猪实验性自身免疫性脑脊髓炎模型的建立及其脊髓磁共振弥散张量成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     多发性硬化(multiple sclerosis,MS)是一种常见的中枢神经系统(central nerves system, CNS)的炎性脱髓鞘疾病。临床上以病变部位及发病次数的多发性为特点。病理上以中枢神经系统中局灶性脱髓鞘和不同程度的炎性病变﹑轴突损伤和胶质瘢痕的形成为特征。虽然多发性硬化的标志性病理改变是脱髓鞘,然而最近的研究表明轴突的病理改变在疾病的早期阶段业已存在。脊髓病变在多发性硬化患者中广泛存在,而且研究表明因轴突丧失而引起的脊髓萎缩与多发性硬化患者永久性神经功能障碍密切相关。迄今为止,人们对于轴突损伤的病理机制知之甚少,且没有任何一种有效的治疗能够阻止轴突的损伤。因而寻找一种新的有效手段用于研究轴突损伤的潜在病理机制并对治疗的有效性进行精确的监测是迫切而必要的。
     核磁共振(Magnetic Resonance, MR)技术广泛用于多发性硬化的研究,然而传统的MR技术并不具有病理特异性。近年来诸如弥散张量(diffusion tensor imaging ,DTI)、氢质子磁共振波谱(1H-MR spectroscopy,1H-MRS)、磁化传递成像(Magnetization Transfer Imaging, MTI)等等一些具有相对病理特异性的MR新技术被用于MS病理机制的研究。特别是DTI技术能有效检测轴突损伤并与脱髓鞘病变相区别。为MS病理机制的研究开辟了新的途径。
     对人体而言,活捡和尸检是研究MS病理机制的两种有效途径。然而由于只能获得MS病程中的间断性数据,这些数据的可靠性和完整性难免受到一定的限制。因而建立有效的MS动物模型是必要的。实验性自身免疫性脑脊髓炎(experimental allergic encephalomyelitis, EAE)是一种自身免疫性神经系统疾病,被认为是MS的首选动物模型。人们对MS病理机制及治疗的认识部分来源于EAE模型。啮齿类动物被广泛应用于EAE模型的建立。遗憾的是,由于啮齿类动物较小的中枢神经系统尤其是脊髓体积,其EAE模型并不适合于核磁共振研究。即使使用高场微型磁共振系统(high-field magnetic resonance microimaging scanner),许多新技术的应用仍然受到一定限制。少量研究使用灵长类动物模型进行MR研究,然而由于灵长类动物获取困难且价格昂贵,因而难以进行大规模研究。最近的研究表明,猪是一种较适合建立EAE模型的大型动物。
     研究目的:
     1.(1)建立可靠的适合MRI成像的猪EAE模型。
     (2)对EAE模型脊髓病变的病理机制进行研究。
     2.(1)评估3T临床MRI系统用于猪脊髓轴位DTI成像和定量检测的可行性。
     (2)定量分析DTI参数﹑脊髓病理改变和EAE临床分数的相关性。
     (3)评估DTI参数监测EAE发病及疾病进展的能力。
     材料与方法:
     1.应用牛脊髓匀浆( spinal cord homogenate ,SCH)、福氏佐剂和结核杆菌免疫雌性45-50kg的商品猪,耳静脉注射百日咳杆菌,诱发猪EAE动物模型。
     2.应用组织病理染色和免疫组化技术研究EAE的病理机制,具体包括:苏木素-伊红(Hematoxylin-Eosin staining, HE)染色显示炎性浸润,LFB(Luxol fast blue)染色显示脱髓鞘病变,Glees银染显示轴突丧失,淀粉样前体蛋白(Myloid precursor protein, APP)免疫组织化学染色显示急性轴突损伤。
     3. 5头正常雌性45-50kg的商品猪用于评估3T临床MRI系统进行猪脊髓DTI成像和定量检测的可行性。3T临床MRI系统对猪脊髓进行常规T1WI、T2WI及DTI成像,DTI扫描采用基于平行采集技术(Integrated Parallel acquisition techniques , iPAT )的平面回波( Echo Plane Imaging,EPI)脉冲序列。定量测量C2/C3平面脊髓轴位白质四个不同感兴趣区(前柱,左侧柱,右侧柱和后柱)的轴向弥散(Axial diffusivity, AD )、径向弥散(radial diffusivity ,RD)、部分各向异性(fractional anisotropy,FA)和表观弥散系数(apparent diffusion coefficient ,ADC)值。测量采用西门子公司的Syngo MRB13图像分析软件平台。用Bland–Altman法对DTI各参数的可重复性进行评估,统计软件采用MedCalc V7.5。
     4. 8头急性猪EAE模型(P1-P8)用于定量分析DTI参数﹑脊髓病理改变的相关性。分别于不同病程阶段(两头在进展期,临床分数分别为1和3;两头在峰值期,临床分数均为5;两头在缓解期,临床分数分别为4和2;两头在完全缓解期,临床分数为0)行MR扫描。于MR扫描后立即处死取脊髓标本分别进行组织病理和免疫组化染色。对DTI和定量病理改变进行相关性分析,统计软件采用SPSS14。
     5. 2头急性猪EAE模型(EB、EC)用于评估DTI参数监测EAE发病及疾病进展的能力。在EAE疾病的全程,每日评估动物的临床分数,分别在不同的时间点行MRI扫描并定量测量DTI参数值。用Spearman秩相关对DTI和临床分数进行相关性分析,统计软件采用SPSS14。
     结果:
     1.通过后腿皮内多点注射牛脊髓匀浆、福氏佐剂和结核杆菌,耳静脉注射百日咳疫苗的方法,成功建立了急性猪EAE模型。病程表现为急性单向完全缓解型。
     2.急性猪EAE模型的脊髓病理改变以炎性细胞浸润和急性轴突损伤为主。仅在疾病峰值期可见少量脱髓鞘改变。在缓解期可见少量轴突丧失且在临床症状完全缓解后少量轴突丧失持续存在。
     3.采用基于iPAT技术的EPI脉冲序列,3T临床MRI系统可以获得较高质量的猪脊髓DTI图像。Bland–Altman法评估显示脊髓DTI参数值具有较好的可重复性。AD, RD, FA,和ADC的正常值分别为1.81×10~(-3) (±0.06) mm~2/s, 0.32×10~(-3) (±0.02) mm~2/s, 0.72×10~(-3) (±0.08)和0.95×10~(-3) (±0.11) mm~2/s。这些DTI参数值与正常人脊髓的DTI参数值基本相符。
     4. AD值随急性轴突损伤的增加而下降,两者呈明显负相关(r = -0.84, P <0.001), FA与急性轴突损伤虽然也有负相关的趋势但相关性不强(r = -0.31, P<0.05)。
     5. AD与临床分数间表现出很强的相关性(两只动物的相关系数分别为:r=-0.86, P<0.001;r=-0.92, p<0.001)。
     结论:
     1.牛脊髓匀浆能有效诱导急性单向完全缓解型猪EAE模型。静脉注射百日咳疫苗、高剂量结核杆菌、皮内注射可能是促进EAE发病的有利因素。
     2.急性猪EAE的脊髓病理改变以炎性浸润和急性轴突损伤为主。伴有少量的脱髓鞘病变。急性轴突损伤可能独立于脱髓鞘病变而单独存在。绝大多数急性轴突损伤是可逆的。急性轴突损伤可能是引起猪EAE临床神经功能障碍的主要因素。
     3.采用基于iPAT技术的EPI脉冲序列,3T临床MRI系统能获得较好的猪脊髓DTI图像且能进行DTI参数的轴位定量测量。猪EAE模型是进行MRI研究的较好动物模型。
     4. AD值在时间和空间上均能反映脊髓轴突的急性损伤,AD是检测脊髓轴突损伤的特异性参数。
     5. AD是监测脊髓轴突损伤的敏感参数,AD可能是研究MS和EAE模型轴突损伤的病理机制并且进行轴突损伤治疗效果监测的敏感指标。
Background
     Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system (CNS) which is histopathologically characterized by focal demyelinated lesions with different degrees of inflammation, axonal damage and glial scar formation. Although the hallmark of the process is demyelination, axonal pathology has been known to occur in multiple sclerosis from the earliest post-mortem descriptions of the disease. It has been widely speculated that axonal loss is the pathologic correlate of irreversible neurological impairment in MS. So far, no therapy has been proven to stop or prevent axonal injury, the pathogenesis of which is largely unknown. So a new marker to investigate underlying pathogenesis processes of MS and guide therapeutic management in more precisely is required.
