that substitutions of W69 slight decreased the halo-forming activity of the enzyme, while substitutions of A263-S264-G265 resulted in most activity losing and this revealed that A263-S264-G265 played some very important fuction in binding substrate.
     This study provided useful references for directed evolution of the enzymes belonged to glycoside hydrolase family 5 (GH5).
引文
1.陈国符,邬义明.植物纤维化学.北京:中国轻工业出版社,1980,186
    2.陈静,李多川,张玉芹,杜欣可.嗜热子囊菌光孢变种cbh1基因的cDNA克隆及在毕赤酵母的高效表达.农业生物技术学报,2006,3:406-411
    3.丁少军,宋美静,杨红军,邢增涛,周蕊,曹杰.中性内切型纤维素酶在毕赤酵母中高水平表达的研究.生物工程学报,2006,1:71-76
    4.戴红霞.稻草秸杆纤维素生产酒精工艺技术条件探索.[硕士学位论文].大庆石油学院,2005
    5.董亚敏,殷幼平,曹月青,何正波.星天牛幼虫肠道木聚糖酶的纯化和性质.昆虫学报,2002,2:165-169
    6.高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展,2003,1:23-31
    7.高中华,许根俊,赵辅昆.福寿螺多功能纤维素酶Egxa在酿酒酵母中的表达.浙江理工大学学报,2007,4:479-482
    8.贾汇红.疏绵状嗜热丝孢菌热稳定纤维素酶的分离纯化和基因克隆.[博士学位论文].山东农业大学,2007
    9.李亚玲.嗜热真菌热稳定纤维素酶的分离纯化及基因的克隆与表达.[博士学位论文].山东农业大学,2007
    10.刘丹.葡萄糖氧化酶的体外定向进化.[硕士学位论文].中国科学院(武汉病毒研究所),2007
    11.刘守安,李多川,张燕,郭芳先,俄世瑾.嗜热毛壳菌CT2纤维二糖水解酶Ⅰ在毕赤酵母中的高效表达.菌物学报,2006,02:256-262
    12.刘守安,李多川,俄世瑾,张燕.嗜热毛壳菌纤维素酶(CBHⅡ)cDNA的克隆及在毕赤酵母中的表达.生物工程学报,2005,6:40-47
    13.母敬郁,王曦,王峤,陈阳,王恩思.重组Thermomonospora fusca纤维素酶Ce16A 在毕赤酵母中的表达及纯化.中国生物制品学杂志,2006,6:578-579
    14.宋波,邓晓皋,施雷霆.纤维素酶的研究进展.上海环境科学,2003,7:491-495
    15.滕芳超,李多川,李亚玲,李浙江.嗜热毛壳菌一种β-葡萄糖苷酶的分离纯化 及特性.菌物学报,2006,3:481-487
    16.王瑾,邬敏辰,周晨妍.内切葡聚糖酶基因在大肠杆菌与毕赤酵母中的表达.生物技术通报,2008,3:110-114
    17.阎伯旭,齐飞,张颖舒,高培基.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展,1999,3:40-44
    18.张黎华.不同预处理方法对紫茎泽兰和飞机草纤维素酶解性能影响的初步研究.[硕士学位论文].中国科学院(西双版纳热带植物园),2007
    19.张秀艳.β-葡聚糖酶的定向进化及热稳定性研究.[博士学位论文].浙江大学,2006
    20.张颖.纤维素酶与碱性纤维素酶的研究进展.中山大学研究生学刊,2005,2:13-21
    21.张煜,刘刚,余少文,汤新,邢苗.里氏木霉纤维二糖水解酶Ⅱ在毕赤酵母中的高效表达.菌物学报,2005,3:367-375
    22.Abelson J.Directed evolution of nucleic acids by independent replication and selection.Science,1990,249:488-489
    23.Arai T,Araki R,Tanaka A,Karita S,Kimura T,Sakka K,Ohmiya K.Characterization of a cellulase containing a family 30 carbohydrate-binding module(CBM) derived from Clostridium thermocellum CelJ:Importance of the CBM to cellulose hydrolysis.J Bacteriol,2003,185:504-512
    24.Arnold F H.Directed evolution:creating biocatalysts for the future.Chem Eng Sci,1996,51:5091-5102
    25.Arnold K,Bordoli L,Kopp J,Schwede T.The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling.Bioinformatics,2006,22:195-201
    26.Arrigo K R.Marine microorganisms and global nutrient cycles.Nature,2005,437:349-355
    27.Arrizubieta M J,Polaina J.Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination.J Biol Chem,2000,275:28843-28848
    28.Baldrian P,Valaskova V.Degradation of cellulose by basidiomycetous fungi.Fems Microbiol Rev, 2008, 32: 501-521
    29. Beguin P, Aubert J P. The biological degradation of cellulose. FEMS Microbiol Rev, 1994, 13:25-58
    30. Blumer-Schuette S E, Kataeva I, Westpheling J, Adams M W W, Kelly R M. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol, 2008, 19: 210-217
    31. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
    32. Cao S, Liu Z, Guo A, Li Y, Zhang C, Gaobing W, Chunfang F, Tan Y, Chen H. Efficient production and characterization of Bacillus anthracis lethal factor and a novel inactive mutant rLFm-Y236F. Protein Expr Purif, 2008, 59: 25-30
    33. Castle LA, Siehl D L, Gorton R, Patten P A, Chen Y H, Bertain S, Cho H J, Duck N, Wong J, Liu D L, Lassner M W. Discovery and directed evolution of a glyphosate tolerance gene. Science, 2004, 304: 1151-1154
