MODIS卫星遥感图像预处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在研究MODIS传感器特点的基础上,对MODIS图像预处理过程中常见的问题:条带噪声,图像弯弓效应,云干扰等问题进行了深入研究,探讨了问题存在的原因,在总结现有研究的基础上提出了相应的解决方法。
     主要研究内容与成果如下:1.针对图像中的条带噪声,提出了一种基于分块最佳线性预测器的条带噪声去除方法,该方法优于目前常用的去条带方法,不仅能有效地去除条带噪声,而且保存了图像原有的大部分信息。2.针对图像弯弓效应(Bowtie效应),本文提出了一种快速的基于星历表数据去除Bowtie效应的高效算法,该方法在消除图像Bowtie效应的同时完成了对重叠的经纬度数据的纠正。3.针对薄云对图像的影响,本文提出了一种对MODIS遥感图像薄云检测和消除的有效方法,该方法在检测薄云位置的基础上,仅对有云的区域进行薄云去除,而不改变无云区域的图像。4.为了消除厚云对遥感图像的影响,本文提出了一种自动、有效的厚云去除方法。该方法能够有效的去除厚云对光谱图像的影响,较好地恢复厚云遮挡的地物的光谱信息。
MODIS (moderate resolution imaging spectroradiometer) has high time resolution, which can support the day visible and day/night infrared spectrum of the Earth's surface every one to two days. MODIS data is very suitable for large-scale Eearth's surface observation and available free of charge. As a result, it has been one of the main detectors of global change research in Earth Observing System (EOS) series satellites.
     MODIS data supply much useful information, such as land surface, ocean, phytoplankton biogeochemistry, atmospheric water vapor, atmospheric temperature, cloud properties, cloud top temperature, cloud altitude, ozone, which can support important foundations for monitoring and researching of global change. MODIS LIB data is mainly researched in this paper. Although the processing of geolocation and radiometric calibration has been done, there are still some problems in the data which have influences on data application. The main problems affecting the application of MODIS LIB data are researched in this paper, which are described as follows:
     (1) Stripe Noise Removal Method in MODIS Imagery Based on Block Optimal Linear Predictor
     Stripe noise is one of the most common noises in MODIS data, which is caused by slight errors in the internal calibration system, variation in the response of the detectors and random noise. In MODIS imagery, stripe noise seriously affects image interpretation and information application. In order to effectively use MODIS data, some useful methods should be adopted to remove stripe noise. The stripe noise removal method based on block optimal linear predictor is developed to reduce strip noise effects from MODIS imagery. Through analyzing the correlation between detector images, the original image is divided to several detector images which include stripe noise images and no-stripe noise images. By using the block optimal linear predictor, the new detector images can be obtained with no-stripe noise images, thus the stripe noise can be removed from the original image. Experimental results demonstrate the proposed method can achieve better results than present methods, which effectively remove stripe noise and preserve most information of original image. The method is proved to be perfect for stripe noise removal in MODIS imagery.
     (2) A Fast method of eliminating the bowtie effect in MODIS L1B Data
     After the process of reflection rectification, there still exists a special 'bowtie effect' phenomenons in MODIS LIB data, which mainly represents that part of data overlapped in the neighboring scan bands. Moreover, the nearer to image edge, the more overlapping data exist. When the scan areas are in line shape, the bowtie effect phenomenon becomes more obvious. For this reason, part of the edge data has poor quality and cannot be used for data post-processing. The Bowtie effect belongs to a kind of geometry distortions of the EOS/MODIS LIB data. Till now, several methods have been proposed to eliminate the Bowtie effect all over the world, but they still exist many limitations in computation efficiency. After comparison and evaluating these methods that can resolve bowtie effect, at the same time, analyzing bowtie effect emergent regulation, with utilizing the ephemeris data, a fast method of eliminating the bowtie effect is proposed in the paper. In this method, the rough positions of overlapping data are first detected. Because of the influence caused by the instrument characters and the earth's curvature, the positions of overlapping data need to be rectified to obtain more precise results. The optimal rectification method used in this article is selected by comparing three methods. By using the optimal method, the rectified MODIS data can be obtained. The experiments demonstrate that the processing time of the proposed method is only about half of that processed by ENVI software for MODIS data with 1km spatial resolution, thus the proposed method is proved faster and more effective.