     In humans, biopsy or autopsy are only approach to investigate underlying pathogenesis processes in MS, The data are of course limited as they give only a snapshot of the disease process .Therefore, animal models of disease are necessary to elucidate the manner in which diffusion properties reflect developmental or pathological changes. Experimental allergic encephalomyelitis (EAE) is a neurological autoimmune disease and the primary animal model for MS. Current understanding of the mechanisms of disease and therapy in multiple sclerosis has been partially derived from the model of EAE.
     MRI has proven to be a very sensitive technique for the detection of multiple sclerosis (MS) lesions and has provided remarkable insight into the dynamic nature of the disease process. However, our understanding of the relationship of these imaging findings to changes occurring in the tissue is rudimentary, and very few formal studies have addressed this issue. Diffusion tensor imaging (DTI) takes advantage of the anisotropic nature of water diffusion in biological samples to extract detailed micro-structural information. This technique has been widely applied for the evaluation of CNS development and pathology. A recent study indicated that directional diffusivities may serve as surrogate markers of axonal and myelin degeneration in EAE-affected mouse.
     The spinal cord is a common site of pathology in multiple sclerosis and is a significant contributor to clinically disability. Most MRI studies of EAE were performed on small animals such as rat or mice. The small size of the spinal cord and the presence of motion artefacts, due to cerebrospinal fluid and cardiac pulsation as well as respiration are challenging for MRI study in vivo. Up to now, only a few studies were performed on high-field magnetic resonance microimaging scanner. In view of the relatively low ratio between the RF coil and the swine cord and the recently comment that it would be beneficial to develop and characterize the EAE model in large animals. We select swine EAE model in our study. Recently high magnetic field strength (3T) clinical scanner is used. The larger core than microimaging scanner and high resolution may be a precondition to perform DTI study on spinal cord of EAE model in large animals in vivo.
     Objectives
     1. (1) Induction of Experimental Allergic Encephalomyelitis in Swine.
     (2) To study the spinal cord pathological changes of acute experimental allergic encephalomyelitis in swine.
     2. (1) To evaluate the feasibility and reproducibility of in vivo diffusion tensor imaging (DTI) of the swine spinal cord by 3T clinical scanner system.
     (2) To investigate the quantitative relations between DTI parameters and axonal injury pathological staining and clinical score.
     (3) To evaluate the sensitivity and the ability of DTI parameters to monitor axonal injury through the course of EAE.
     Materials and methods
     1. Female commercial swine, having a body weight of about 50–60 kg, were used in this study. The EAE model was induced in these swine by immunization with bovine spinal cord homogenate (SCH), complete Freund’s adjuvant and M. tuberculosis.
     2. Neuropathological staining comprised haematoxylin and eosin (HE), luxol fast blue (LFB), and Glees silver staining. Immunohistochemical staining was performed using the Envision method. The primary antibody was polyclone anti-amyloid precursor protein (APP). LFB stains myelin, APP immunostaining demonstrate acute axonal damage and Glees silver staining detect axonal lose.
     3. Five control swine were imaged twice using a 3 Tesla clinical MRI unit, 6 days apart, to determine inter-assay variability. Quantitative analysis of DTI data were performed on a Syngo MRB13 imaging software platform. DTI metrics were measured in each axial section in specific ROIs placed in spinal cord at the anterior, right lateral, left lateral and posterior regions of the spinal cord at the C2/C3 vertebral level.