    34. Catcheside D E A, Rasmussen J P, Yeadon P J, Bowring F J, Cambareri E B, Kato E, Gabe J, Stuart W D. Diversification of exogenous genes in vivo in Neurospora. Appl Microbiol Biotechnol, 2003, 62: 544-549
    35. Chen C M, Gritzali M, Stafford D W. Nucleotide sequence and deduced primary structure of cellobiohydrolase II from Trichoderma reesei. Nat Biotechnol, 1987, 5: 274-280
    36. Clackson T, Hoogenboom H R, Griffiths A D, Winter G. Making antibody fragments using phage display libraries. Nature, 1991, 352: 624-628
    37. Coco W M, Levinson W E, Crist M J, Hektor H J, Darzins A, Pienkos P T, Squires C H, Monticello D J. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol, 2001, 19: 354-359
    38. Covert S F, Vanden Wymelenberg A, Cullen D. Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol, 1992, 58: 2168-2175
    39. Davies G J, Dodson G G, Hubbard R E, Tolley S P, Dauter Z, Wilson K S, Hjort C, Mikkelsen J M, Rasmussen G, Schulein M. Structure and Function of Endoglucanase-V. Nature, 1993, 365: 362-364
    40. Demain A L, Newcomb M, Wu J H D. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev, 2005, 69: 124
    41. Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles J K, Teeri T T, Jones T A. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 1994, 265: 524-528
    42. Ducros V, Czjzek M, Belaich A, Gaudin C, Fierobe H P, Belaich J P, Davies G J, Haser R. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure, 1995, 3: 939-949
    43. Dwyer M A, Looger L L, Hellinga H W. Computational design of a biologically active enzyme (Retraction of vol 304, pg 1967, 2004). Science, 2008, 319: 569-569
    44. Fan Y H, Fang W G, Xiao Y H, Yang X Y, Zhang Y J, Bidochka M J, Pei Y. Directed evolution for increased chitinase activity. Appl Microbiol Biotechnol, 2007, 76: 135-139
    45. Fujii R, Kitaoka M, Hayashi K. One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res, 2004, 32:
    46. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol, 2004, 70: 1207-1212
    47. Fukuda T, Ishikawa T, Ogawa M, Shiraga S, Kato M, Suye S I, Ueda M. Enhancement of cellulase activity by clones selected from the combinatorial library of the cellulose-binding domain by cell surface engineering. Biotechnol Prog, 2006, 22: 933-938
    48. Fukuda T, Kato-Murai M, Kuroda K, Ueda M, Suye S I. Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain. Appl Microbiol Biotechnol, 2008, 77: 1225-1232
    49. Gloster T M, Macdonald J M, Tarling C A, Stick R V, Withers S G, Davies G J. Structural, thermodynamic, and kinetic analyses of tetrahydrooxazine-derived inhibitors bound to beta-glucosidases. J Biol Chem, 2004, 279: 49236-49242
    50. Gonzalez-Blasco G, Sanz-Aparicio J, Gonzalez B, Hermoso J A, Polaina J. Directed evolution of beta-glucosidase A from Paenibacillus polymyxa to thermal resistance. JBiol Chem, 2000, 275: 13708-13712
    51. Gow L A, Wood T M. Breakdown of crystalline cellulose by synergistic action between cellulase components from Clostridium thermocellum and Trichoderma koningii. FEMS Microbiol Lett, 1988, 50: 247-252
    52. Gray K A, Zhao L S, Emptage M. Bioethanol. Curr Opin Chem Biol, 2006, 10: 141-146
    53. Gregoret L M, Sauer R T. Additivity of mutant effects assessed by binomial mutagenesis. Proc Natl Acad Sci USA, 1993, 90: 4246-4250