     (3) An effective method for the detection and removal of thin Clouds from MODIS imagery
     With the resolution improvement of remote sensing imagery, sensors often receive large amounts of data. Due to the impact of climate, most images have thin clouds or other atmospheric interferers which can severely affect image exploitation. Because of cloud interference, very important information covered by cloud cannot be recovered. Therefore, there is a need to use proper thin cloud removal methods to resolve this problem. In this paper, an effective method is proposed to detect and remove thin clouds from MODIS images. The proposed method involves two processing steps:thin cloud detection and thin cloud removal. As for thin cloud detection, through analyzing the cloud spectral characters in MODIS thirty-six bands, we can draw the conclusion that the spectral reflections of ground and cloud are different in various MODIS band. Hence, the cloud and ground area can be separately identified based on MODIS multi-spectral analysis. Then, a region labeling algorithm is used to separate thin clouds from many candidate objects. After cloud detection processing, thin cloud removal method is used to process each cloud region. In large images, the cloud regions usually occupy small parts, so in order to improve processing speed, the cloud removal processing focuses on the regions given by detected clouds, so it does not need to process the whole image. Compared with traditional methods, the proposed method can realize thin cloud detection and removal effectively. Additionally, the cloud removal processing mainly aims at labeling the cloud region rather than the whole image, so it can improve the processing effectiveness. Experiment results demonstrate that the proposed method can effectively remove thin cloud from MODIS imagery.
     (4) The research on automatic thick cloud removal for MODIS remote sensing imagery
     Cloud is one of the most common atmospheric interferers in MODIS remote sensing imagery. The existence of clouds not only brings some difficulties for image processing, but also cause image recognition and classification problems. How to effectively reduce or remove the cloud interference is an important procedure in the fields of remote sensing imagery processing and atmosphere correction. In this paper, an automatic method is proposed to realize thick cloud removal for MODIS remote sensing imagery. The proposed method can make full use of MODIS advantages of high temporal resolution and spatial resolution. The overlapping region can be detected by utilizing geographical information of the thick cloud data and no-cloud data, then SIFT detection and feature point matching are applied in the overlapping region, furthermore, the exact matching point pairs can be extracted with proper strategy. Based on these exact matching point pairs and the quadratic polynomial model, the rectified image can be obtained. Meanwhile, thick cloud regions are detected by the algorithm of multi-spectral image analysis, and then the images of thick cloud regions are replaced with the corresponding regions of the rectified image. Finally, radiance differences are eliminated for image visual effect. Experiment results demonstrate that the proposed method can effectively remove thick cloud from MODIS image, which can satisfy the demand of post-processing for remote sensing imagery.
引文
[1]http://terra.nasa.gov/index.html.
    [2]赵英时等.遥感应用分析原理与方法.北京:科学出版社,2003.
    [3]刘闯,葛成辉.美国对地观测系统EOS中分辨率成像光谱仪(MODIS)遥感数据的特点与应用.遥感信息,2000,3:45-48.
    [4]刘玉洁,杨忠东等MODSI遥感信息处理原理与算法.北京:科学出版社,2001.
    [5]刘放,程万正.一种新的卫星热红外遥感信息数据源:EOS/MODIS数据.国际地震动态,2003,8:1-7.
    [6]黄家洁,万幼川,刘良明MODIS的特性及其应用.地理空间信息,2003,1(4):20-23.
    [7]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    [8]http://modis.gsfc.nasa.gov/about/index.html.
    [9]The MODIS Seience Data Support Team. SDST-092. MODIS Level 1A Earth Location:Algorithm Theoretical Basis Document Version3.0.1997.
    [10]张里阳EOS/MODSI资料处理方法及其遥感中国区域地表覆盖的初步研究.南京气象学院硕士论文,2002.
    [11]刘闯,文洪涛,赵立成,等.我国EOS-MODIS地面站建设的现状、问题与对策.遥感信息,2003,4:42-47.