     4. Eight EAE swine (P1-P8) were used to investigate the correlation between DTI parameters and quantitative axonal injury pathological staining, Swine were performed MRI studies at distinct clinical phases and sacrificed just after the MRI study. Then spinal cords were dissected and fixed overnight in 4% paraformaldehyde for neuropathological and immunohistochemical staining. Correlations between direction diffusivity and quantitative immunohisto -chemistry staining were explored with Spearman liner correlation.
     5. Two EAE swine (EB, EC) were used to monitor the acute EAE onset and progression. MRI studies were set to start at 6 days after immunization. Subsequently, examinations were relatively equally spaced and in later stages adjusted to disease development. Correlations between direction diffusivity and clinical score were explored with Spearman rank correlation.
     Results
     1. Experimental allergic encephalomyelitis (EAE) was inoculated with bovin spinal cord homogenate (SCH) in the swine to create a large animal model of multiple sclerosis. The clinical course was primarily monophasic acute course with complete remission and recovery. Variables which appeared to foster disease were pertussis toxin, higher concentrations of M.tuberculosis, and intradermal inoculations.
     2. In our acute monophasic swine EAE model, the main histopathological changes were infiltration of inflammatory and acute axonal injury. Only a few of minor areas of demyelination and axonal lose were found at the peak point of the clinical attack. APP positive axonal and demyelination could no longer be detected by the time of clinical disease recovery completely. The numbers of axonal lose was stabile.
     3. All DTI parameters were compared between two measurements conducted 6 days apart. There were no statistically different at the 95% confidence level. The quantitative DTI parameters from each different region of spinal cord were not statistically different. The AD, RD, FA, and ADC were respectively equal to 1.81×10~(-3) (SD = 0.06) mm~2/s, 0.32×10~(-3) (SD = 0.02) mm~2/s, 0.72×10~(-3) (SD = 0.08) and 0.95×10~(-3) (SD = 0.11) mm~2/s. These results were in accordance with previous studies in human spinal cord.
     4. The relationship between axial diffusivity and acute axonal injury was quite strong, with increasing acute axonal injury, axial diffusivity decreased (Spearman r=-0.84, P <.001). FA correlated less well with axonal injury (r=-0.31, P<0.05).
     5. Clear correlations between clinical disease and axial diffusivity was found in all two EAE swine respectively (r=-0.86, P<0.001 and r=-0.92, p<0.001).
     Conclusions
     1. Intradermal inoculations of bovin spinal cord homogenate was a feasibility way to inoculate acute monophasic and complete remission experimental allergic encephalomyelitis (EAE) in the swine.
     2. In our acute monophasic swine EAE model, the main histopathological changs were infiltration of inflammatory and acute axonal injury. Acute axonal damage may be independent of demyelination, and it’s pathogensis may be different from demyelination. Our data further suggest that in an inflammatory condition like that in MS, demyelination is not a prerequisite for axonal injury.
     3. High quality DTI of spinal cord could be acquired by using iPAT-based echo-planar imaging technique. It is feasibility to measure DTI parameters in the axial plane of the swine spinal cord in vivo by 3T clinical scanner.
     4. The relationship between axial diffusivity and acute axonal injury was quite strong, with increasing acute axonal injury, axial diffusivity decreased.
     5. AD is a sensitive mark to monitor acute axonal injury in the course of EAE onset and progression and DTI may be a useful noninvasively tool to investigate underlying pathogenesis processes of MS and monitor the effect of experimental treatment for axonal injury.
引文
1. Harris JO, Frank JA, Patronas N, McFarlin DE, McFarland HF: Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: implications for clinical trials and natural history. Ann Neurol 1991;29:548-555.
    2. Thompson AJ, Kermode AG, Wicks D, MacManus DG, Kendall BE, Kingsley DP, McDonald WI: Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 1991;29:53-62.
    3. van Walderveen MA, Barkhof F, Hommes OR, Polman CH, Tobi H, Frequin ST, Valk J: Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology 1995;45:1684-1690.
    4. Hawkins CP, Munro PM, MacKenzie F, Kesselring J, Tofts PS, du Boulay EP, Landon DN, McDonald WI: Duration and selectivity of blood-brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 1990;113 (Pt 2):365-378.
    5. Morrissey SP, Stodal H, Zettl U, Simonis C, Jung S, Kiefer R, Lassmann H, Hartung HP, Haase A, Toyka KV: In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelitis. Quantification of inflammation and oedema. Brain 1996;119 (Pt 1):239-248.
    6. Bakshi R, Minagar A, Jaisani Z, Wolinsky JS: Imaging of multiple sclerosis: role in neurotherapeutics. NeuroRx 2005;2:277-303.
    7. Kamman RL, Go KG, Stomp GP, Hulstaert CE, Berendsen HJ: Changes of relaxation times T1 and T2 in rat tissues after biopsy and fixation. Magn Reson Imaging 1985;3:245-250.
    8. Gyo¨rffy-Wagner Z EE, Larsson EM, Brun A, Cronqvist S, B. P: Proton magnetic resonance relaxation times T1 and T2 related to post-mortem interval. An investigation on porcine brain tissue. Acta Radiol Diagn (Stockholm) 1986;27:115– 118.
    9. Nagara H, Inoue T, Koga T, Kitaguchi T, Tateishi J, Goto I: Formalin fixed brains are useful for magnetic resonance imaging (MRI) study. J Neurol Sci 1987;81:67-77.
    10. Unger EC, Gado MH, Fulling KF, Littlefield JL: Acute cerebral infarction in monkeys: an experimental study using MR imaging. Radiology 1987;162:789-795.
    11. Estes ML, Rudick RA, Barnett GH, Ransohoff RM: Stereotactic biopsy of an active multiple sclerosis lesion. Immunocytochemical analysis and neuropathologic correlation with magnetic resonance imaging. Arch Neurol 1990;47:1299-1303.
    12. Nesbit GM, Forbes GS, Scheithauer BW, Okazaki H, Rodriguez M: Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 1991;180:467-474.