    54. Guex N, Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997, 18: 2714-2723
    55. Gusakov A V, Sinitsyn A P, Salanovich T N, Bukhtojarov F E, Markov A V, Ustinov B B, van Zeijl C, Punt P, Burlingame R. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzyme Microb Technol, 2005, 36: 57-69
    56. Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, Ito S. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim Biophys Acta, 2002, 1570: 174-180
    57. Han S J, Yoo Y J, Kang H S. Characterization of a Bifunctional Cellulase and Its Structural Gene - the Cel Gene of Bacillus Sp D04 Has Exoglucanase and Endoglucanase Activity. Journal of Biological Chemistry, 1995, 270: 26012-26019
    58. Henrissat B, Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J, 1996, 316 ( Pt 2): 695-696
    59. Hoffert M I, Caldeira K, Benford G, Criswell D R, Green C, Herzog H, Jain A K, Kheshgi H S, Lackner K S, Lewis J S, Lightfoot H D, Manheimer W, Mankins J C, Mauel M E, Perkins L J, Schlesinger M E, Volk T, Wigley T M L. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 2002,298:981-987
    60. Hou Y H, Wang T H, Long H, Zhu H Y. Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim Biophys Sin, 2007, 39: 101-107
    61. Hyde K D, Jones E B G, Leao E, Pointing S B, Poonyth A D, Vrijmoed L L P. Role of fungi in marine ecosystems. Biodivers Conserv, 1998, 7: 1147-1161
    62. Ito J, Fujita Y, Ueda M, Fukuda H, Kondo A. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Biotechnol progr, 2004, 20: 688-691
    63. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D'Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich S D, Overbeek R, Kyrpides N. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 2003, 423: 87-91
    64. Jagtap S, Rao M. Purification and properties of a low molecular weight 1, 4-beta-D-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp.. Biochem Biophys Res Commun, 2005, 329: 111-116
    65. Kaper T, Brouns S J J, Geerling A C M, De Vos W M, Van der Oost J. DNA family shuffling of hyperthermostable beta-glycosidases. Biochem J, 2002, 368: 461-470
    66. Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek C P, Seiboth B. D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology, 2006, 152: 1507-1514
    67. Kim J, Yun S, Ounaies Z. Discovery of cellulose as a smart material. Macromolecules, 2006, 39: 4202-4206
    68. Kim J M, Kong I S, Yu J H. Molecular cloning of an endoglucanase gene from an alkalophilic Bacillus sp. and its expression in Escherichia coli. Appl Environ Microbiol, 1987, 53: 2656-2659
    69. Kim J O, Park S R, Lim W J, Ryu S K, Kim M K, An C L, Cho S J, Park Y W, Kim J H, Yun H D. Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5. Biochem Biophys Res Commun, 2000, 279: 420-426
    70. Kim M S, Lei X G. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol, 2008, 79: 69-75
    71. Koch A, Weigel C T, Schulz G. Cloning, sequencing, and heterologous expression of a cellulase-encoding cDNA (cbhl) from Penicillium janthinellum. Gene, 1993, 124: 57-65
    72. Kuchner O, Arnold F H. Directed evolution of enzyme catalysts. Trends Biotechnol, 1997, 15: 523-530
    73. Kumar R, Singh S, Singh O V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 2008, 35: 377-391
    74. Lam K H, Chow K C, Wong W K. Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J Biotechnol, 1998, 63:167-177