    [12]MODIS Level 1B Product User's Guide, available on http://www.,est.ssao.biz/mestweb/L1B/product.html.
    [13]Poros D J, Peterson C J.Methods of DestriPing Landsat Thematic Mapper Images-A Feasibllity Study for An Online Destrping Landsat Thematic Mapper ImageProeessing System (TIPS)[J]. Photogrammetric Engineering,1985,51: 1371-1378.
    [14]孙家抦.遥感原理与应用.武汉:武汉大学出版社.2003.
    [15]汤国安等.遥感数字图像处理[M].北京:科学出版社,2004.
    [16]Robert E Wolf, David P Roy, et al. MODIS Land Data Storage, Gridding, and CompositingMethodology:Level Grid. IEEE Transactions on Geoseience and Remore Sensing.1998 36(4):1324-1338.
    [17]http://hdefos.gscf.nasa.gov/hdefos/sotfwarelist.emf.
    [18]HDF4 Documentation.Available on http://hdf.nesa.uiuc.edu/doc.html.
    [19]黄春林,李新.HDF-EOS数据格式在处理空间数据中的应用.遥感技术与应用,2001,16(4):252-259.
    [20]张莉,曾致远.基于HDF4文件格式的MODIS 1B影像数据提取的研究与实现.国土资源遥感,2004,62(4):27-32.
    [21]李柳霞.MODIS影像数据预处理技术研究.中国农业大学硕士论文,2004.
    [22]相云.MODIS 1B资料处理方法研究与软件实现.中国农业大学硕士论文,2005.
    [23]章孝灿.黄智才.赵元洪.遥感数字图像处理.浙江:浙江大学出版社,1997.
    [24]朱述龙.张占睦.遥感图像获取与分析.北京:科学出版社,2000.
    [25]蒋耿明, MODIS数据基础处理方法研究和软件实现.中国科学院遥感应用研究所硕士论文,2003.
    [26]丰茂森.遥感图像数字处理[M].北京:地质出版社,1992.
    [27]Horn B K P, Woodham R J. Destriping landsat MSS imagery by histogram modification [J]. Computer Graph and Image Processing.1979,10:69-83.
    [28]Kautsky J, Nichols N K, Jupp D L B. Smoothed histogram modification for image processing [J]. Computer Vision & Image Process,1984,26:271-291.
    [29]伍娟等.基于HSI变换与直方图匹配法的遥感影像融合[J].武汉理工大学学报(交通科学与工程版),2004,28(1):55-58.
    [30]Preesan Rakwatin, Wataru Takeuchi, and Yoshifumi Yasuoka. Restoration of Aqua MODIS Band 6 Using Histogram Matching and Local Least Squares Fitting [J]. IEEE Transactions on Geoscience and Remote Sensing,2009, 47(2):613-627.
    [31]Preesan Rakwatin, Wataru Takeuchi, Yoshifumi Yasuoka. Stripe Noise Reduction in MODIS Data by Combining Histogram Matching with Facet Filter [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(6):1844-1856.
    [32]WegenerM. Destriping Multiple Sensor Imageyr by Improved Histogram Matching [J].International Journal of Remote Sensing,1990,11(5):859-875.
    [33]陈径松,邵芸,朱博勤.一种改进的矩匹配方法在CMODIS数据条带去除中的应用.遥感技术与应用,2003,18(5):313-316.
    [34]Gadallah F L, Csillag F. Destriping Multisensor Imagery with Moment Matching. Int J Remote Sensing,2000,21(12):2505-2511.
    [35]LIU Zheng-jun, WANG Chang-yao, WANG Cheng. Destriping imaging spectrometer data by an improved moment matching method [J]. Journal of remote sensing,2002,6 (4):279-284.
    [36]刘正军,王长耀,王成.成像光谱仪图像条带噪声去除的改进矩匹配方法.遥感学报,2002,6(4):279-284.
    [37]陈径松,朱博勤,邵芸.基于小波变换的多波段遥感图像条带噪声的去除.遥感信息,2003:6-9.