    13. Stewart WA HL, Berry K, Churg A, Oger J, Hashimoto SA, al. e: Magnetic resonance imaging (MRI) in multiple sclerosis(MS): pathological correlation studies in eight cases. Neurology 1986;36(suppl 1):320.
    14. Ormerod IE, Miller DH, McDonald WI, du Boulay EP, Rudge P, Kendall BE, Moseley IF, Johnson G, Tofts PS, Halliday AM, et al.: The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain 1987;110 (Pt 6):1579-1616.
    15. Newcombe J, Hawkins CP, Henderson CL, Patel HA, Woodroofe MN, Hayes GM, Cuzner ML, MacManus D, du Boulay EP, McDonald WI: Histopathology of multiple sclerosis lesions detected by magnetic resonance imaging in unfixed postmortem central nervous system tissue. Brain 1991;114 (Pt 2):1013-1023.
    16. van Walderveen MA, Kamphorst W, Scheltens P, van Waesberghe JH, Ravid R, Valk J, Polman CH, Barkhof F: Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998;50:1282-1288.
    17. Katz D, Taubenberger JK, Cannella B, McFarlin DE, Raine CS, McFarland HF: Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 1993;34:661-669.
    18. Ludwin SK HJ, McFarland H.: Vascular proliferation and angiogenesis in multiple sclerosis: clinical and pathogenetic considerations.MS 2000. Symposium on conquering multiple sclerosis:research in Canada in the new millennium. Multiple Sclerosis Society of Canada 2000;21:2000.
    19. Stewart WA, MacKay AL, Whittall KP, Moore GR, Paty DW: Spin-spin relaxation in experimental allergic encephalomyelitis. Analysis of CPMG data using a non-linear least squares method and linear inverse theory. Magn Reson Med 1993;29:767-775.
    20. Robson MD, Gatehouse PD, Bydder M, Bydder GM: Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003;27:825-846.
    21. MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D: In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 1994;31:673-677.
    22. Vavasour IM, Whittall KP, MacKay AL, Li DK, Vorobeychik G, Paty DW: A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med 1998;40:763-768.
    23. Laule C, Vavasour IM, Moore GR, Oger J, Li DK, Paty DW, MacKay AL: Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J Neurol 2004;251:284-293.
    24. Gareau PJ, Rutt BK, Bowen CV, Karlik SJ, Mitchell JR: In vivo measurements of multi-component T2 relaxation behaviour in guinea pig brain. Magn ResonImaging 1999;17:1319-1325.
    25. Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR: Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS. J Magn Reson Imaging 2000;11:586-595.
    26. Webb S, Munro CA, Midha R, Stanisz GJ: Is multicomponent T2 a good measure of myelin content in peripheral nerve? Magn Reson Med 2003;49:638-645.
    27. Laule C, Leung E, Lis DK, Traboulsee AL, Paty DW, MacKay AL, Moore GR: Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler 2006;12:747-753.
    28. Horsfield MA, Larsson HB, Jones DK, Gass A: Diffusion magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 1998;64 Suppl 1:S80-84.
    29. Rovaris M, Iannucci G, Cercignani M, Sormani MP, De Stefano N, Gerevini S, Comi G, Filippi M: Age-related changes in conventional, magnetization transfer, and diffusion-tensor MR imaging findings: study with whole-brain tissue histogram analysis. Radiology 2003;227:731-738.
    30. Benedetti B, Charil A, Rovaris M, Judica E, Valsasina P, Sormani MP, Filippi M: Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRI. Neurology 2006;66:535-539.
    31. Bozzali M, Falini A, Franceschi M, Cercignani M, Zuffi M, Scotti G, Comi G, Filippi M: White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2002;72:742-746.
    32. Filippi M, Iannucci G, Cercignani M, Assunta Rocca M, Pratesi A, Comi G: A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch Neurol 2000;57:1017-1021.
    33. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G: Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001;56:304-311.
    34. Bammer R, Augustin M, Strasser-Fuchs S, Seifert T, Kapeller P, Stollberger R, Ebner F, Hartung HP, Fazekas F: Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 2000;44:583-591.
    35. Rovaris M, Gass A, Bammer R, Hickman SJ, Ciccarelli O, Miller DH, Filippi M: Diffusion MRI in multiple sclerosis. Neurology 2005;65:1526-1532.
    36. Rocca MA, Cercignani M, Iannucci G, Comi G, Filippi M: Weekly diffusion-weighted imaging of normal-appearing white matter in MS. Neurology 2000;55:882-884.
    37. Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M: Quantification ofbrain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol 2002;23:985-988.
    38. Rovaris M, Bozzali M, Iannucci G, Ghezzi A, Caputo D, Montanari E, Bertolotto A, Bergamaschi R, Capra R, Mancardi GL, Martinelli V, Comi G, Filippi M: Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging study. Arch Neurol 2002;59:1406-1412.
    39. Rovaris M, Gallo A, Valsasina P, Benedetti B, Caputo D, Ghezzi A, Montanari E, Sormani MP, Bertolotto A, Mancardi G, Bergamaschi R, Martinelli V, Comi G, Filippi M: Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. Neuroimage 2005;24:1139-1146.
    40. Mainero C, De Stefano N, Iannucci G, Sormani MP, Guidi L, Federico A, Bartolozzi ML, Comi G, Filippi M: Correlates of MS disability assessed in vivo using aggregates of MR quantities. Neurology 2001;56:1331-1334.
    41. Pulizzi A, Rovaris M, Judica E, Sormani MP, Martinelli V, Comi G, Filippi M: Determinants of disability in multiple sclerosis at various disease stages: a multiparametric magnetic resonance study. Arch Neurol 2007;64:1163-1168.
    42. Valsasina P, Rocca MA, Agosta F, Benedetti B, Horsfield MA, Gallo A, Rovaris M, Comi G, Filippi M: Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. Neuroimage 2005;26:822-828.