    75. Lebbink J H G, Kaper T, Bron P, van der Oost J, de Vos W M. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry, 2000, 39: 3656-3665
    76. Leisola M, Turunen O. Protein engineering: opportunities and challenges. Appl Microbiol Biotechnol, 2007, 75: 1225-1232
    77. Leung D W, Chen E, Goeddel D V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique, 1989, 1: 11-15
    78. Lima A O S, Quecine M C, Fungaro M H P, Andreote F D, Maccheroni W, Araujo W L, Silva-Filho M C, Pizzirani-Kleiner A A, Azevedo J L. Molecular characterization of a beta-1, 4-endoglucanase from an endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol, 2005, 68: 57-65
    79. Lin H N, Tao H Y, Cornish V W. Directed evolution of a glycosynthase via chemical complementation. J Am Chem Soc, 2004, 126: 15051-15059
    80. Lo A C, MacKay R M, Seligy V L, Willick G E. Bacillus subtilis beta-1, 4-endoglucanase products from intact and truncated genes are secreted into the extracellular medium by Escherichia coli. Appl Environ Microbiol, 1988, 54: 2287-2292
    81. Lu Y P, Zhang Y H P, Lynd L R. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA, 2006, 103: 19605-19605
    82. Lynd L R, van Zyl W H, McBride J E, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol, 2005, 16: 577-583
    83. Macris B J, Paspaliari M, Kekos D. Production and cross-synergistic action of cellulolytic enzymes from certain fungal mutants grown on cotton and straw. Biotechnol Lett, 1985, 7: 369-372
    84. Maeda T, Sanchez-Torres V, Wood T K. Protein engineering of hydrogenase 3 to enhance hydrogen production. Appl Microbiol Biotechnol, 2008, 79: 77-86
    85. McCarthy J K, Uzelac A, Davis D F, Eveleigh D E. Improved catalytic efficiency and active site modification of 1, 4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. J Biol Chem, 2004, 279: 11495-11502
    86. Murashima K, Kosugi A, Doi R H. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol Microbiol, 2002, 45: 617-626
    87. O'Sullivan A C. Cellulose: the structure slowly unravels. Cellulose, 1997, 4: 173-207
    88. Ozaki K, Sumitomo N, Hayashi Y, Kawai S, Ito S. Site-directed mutagenesis of the putative active site of endoglucanase K from Bacillus sp. KSM-330. Biochim Biophys Acta, 1994, 1207: 159-164
    89. Pal T K, Sankararamakrishnan R. Self-contacts in Asx and Glx residues of high-resolution protein structures: Role of local environment and tertiary interactions. J Mol Graph, 2008, 27: 20-33
    90. Palackal N, Brennan Y, Callen W N, Dupree P, Frey G, Goubet F, Hazlewood G P, Healey S, Kang Y E, Kretz K A, Lee E, Tan X Q, Tomlinson G L, Verruto J, Wong V W K, Mathur E J, Short J M, Robertson D E, Steer B A. An evolutionary route to xylanase process fitness. Protein Sci, 2004, 13: 494-503
    91. Park J S, Nakamura A, Horinouchi S, Beppu T. Identification of the cellulose-binding domain of a Bacillus Subtilis endoglucanase distinct from its catalytic domain. Biosci Biotech Biochem, 1993, 57: 260-264
    92. Patel P H, Kawate H, Adman E, Ashbach M, Loeb L A. A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. J Biol Chem, 2001, 276: 5044-5051
    93. Percival Zhang Y H, Himmel M E, Mielenz J R. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv, 2006, 24: 452-481
    94. Rapp M, Seppala S, Granseth E, von Heijne G. Emulating membrane protein evolution by rational design. Science, 2007, 315: 1282-1284
    95. Read S M, Bacic T. Plant biology - Prime time for cellulose. Science, 2002, 295: 59-60