    [38]杨忠东,张文建,李俊.应用小波收缩方法剔除MODIS热红外波段数据条带噪声.遥感学报,2004,8(1):23-30.
    [39]CHEN Jin-song, Hui Lin,. Oblique striping removal in remote sensing imagery based on wavelet transform. International Journal of Remote Sensing,2006, 27(8):1717-1723.
    [40]蒋耿明,牛铮,阮伟利等.MODSI影像条带噪声去除方法研究.遥感技术与应用,2003,18(6):393-398.
    [41]杨金红,顾松山,程明虎.插值法在去除MODIS遥感影像条带噪声中的应用.气象科学,,2007.27(6):604-609.
    [42]朱小祥,范天锡,黄签.神舟三号成像光谱仪图像条带消除的一种方法.红外与毫米波学报.2004,23(6):451-454.
    [43]Zhengming Wan. Estimate of noise and systematie error in early thermal infrared data of theModerate Resolution Imaging Spectroradiometer (MODIS).Remote sensing of Environment,2002:47-54.
    [44]Justice, C.O. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans. on Geosci. and Rem. Sens.,1998,36(4):1228-1249.
    [45]Du P, Liu C, Ma L. An analytical non-ephemeris algorithm for MODIS bowtie removal. Image and Signal Processing for Remote Sensing X,2004,396-406.
    [46]郭广猛.非星历表法去除MODIS图像边缘重叠影响的研究[J].遥感技术与应用,2003,18(3):172-175.
    [47]付必涛,王乘,曾致远。MODIS数据几何校正算法设计及其IDL实现.遥感信息,2007(2):20-23.
    [48]李晶晶,覃志豪,唐巍.农业旱灾遥感监测系统中的MODIS 1B影像几何校正方法及其比较研究.遥感信息.2009(2):17-22.
    [49]An Ngoc Van,Nakazawa, M.,Aoki, Y. Highly accurate Geometric Correction for NOAA AVHRR data considering the feature of elevation and the feature of coastline. Geoscience and Remote Sensing Symposium,2008. IGARSS 2008. IEEE International.2008,2,1060-1063.
    [50]Wenli Yang, Liping Di. Georectification of HDF-EOS Swath Data. Geoscience and Remote Sensing Symposium,2002. IGARSS '02.2002 IEEE International.2002,1349-1351.
    [51]Gomez-Landesa E, Rango A, Bleiweiss M. An algorithm to address the MODIS bowtie effect. Canadian Journal of Remote Sensing,2004,30(4):644-650.
    [52]徐萌,郁凡.去除EOS/MODIS 1B数据中“弯弓”效应的方法[J].气象科学,2005,25(3):257-264.
    [53]Li J, Huang H L, Liu C Y et al. Retrieval of cloud microphysical properties from MODIS and AIRS. Journal of Applied Meteorology,2005,44(10):1526-1543
    [54]MODIS Cloud Mask User's Guide, Kathleen Strabala, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison.
    [55]Song M, Civco D L. A Knowledge-based Approach for Reducing Cloud and Shadow. Proc. of 2002 ASPRS-ACSM Annual Conference and FIG22 Congress. Washington, D. C. April 22-26 2002.
    [56]谢华美,李荣艳,田艳琴.基于大数据量遥感图像的薄云去除.北京师范大学学报(自然科学版),2006,42(1):42-46.
    [57]宋小宁,赵英时.MODIS图像的云检测及分析.中国图像图形学报,,2003,9(9):1079-1083.
    [58]Gao B C, Geotz A F H. Cloud Area Determination from AV IRIS Data Using Water Vapor Channels Near 1 μm [J]. J. Geo. Res.,1991 (96):2 857-2 864.
    [59]殷青军.杨英莲,徐维新NOAA卫星资料云雪识别方法的研究[J].高原气象,2002,21(5):526-528.
    [60]王惠,谭兵,沈志云.多源遥感影像的去云层处理[J].测绘学院学报,2001,18(3):195-198.
    [61]王惠,谭兵,沈志云.多源遥感影像的去云层处理[J].测绘学院学报,2001,18(3):41-44.