    43. Hickman SJ, Wheeler-Kingshott CA, Jones SJ, Miszkiel KA, Barker GJ, Plant GT, Miller DH: Optic nerve diffusion measurement from diffusion-weighted imaging in optic neuritis. AJNR Am J Neuroradiol 2005;26:951-956.
    44. Agosta F, Benedetti B, Rocca MA, Valsasina P, Rovaris M, Comi G, Filippi M: Quantification of cervical cord pathology in primary progressive MS using diffusion tensor MRI. Neurology 2005;64:631-635.
    45. Hesseltine SM, Law M, Babb J, Rad M, Lopez S, Ge Y, Johnson G, Grossman RI: Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. AJNR Am J Neuroradiol 2006;27:1189-1193.
    46. Henry RG, Oh J, Nelson SJ, Pelletier D: Directional diffusion in relapsing-remitting multiple sclerosis: a possible in vivo signature of Wallerian degeneration. J Magn Reson Imaging 2003;18:420-426.
    47. Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV, Moser HW, van Zijl PC: Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 2002;47:215-223.
    48. Wilson M, Tench CR, Morgan PS, Blumhardt LD: Pyramidal tract mapping bydiffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability. J Neurol Neurosurg Psychiatry 2003;74:203-207.
    49. Vaithianathar L, Tench CR, Morgan PS, Wilson M, Blumhardt LD: T1 relaxation time mapping of white matter tracts in multiple sclerosis defined by diffusion tensor imaging. J Neurol 2002;249:1272-1278.
    50. Pagani E, Filippi M, Rocca MA, Horsfield MA: A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 2005;26:258-265.
    51. Lin X, Tench CR, Morgan PS, Niepel G, Constantinescu CS: 'Importance sampling' in MS: use of diffusion tensor tractography to quantify pathology related to specific impairment. J Neurol Sci 2005;237:13-19.
    52. Lowe MJ, Horenstein C, Hirsch JG, Marrie RA, Stone L, Bhattacharyya PK, Gass A, Phillips MD: Functional pathway-defined MRI diffusion measures reveal increased transverse diffusivity of water in multiple sclerosis. Neuroimage 2006;32:1127-1133.
    53. Rosso C, Remy P, Creange A, Brugieres P, Cesaro P, Hosseini H: Diffusion-weighted MR imaging characteristics of an acute strokelike form of multiple sclerosis. AJNR Am J Neuroradiol 2006;27:1006-1008.
    54. Benedetti B, Valsasina P, Judica E, Martinelli V, Ghezzi A, Capra R, Bergamaschi R, Comi G, Filippi M: Grading cervical cord damage in neuromyelitis optica and MS by diffusion tensor MRI. Neurology 2006;67:161-163.
    55. Lin F, Yu C, Jiang T, Li K, Zhu C, Zhu W, Qin W, Duan Y, Xuan Y, Sun H, Chan P: Discriminative analysis of relapsing neuromyelitis optica and relapsing-remitting multiple sclerosis based on two-dimensional histogram from diffusion tensor imaging. Neuroimage 2006;31:543-549.
    56. Pagani E, Bammer R, Horsfield MA, Rovaris M, Gass A, Ciccarelli O, Filippi M: Diffusion MR imaging in multiple sclerosis: technical aspects and challenges. AJNR Am J Neuroradiol 2007;28:411-420.
    57. Assaf Y, Chapman J, Ben-Bashat D, Hendler T, Segev Y, Korczyn AD, Graif M, Cohen Y: White matter changes in multiple sclerosis: correlation of q-space diffusion MRI and 1H MRS. Magn Reson Imaging 2005;23:703-710.
    58. Lin A, Ross BD, Harris K, Wong W: Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx 2005;2:197-214.
    59. De Stefano N, Bartolozzi ML, Guidi L, Stromillo ML, Federico A: Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. J Neurol Sci 2005;233:203-208.
    60. Trapp BD, Ransohoff R, Rudick R: Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 1999;12:295-302.
    61. Tartaglia MC, Narayanan S, De Stefano N, Arnaoutelis R, Antel SB, Francis SJ, Santos AC, Lapierre Y, Arnold DL: Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol 2002;249:1382-1390.
    62. Chard DT, Griffin CM, McLean MA, Kapeller P, Kapoor R, Thompson AJ, Miller DH: Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis. Brain 2002;125:2342-2352.
    63. Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI: Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 1994;117 (Pt 1):49-58.
    64. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL: Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995;38:901-909.
    65. Simmons ML, Frondoza CG, Coyle JT: Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991;45:37-45.
    66. Moffett JR, Namboodiri MA, Cangro CB, Neale JH: Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 1991;2:131-134.
    67. Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D: Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 2005;128:1016-1025.
    68. Kapeller P, Brex PA, Chard D, Dalton C, Griffin CM, McLean MA, Parker GJ, Thompson AJ, Miller DH: Quantitative 1H MRS imaging 14 years after presenting with a clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 2002;8:207-210.
    69. De Stefano N, Matthews PM, Arnold DL: Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 1995;34:721-727.
    70. Arnold DL, Matthews PM, Francis G, Antel J: Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 1990;14:154-159.
    71. Wolinsky JS, Narayana PA, Fenstermacher MJ: Proton magnetic resonance spectroscopy in multiple sclerosis. Neurology 1990;40:1764-1769.
    72. Narayanan S, Fu L, Pioro E, De Stefano N, Collins DL, Francis GS, Antel JP, Matthews PM, Arnold DL: Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions. Ann Neurol 1997;41:385-391.
    73. Davie CA, Barker GJ, Thompson AJ, Tofts PS, McDonald WI, Miller DH: 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions andnormal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 1997;63:736-742.
    74. Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS, Antel JP, Wolfson C, Arnold DL: Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 1998;121 (Pt 1):103-113.
    75. Sarchielli P, Presciutti O, Pelliccioli GP, Tarducci R, Gobbi G, Chiarini P, Alberti A, Vicinanza F, Gallai V: Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 1999;122 (Pt 3):513-521.
    76. De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL: Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001;58:65-70.
    77. Falini A, Calabrese G, Filippi M, Origgi D, Lipari S, Colombo B, Comi G, Scotti G: Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 1998;19:223-229.