    96. Reese E T, Siu R G H, Levinson H S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacterial, 1950, 59: 485-497
    97. Reetz M T, Carballeira J D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc, 2007, 2: 891-903
    98. Reetz M T, Wu S. Greatly reduced amino acid alphabets in directed evolution: making the right choice for saturation mutagenesis at homologous enzyme positions. Chem Commun, 2008, 5499-5501
    99. Ryu S, Cho S, Park S, Lim W, Kim M, Hong S, Bae D, Park Y, Kim B, Kim H. Cloning of the cel9A gene and characterization of its gene product from marine bacterium Pseudomonas sp. SK38. Appl Microbiol Biotechnol, 2001, 57: 138-145
    100.Saloheimo M, Kuja-Panula J, Ylosmaki E, Ward M, Penttila M. Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (Cel1A). Appl Environ Microb, 2002, 68: 4546-4553
    101.Saloheimo M, Nakari-SetaLa T, Tenkanen M, Penttila M. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur J Biochem, 1997, 249: 584-591
    102.Sambrook J and Russell DW. Molecular Cloning: A Laboratory Manual. 3-Volume Set. Cold Spring Harbor Laboratory Press, Cold Spring Harbor New York, 2001
    103.Sandgren M, Stahlberg J, Mitchinson C. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog Biophys Mol Biol, 2005, 89:246-291
    104.Schwede T, Kopp J, Guex N, Peitsch M C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res, 2003, 31: 3381-3385
    105.Shao Z, Zhao H, Giver L, Arnold F H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res, 1998, 26: 681-683
    106.Shimon L J W, Pages S, Belaich A, Belaich J-P, Bayer E A, Lamed R, Shoham Y, Frolow F. Structure of a family IIIa scaffoldin CBD from the cellulosome of Clostridium cellulolyticum at 2.2 ANG resolution. Acta Crystallogr D, 2000, 56: 1560-1568
    107.Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M. Molecular Cloning of Exo-Cellobiohydrolase I Derived from Trichoderma Reesei Strain L 27. Nat Biotechnol, 1983, 1: 691-696
    108.Sinnott P, Collier S, Costigan C, Dyer P A, Harris R, Strachan T. Genesis by meiotic unequal crossover of a de novo deletion that contributes to steroid 21-hydroxylase deficiency. Proc Natl Acad Sci USA, 1990, 87: 2107-2111
    109.Skinner M M, Terwilliger T C. Potential use of additivity of mutational effects in simplifying protein engineering. Proc Natl Acad Sci USA, 1996, 93: 10753-10757
    110.Song J K, Rhee J S. Simultaneous enhancement of thermostability and catalytic activity of phospholipase A1 by evolutionary molecular engineering. Appl Environ Microb, 2000, 66: 890-894
    111.Stachelhaus T, Schneider A, Marahiel M A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science, 1995, 269: 69-72
    112.Stemmer W P. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994, 370: 389-391
    113.Sulzenbacher G, Driguez H, Henrissat B, Schulein M, Davies G J. Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry, 1996, 35: 15280-15287
    114. Suzuki M, Avicola A K, Hood L, Loeb L A. Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I. J Biol Chem, 1997, 272: 11228-11235
    115.Takahashi T T, Austin R J, Roberts R W. mRNA display: ligand discovery, interaction analysis and beyond. Trends Biochem Sci, 2003, 28: 159-165
    116.Takashima S, Ohno M, Hidaka M, Nakamura A, Masaki H. Correlation between cellulose binding and activity of cellulose-binding domain mutants of Humicola grisea cellobiohydrolase I. FEBS Lett, 2007, 581: 5891-5896