    [62]方勇,常本义.联合应用多传感器影像消除云层遮挡影响的研究[J].中国图象图形学报,2001,6(2):139-141.
    [63]樊厚春.遥感图像薄云去除研究.中科院研究生院(遥感应用研究所)硕士论文.2004.
    [64]盛夏,孙龙祥,郑庆梅.利用MODIS数据进行云检测[J].解放军理工大学学报:自然科学版,2004,5(4):98-102.
    [65]傅晓珊.基于灰度梯度的遥感图像去云方法研究[J].测绘通报,2008,10:41-61.
    [66]李月臣,陈晋,刘春霞.一种除去遥感影像薄云雾的方法[J].成都理工大学学报(自然科学版),2006,33(1):6-36.
    [67]Song X N, Zhao Y S. Cloud Detection and Analysis of MODIS Image. Geoscience and Remote Sensing Symposium,2004. IGARSS'04. proceedings. 2004 IEEE International.2004,4:2764-2767.
    [68]Steven Platnick, Michael D King, Steven A Ackerman, et al. The MODIS cloud products:algorithms and examples from Terra. IEEEE Transactions on Geosciences and Remote Sensing,2003,41(2):459-473.
    [69]曹爽.高分辨率遥感影像去云方法研究.河海大学硕士论文,2006.
    [70]张继贤,李国胜,曾钰.多源遥感影像高精度自动配准的方法研究[J].遥感学报,2005,9(1):73.
    [71]简剑锋,林怡,周利华。一种优化的多源遥感影像高精度配准方法[J].同济大学学报(自然科学版),2008,36(10):1427-1432.
    [72]田越,张永梅,李波.遥感图像的快速配准方法[J].北京航空航天大学学报,2008,34(11):1356-1359.
    [73]倪国强,刘琼.多源影像配准技术分析与展望[J].光电工程,2004,31(9):1-6.
    [74]强赞霞等.基于傅里叶变换的遥感图像配准算法[J].红外与激光工程,2004,33(4):385-387.
    [75]马建文,赵忠明,布和敖斯尔.遥感数据模型与处理方法[M].北京:中国科学技术出版社,2001.
    [76]孙凌,傅军,张杰.定量化条带消除算法应用于成像光谱仪数据的预处理.黄渤海海洋,2002,20(1):34-40.
    [77](美)冈萨雷斯等著,阮秋琦等译.数字图像处理(MATLAB版)[M].北京:电子工业出版,200.5
    [78]Gu L J, Guo S X, Ren R Z. A Novel Method of Dynamic Target Detection, Proceedings of SPIE-The International Society for Optical Engineering, v 6357 I, Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic Technology and Artificial Intelligence,2006:63570E.
    [79]Ruizhi Ren, Shuxu Guo, Lingjia Gu. Stripe Noise Removal Method for MODIS Remote Sensing Imagery. The 2nd International Conference on Computer Engineering and Technology (ICCET 2010).
    [80]Ruizhi Ren, Shuxu Guo, Lingjia Gu. A Lossless Compression Method Based on Mix Coding and IWT for MODIS Image. SPIE Optical Engineering Applications Satellite Data Compression, Communication, and Processing V. 2009,7455,74550R.
    [81]Liu L M, Wen X F, Dong X Y et al. A new prompt algorithm for removing bowtie effect of MODIS LIB data. Image and Signal Processing,2008,663-667
    [82]Fu B T, Wang C, Zhang Q W. Parallel algorithm of geometrical correction for MODIS data based on triangulation network. Geosciences and Remote Sensing Symposium,2005,25-29
    [83]刘良明,文雄飞,余凡,张丰,陈晶MODIS数据Bowtie效应快速消除算法研究[J].国土资源遥感,2007,19(2):10-15.
    [84]郭广猛.关于MODSI卫星数据的几何校正方法.遥感信息.2002,3:26-28.
    [85]蒋耿明,刘荣高,牛铮等.MODIS 1B影像几何纠正方法研究及软件实现[J].遥感学报,2004,8(2):158-164.
    [86]REN Rui-zhi, GUO Shu-xu, GU Ling-jia. Fast bowtie effect elimination for MODIS LIB data, The Journal of China Universities of Posts and Telecommunications [J].2010,17(1):120-126.