    78. De Stefano N, Narayanan S, Matthews PM, Francis GS, Antel JP, Arnold DL: In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 1999;122 (Pt 10):1933-1939.
    79. Arnold DL: Changes observed in multiple sclerosis using magnetic resonance imaging reflect a focal pathology distributed along axonal pathways. J Neurol 2005;252 Suppl 5:v25-29.
    80. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L: Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278-285.
    81. De Stefano N, Narayanan S, Francis SJ, Smith S, Mortilla M, Tartaglia MC, Bartolozzi ML, Guidi L, Federico A, Arnold DL: Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. Arch Neurol 2002;59:1565-1571.
    82. Sharma R, Narayana PA, Wolinsky JS: Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging. Mult Scler 2001;7:221-226.
    83. Wylezinska M, Cifelli A, Jezzard P, Palace J, Alecci M, Matthews PM: Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 2003;60:1949-1954.
    84. Inglese M, Liu S, Babb JS, Mannon LJ, Grossman RI, Gonen O: Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS. Neurology 2004;63:170-172.
    85. Geurts JJ, Reuling IE, Vrenken H, Uitdehaag BM, Polman CH, Castelijns JA, Barkhof F, Pouwels PJ: MR spectroscopic evidence for thalamic and hippocampal,but not cortical, damage in multiple sclerosis. Magn Reson Med 2006;55:478-483.
    86. van Waesberghe JH, Kamphorst W, De Groot CJ, van Walderveen MA, Castelijns JA, Ravid R, Lycklama a Nijeholt GJ, van der Valk P, Polman CH, Thompson AJ, Barkhof F: Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 1999;46:747-754.
    87. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH: Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004;56:407-415.
    88. Dousset V, Gayou A, Brochet B, Caille JM: Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 1998;51:1150-1155.
    89. Goodkin DE, Rooney WD, Sloan R, Bacchetti P, Gee L, Vermathen M, Waubant E, Abundo M, Majumdar S, Nelson S, Weiner MW: A serial study of new MS lesions and the white matter from which they arise. Neurology 1998;51:1689-1697.
    90. van Waesberghe JH, van Walderveen MA, Castelijns JA, Scheltens P, Lycklama a Nijeholt GJ, Polman CH, Barkhof F: Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol 1998;19:675-683.
    91. Rocca MA, Mastronardo G, Rodegher M, Comi G, Filippi M: Long-term changes of magnetization transfer-derived measures from patients with relapsing-remitting and secondary progressive multiple sclerosis. AJNR Am J Neuroradiol 1999;20:821-827.
    92. Gass A, Barker GJ, Kidd D, Thorpe JW, MacManus D, Brennan A, Tofts PS, Thompson AJ, McDonald WI, Miller DH: Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 1994;36:62-67.
    93. Filippi M, Iannucci G, Tortorella C, Minicucci L, Horsfield MA, Colombo B, Sormani MP, Comi G: Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 1999;52:588-594.
    94. Pike GB, De Stefano N, Narayanan S, Worsley KJ, Pelletier D, Francis GS, Antel JP, Arnold DL: Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology 2000;215:824-830.
    95. Laule C, Vavasour IM, Whittall KP, Oger J, Paty DW, Li DK, MacKay AL, Arnold DL: Evolution of focal and diffuse magnetisation transfer abnormalities in multiple sclerosis. J Neurol 2003;250:924-931.
    96. Vrenken H, Geurts JJ, Knol DL, Polman CH, Castelijns JA, Pouwels PJ, Barkhof F: Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis. AJNR Am J Neuroradiol 2006;27:2005-2011.
    97. Kalkers NF, Hintzen RQ, van Waesberghe JH, Lazeron RH, van Schijndel RA,Ader HJ, Polman CH, Barkhof F: Magnetization transfer histogram parameters reflect all dimensions of MS pathology, including atrophy. J Neurol Sci 2001;184:155-162.
    98. Ge Y, Grossman RI, Udupa JK, Babb JS, Mannon LJ, McGowan JC: Magnetization transfer ratio histogram analysis of normal-appearing gray matter and normal-appearing white matter in multiple sclerosis. J Comput Assist Tomogr 2002;26:62-68.
    99. Davies GR, Altmann DR, Hadjiprocopis A, Rashid W, Chard DT, Griffin CM, Tofts PS, Barker GJ, Kapoor R, Thompson AJ, Miller DH: Increasing normal-appearing grey and white matter magnetisation transfer ratio abnormality in early relapsing-remitting multiple sclerosis. J Neurol 2005;252:1037-1044.
    100. Fernando KT, Tozer DJ, Miszkiel KA, Gordon RM, Swanton JK, Dalton CM, Barker GJ, Plant GT, Thompson AJ, Miller DH: Magnetization transfer histograms in clinically isolated syndromes suggestive of multiple sclerosis. Brain 2005;128:2911-2925.
    101. Ramio-Torrenta L, Sastre-Garriga J, Ingle GT, Davies GR, Ameen V, Miller DH, Thompson AJ: Abnormalities in normal appearing tissues in early primary progressive multiple sclerosis and their relation to disability: a tissue specific magnetisation transfer study. J Neurol Neurosurg Psychiatry 2006;77:40-45.
    102. Dehmeshki J, Ruto AC, Arridge S, Silver NC, Miller DH, Tofts PS: Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 2001;46:600-609.
    103. Kaiser JS, Grossman RI, Polansky M, Udupa JK, Miki Y, Galetta SL: Magnetization transfer histogram analysis of monosymptomatic episodes of neurologic dysfunction: preliminary findings. AJNR Am J Neuroradiol 2000;21:1043-1047.
    104. Brex PA, Leary SM, Plant GT, Thompson AJ, Miller DH: Magnetization transfer imaging in patients with clinically isolated syndromes suggestive of multiple sclerosis. AJNR Am J Neuroradiol 2001;22:947-951.
    105. Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M: Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2001;70:311-317.