    117.Taylor L E, Henrissat B, Coutinho P M, Ekborg N A, Hutcheson S W, Weiner R M. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol, 2006, 188: 3849-3861
    118.Teng D, Wang J H, Fan Y, Yang Y L, Tian Z G, Luo J, Yang G P, Zhang F. Cloning of beta-1,3-1, 4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl Microbiol Biotechnol, 2006, 72: 705-712
    119.Tomme P, Warren R A, Gilkes N R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol, 1995, 37: 1-81
    120.Tormo J, Lamed R, Chirino A J, Morag E, Bayer E A, Shoham Y, Steitz T A. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EmboJ, 1996, 15: 5739-5751
    121.Van Arsdell J N, Kwok S, Schweickart V L, Ladner M B, Gelfand D H, Innis M A. Cloning, characterization, and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei, Nat Biotechnol, 1987, 5: 60-64
    122.Van der Veen B A, Potocki-Veronese G, Albenne C, Joucla G, Monsan P, Remaud-Simeon M. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity. FEBS Lett, 2004, 560: 91-97
    123.Van Loo B, Spelberg J H L, Kingma J, Sonke T, Wubbolts M G, Janssen D B. Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chem Biol, 2004, 11: 981-990
    124.Van Tilbeurgh H, Claeyssens M. Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett, 1985, 187: 283-288
    125.VanAntwerp J J, Wittrup K D. Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Progr, 2000, 16: 31-37
    126.Varrot A, Davies G J. Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D, 2003, 59: 447-452
    127.Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng, 2005, 22: 89-94
    128.Wang T W, Zhu H, Ma X Y, Zhang T, Ma Y S, Wei D Z. Mutant library construction in directed molecular evolution. Mol Biotechnol, 2006, 34: 55-68
    129.Winter G, Griffiths A D, Hawkins R E, Hoogenboom H R. Making antibodies by phage display technology. Annu rev immunol, 1994, 12: 433-455
    130.Wong T S, Roccatano D, Zacharias M, Schwaneberg U. A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol, 2006, 355: 858-871
    131.Wood T M, McCrae S I, Bhat K M. The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J, 1989, 260: 37-43
    132.Yang M J, Jung S H, Shin E S, Kim J, Yun H D, Wong S L, Kim H. Expression of a Bacillus subtilis endoglucanase in protease-deficient Bacillus subtilis strains. J Microbiol Biotechnol, 2004, 14: 430-434
    133.Yernool D A, McCarthy J K, Eveleigh D E, Bok J D. Cloning and characterization of the glucooligosaccharide catabolic pathway β-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol, 2000, 182:5172-5179
    134.Yoon J J, Cha C J, Kim Y S, Kim W. Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnol Lett, 2008, 30: 1373-1378
    135.Zhang S, Yin Q Y, Li Y H, Ding M, Xu G J, Zhao F K. Molecular and biochemical characterization of Ba-EGA, a cellulase secreted by Bacillus sp AC-1 from Ampullaria crosseans. Appl Microbiol Biotechnol, 2007, 75: 1327-1334
    136.Zhang Y H P, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol Bioeng, 2004, 88: 797-824
    137.Zhao H, Arnold F H. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res, 1997, 25: 1307-1308
    138.Zhou S, Yomano L P, Saleh A Z, Davis F C, Aldrich H C, Ingram L O. Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B. Appl Environ Microbiol, 1999, 65: 2439-2445
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.