    [87]JoseE Morneo, IEEE Member, Joaquin Melia. An Optimum Interprolation Method Applied to the Resampling of NOAA AVHRR Data. IEEE Transactions on Geoseience and Remote Sensing.1994,32(1):131-151.
    [88]Dongseok Shin, John K. Pollard, and Jan-Peter Muller. Accurate Geometric Correction of ATSR Images. IEEE Transactions On Geoscience And Remote Sensing.1977,35(4):997-1005.
    [89]汤竞煌,聂智龙.遥感图像的几何校正.测绘与空间地理信息.2007,30(2):100-106.
    [90]何立,孙涵,黄永磷,等.MODIS 1B数据的重采样方法研究[J].遥感信息,2007(3):37-43.
    [91]LiM, Liew S C, Kwoh L K. Automated Production of Cloud-free and Cloud Shadow-free Image Mosaics from Cloudy Satellite Imagery. Proc of Geo-Imagery Bridging Continents,20th ISPRS Congress.2004,25(B3):754-758.
    [92]赵忠明等.遥感图像中薄云的去除方法[J].环境遥感,1996,11(3):195-199.
    [93]冯春,马建文,戴芹.一种改进的遥感图像薄云快速去除方法[J].国土资源遥感,2004,(4):1-4.
    [94]Gao B C, Kaufman YJ, Han W, et al. Correction of thin cirrus path radiance in the 0.4-1.0mm spectral region using the sensitive 1.375 mm cirrus detecting channel. Journal of Geophysical Research,1998,103 (D24):32169-32176.
    [95]Song X N, Zhao. Y S. Cloud Detection and Analysis of MODIS Image. Geoscience and Remote Sensing Symposium,2004. IGARSS'04. proceedings. 2004 IEEE International.2004.4:2764-2767.
    [96]李微,方圣辉,佃袁勇等.基于光谱分析的MODIS云检测算法研究[J].武汉大学学报信息 科学版,2005,30(5):435-443.
    [97]王润等.多光谱遥感影像去云方法[J].计算机与现代化,2005,118(6):13-15.
    [98]陈伟,周红妹,袁志康,等.基于气象卫星分形纹理的云雾分离研究[J].自然灾害学报.2003,12(2):133-139.
    [99]Ruizhi Ren. Shuxu Guo. Lingjia Gu. Lang Wang. Xu Wang. An Effective Method For the Detection and Removal of Thin Clouds from MODIS Image, SPIE Optical Engineering+Applications Satellite Data Compression, Communication, and Processing V,2009,7455,74550Z.
    [100]付光远,叶雪梅,张文君等.基于图像物理特性的并行地图匹配算法设计与研究[J].计算机工程与应用,2001,11:98-100.
    [101]Ruizhi Ren, Shuxu Guo, Lingjia Gu, Haofeng Wang. Automatic Thick Cloud Removal for MODIS Remote Sensing Imagery,2009 International Conference on Information Engineering and Computer Science,2009, pp.1-4.
    [102]David G. Lowe. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision,2004,60 (2):91-110.
    [103]Lingjia Gu. An Automatic Target Image Mosaic Algorithm, The IEEE Region 8 Eurocon 2007 Conference, Sept.9-12,2007:369-374, Warsaw, Poland.
    [104]Lingjia Gu, Shuxu Guo, Ruizhi Ren and Shuang Zhang. Target Image Mosaic Algorithm Based on Interest Points Matching,2007 International Conference on Communications,Circuits and Systems, July 11-13,2007, Kitakyushu, Japan, Vol Ⅱ:755-759.
    [105]D. Nister. Preemptive RANSAC for live structure and motion estimation [A].In Proc. International Conference on Computer Vision,2003:199-206.
    [106]O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint [A]. In Proc. International Conference on Pattern Recognition, pages I:2004,112-115.
    [107]Wang Zhijun, Ziou D.Armenakis C, et al. A comparative analysis of image fusion methods [J]. IEEE Transactions on Geosciences and Remote Sensing, 2005,43(6):1391-1402.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.