    106. Dehmeshki J, Chard DT, Leary SM, Watt HC, Silver NC, Tofts PS, Thompson AJ, Miller DH: The normal appearing grey matter in primary progressive multiple sclerosis: a magnetisation transfer imaging study. J Neurol 2003;250:67-74.
    107. Davies GR, Altmann DR, Rashid W, Chard DT, Griffin CM, Barker GJ, Kapoor R, Thompson AJ, Miller DH: Emergence of thalamic magnetization transfer ratio abnormality in early relapsing-remitting multiple sclerosis. Mult Scler 2005;11:276-281.
    108. Sharma J, Zivadinov R, Jaisani Z, Fabiano AJ, Singh B, Horsfield MA, Bakshi R: A magnetization transfer MRI study of deep gray matter involvement in multiple sclerosis. J Neuroimaging 2006;16:302-310.
    109. Stewart WA, Hall LD, Berry K, Paty DW: Correlation between NMR scan and brain slice data in multiple sclerosis. Lancet 1984;2:412.
    110. Xiao BG, Wu XC, Yang JS, Xu LY, Liu X, Huang YM, Bjelke B, Link H: Therapeutic potential of IFN-gamma-modified dendritic cells in acute and chronic experimental allergic encephalomyelitis. Int Immunol 2004;16:13-22.
    111. Singer BA, Tresser NJ, Frank JA, McFarland HF, Biddison WE: Induction of experimental allergic encephalomyelitis in the NIH minipig. J Neuroimmunol 2000;105:7-19.
    112. Nessler S, Boretius S, Stadelmann C, Bittner A, Merkler D, Hartung HP, Michaelis T, Bruck W, Frahm J, Sommer N, Hemmer B: Early MRI changes in a mouse model of multiple sclerosis are predictive of severe inflammatory tissue damage. Brain 2007;130:2186-2198.
    113. Hart BA, Bauer J, Muller HJ, Melchers B, Nicolay K, Brok H, Bontrop RE, Lassmann H, Massacesi L: Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am J Pathol 1998;153:649-663.
    114. Karlik SJ, Munoz D, St Louis J, Strejan G: Correlation between MRI and clinico-pathological manifestations in Lewis rats protected from experimental allergic encephalomyelitis by acylated synthetic peptide of myelin basic protein. Magn Reson Imaging 1999;17:731-737.
    115. Floris S, Blezer EL, Schreibelt G, Dopp E, van der Pol SM, Schadee-Eestermans IL, Nicolay K, Dijkstra CD, de Vries HE: Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 2004;127:616-627.
    116. Bjartmar C, Trapp BD: Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox Res 2003;5:157-164.
    117. Ferguson B, Matyszak MK, Esiri MM, Perry VH: Axonal damage in acute multiple sclerosis lesions. Brain 1997;120 (Pt 3):393-399.
    118. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47:707-717.
    119. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W: Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation.Brain 2000;123 (Pt 6):1174-1183.
    120. Brochet B, Deloire MS, Touil T, Anne O, Caille JM, Dousset V, Petry KG: Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE. Neuroimage 2006;32:266-274.
    121. Berger C, Hiestand P, Kindler-Baumann D, Rudin M, Rausch M: Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR Biomed 2006;19:101-107.
    122. Baeten K, Hendriks JJ, Hellings N, Theunissen E, Vanderlocht J, Ryck LD, Gelan J, Stinissen P, Adriaensens P: Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging. J Neuroimmunol 2008.
    123. Dousset V, Ballarino L, Delalande C, Coussemacq M, Canioni P, Petry KG, Caille JM: Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2-weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 1999;20:223-227.
    124. Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M: MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med 2003;50:309-314.
    125. Jordan EK, McFarland HI, Lewis BK, Tresser N, Gates MA, Johnson M, Lenardo M, Matis LA, McFarland HF, Frank JA: Serial MR imaging of experimental autoimmune encephalomyelitis induced by human white matter or by chimeric myelin-basic and proteolipid protein in the common marmoset. AJNR Am J Neuroradiol 1999;20:965-976.
    126. Dousset V, Brochet B, Vital A, Gross C, Benazzouz A, Boullerne A, Bidabe AM, Gin AM, Caille JM: Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR Am J Neuroradiol 1995;16:225-231.
    127. Barkhof F: Imaging of remyelination. Mult Scler 1997;3:129-132.
    128. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH: Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002;17:1429-1436.
    129. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH: Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 2003;20:1714-1722.
    130. Song SK, Kim JH, Lin SJ, Brendza RP, Holtzman DM: Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model withamyloid deposition. Neurobiol Dis 2004;15:640-647.
    131. Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC: Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 2005;26:132-140.
    132. Kim JH, Budde MD, Liang HF, Klein RS, Russell JH, Cross AH, Song SK: Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 2006;21:626-632.
    133. Sun SW, Liang HF, Schmidt RE, Cross AH, Song SK: Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging. Neurobiol Dis 2007;28:30-38.
    134. Rieckmann P, Smith KJ: Multiple sclerosis: more than inflammation and demyelination. Trends Neurosci 2001;24:435-437.
    135. Liblau R, Fontaine B, Baron-Van Evercooren A, Wekerle H, Lassmann H: Demyelinating diseases: from pathogenesis to repair strategies. Trends Neurosci 2001;24:134-135.
    136. Ruiz-Pena JL, Pinero P, Sellers G, Argente J, Casado A, Foronda J, Ucles A, Izquierdo G: Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy. BMC Neurol 2004;4:8.
    137. Aboul-Enein F, Weiser P, Hoftberger R, Lassmann H, Bradl M: Transient axonal injury in the absence of demyelination: a correlate of clinical disease in acute experimental autoimmune encephalomyelitis. Acta Neuropathol (Berl) 2006;111:539-547.
    138. Wujek JR, Bjartmar C, Richer E, Ransohoff RM, Yu M, Tuohy VK, Trapp BD: Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol 2002;61:23-32.
    139. Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD: Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 2000;48:893-901.
    140. Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD: Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 2001;57:1248-1252.
    141. Li GL, Farooque M, Holtz A, Olsson Y: Changes of beta-amyloid precursor protein after compression trauma to the spinal cord: an experimental study in the rat using immunohistochemistry. J Neurotrauma 1995;12:269-277.
    142. Pesini P, Kopp J, Wong H, Walsh JH, Grant G, Hokfelt T: An immunohistochemical marker for Wallerian degeneration of fibers in the central and peripheral nervous system. Brain Res 1999;828:41-59.
    143. Matthews PM, De Stefano N, Narayanan S, Francis GS, Wolinsky JS, Antel JP,Arnold DL: Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 1998;18:327-336.
    144. Brex PA, Leary SM, O'Riordan JI, Miszkiel KA, Plant GT, Thompson AJ, Miller DH: Measurement of spinal cord area in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Neurosurg Psychiatry 2001;70:544-547.
    145. Evangelou N, DeLuca GC, Owens T, Esiri MM: Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain 2005;128:29-34.
    146. Nijeholt GJ, van Walderveen MA, Castelijns JA, van Waesberghe JH, Polman C, Scheltens P, Rosier PF, Jongen PJ, Barkhof F: Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 1998;121 (Pt 4):687-697.
    147. Brex PA, O'Riordan JI, Miszkiel KA, Moseley IF, Thompson AJ, Plant GT, Miller DH: Multisequence MRI in clinically isolated syndromes and the early development of MS. Neurology 1999;53:1184-1190.
    148. Nijeholt GJ, Bergers E, Kamphorst W, Bot J, Nicolay K, Castelijns JA, van Waesberghe JH, Ravid R, Polman CH, Barkhof F: Post-mortem high-resolution MRI of the spinal cord in multiple sclerosis: a correlative study with conventional MRI, histopathology and clinical phenotype. Brain 2001;124:154-166.
    149. Bergers E, Bot JC, De Groot CJ, Polman CH, Lycklama a Nijeholt GJ, Castelijns JA, van der Valk P, Barkhof F: Axonal damage in the spinal cord of MS patients occurs largely independent of T2 MRI lesions. Neurology 2002;59:1766-1771.
    150. Thorpe JW, Kidd D, Moseley IF, Kenndall BE, Thompson AJ, MacManus DG, McDonald WI, Miller DH: Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 1996;46:373-378.
    151. Losseff NA, Webb SL, O'Riordan JI, Page R, Wang L, Barker GJ, Tofts PS, McDonald WI, Miller DH, Thompson AJ: Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 1996;119 (Pt 3):701-708.
    152. Rashid W, Davies GR, Chard DT, Griffin CM, Altmann DR, Gordon R, Thompson AJ, Miller DH: Increasing cord atrophy in early relapsing-remitting multiple sclerosis: a 3 year study. J Neurol Neurosurg Psychiatry 2006;77:51-55.
    153. Lin X, Tench CR, Turner B, Blumhardt LD, Constantinescu CS: Spinal cord atrophy and disability in multiple sclerosis over four years: application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon beta-1a (Rebif) treatment trial. J Neurol Neurosurg Psychiatry 2003;74:1090-1094.
    154. Silver NC, Good CD, Sormani MP, MacManus DG, Thompson AJ, Filippi M,Miller DH: A modified protocol to improve the detection of enhancing brain and spinal cord lesions in multiple sclerosis. J Neurol 2001;248:215-224.
    155. Vaithianathar L, Tench CR, Morgan PS, Constantinescu CS: Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis--a quantitative T1 relaxation time mapping approach. J Neurol 2003;250:307-315.
    156. Tartaglino LM, Friedman DP, Flanders AE, Lublin FD, Knobler RL, Liem M: Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology 1995;195:725-732.
    157. Thielen KR, Miller GM: Multiple sclerosis of the spinal cord: magnetic resonance appearance. J Comput Assist Tomogr 1996;20:434-438.
    158. Lycklama a Nijeholt GJ, Barkhof F, Scheltens P, Castelijns JA, Ader H, van Waesberghe JH, Polman C, Jongen SJ, Valk J: MR of the spinal cord in multiple sclerosis: relation to clinical subtype and disability. AJNR Am J Neuroradiol 1997;18:1041-1048.
    159. Bergers E, Bot JC, van der Valk P, Castelijns JA, Lycklama a Nijeholt GJ, Kamphorst W, Polman CH, Blezer EL, Nicolay K, Ravid R, Barkhof F: Diffuse signal abnormalities in the spinal cord in multiple sclerosis: direct postmortem in situ magnetic resonance imaging correlated with in vitro high-resolution magnetic resonance imaging and histopathology. Ann Neurol 2002;51:652-656.
    160. Inglese M, Salvi F, Iannucci G, Mancardi GL, Mascalchi M, Filippi M: Magnetization transfer and diffusion tensor MR imaging of acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 2002;23:267-272.
    161. Rovaris M, Bozzali M, Santuccio G, Ghezzi A, Caputo D, Montanari E, Bertolotto A, Bergamaschi R, Capra R, Mancardi G, Martinelli V, Comi G, Filippi M: In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 2001;124:2540-2549.
    162. Gomez-Anson B, MacManus DG, Parker GJ, Davie CA, Barker GJ, Moseley IF, McDonald WI, Miller DH: In vivo 1H-magnetic resonance spectroscopy of the spinal cord in humans. Neuroradiology 2000;42:515-517.
    163. Laman JD, van Meurs M, Schellekens MM, de Boer M, Melchers B, Massacesi L, Lassmann H, Claassen E, Hart BA: Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus). J Neuroimmunol 1998;86:30-45.
    164. 王永军, 杨会钗,王小玲,吴国祥: 常规 HE 染色中蓝化方法的改进. 诊断病理学杂志 2005;12:475-476.
    165. 赖英荣 梁黎: 免疫组织化学 LDP 染色法在病理诊断中的应用. 中华病理学杂志 1999;28:60-61.
    166. Kornek B, Lassmann H: Axonal pathology in multiple sclerosis. A historical note. Brain Pathol 1999;9:651-656.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.