多相合金组织演变与电化学失效行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢指含铬量超过12%的铁基合金,其中含镍量较高的奥氏体不锈钢是不锈钢家族中使用量最大的钢种,但是在镍资源节约需求、高性价比追求和高耐蚀性要求的多重推动下,双相不锈钢(即多相铁基合金)在近几十年迅速发展。考虑到工程中不锈钢的失效主要起源于两类重要的局部腐蚀类型(点蚀和晶间腐蚀),因此双相不锈钢在开发过程中对其耐点蚀和晶间腐蚀能力的评价则显得极其重要。
     双相不锈钢组织中含有奥氏体和铁素体两种晶体结构,并存在大量的相界和晶界,从而导致合金元素在其两相及界面处的分配行为截然不同。特别在300-1300℃生产和使用过程中,经常会有二次相(碳化物、氮化物、s、χ和R等)在双相不锈钢中析出,使其形成复杂的多相结构并导致整体材料的腐蚀性能由最弱相决定。考虑到双相不锈钢组织结构的特殊性,如何澄清合金成分分布、二次相析出规律及分布与腐蚀性能之间的内在联系成为双相不锈钢研究的关键问题,需要从以下三个方向开展工作:首先建立适合于新钢种的先进腐蚀评价技术来甄别各类二次相在多相合金中的作用,其次探索新钢种与环境体系之间的腐蚀规律,最后根据热处理原理提出提高新钢种耐蚀性的合金设计与组织控制原则。
     基于以上背景,本论文在充分理解单相奥氏体不锈钢点蚀和晶间腐蚀发生机制的基础上,提出了评价双相不锈钢耐局部腐蚀能力的新方法(临界点蚀温度、再钝化温度、微区点蚀控制技术和改进的双环电化学动电位再活化法),表征了氯离子浓度对双相不锈钢耐点蚀能力的影响,研究了合金成分与热处理制度(高温固溶和中温敏化区)对双相不锈钢微观结构演变及其耐局部腐蚀能力的影响,给出了典型双相不锈钢的合金设计与组织控制原则,进而为新型双相不锈钢的设计提供了重要的科学依据,具体的研究内容及创新点如下:
     (1)由于很少有工作集中研究点蚀形貌、点蚀增长及其稳定性三者直接的潜在关系,本工作采用微工作电极电化学恒电位法细致研究了AISI 304L奥氏体不锈钢表面单一的亚稳态和稳态点蚀生长的动力学过程,研究发现:在点蚀增长的初期,腐蚀电流随时间呈I=at2的关系;一旦进入点蚀稳定增长的扩散控制阶段,腐蚀电流与时间呈I=at0.5的关系。特别地,亚稳态点蚀能否继续增长为稳态点蚀取决于点蚀稳定积能否达到临界值ia*=(D△C*)/(2π/3πF)。最后利用模型示意图定性说明点蚀的整个发生过程,揭示了点蚀的本质。
     (2)首次采用临界点蚀温度、再钝化温度和微区点蚀评价联合技术研究了合金成分和热处理制度对于系列双相不锈钢(UNS S32101、UNS S31803、UNSS32750、SDSS-Ce和DSS-1、DSS-2、DSS-3)微观结构演变及其耐点蚀能力的影响,研究发现:一方面合金成分的调整可显著影响材料的耐点蚀能力和极化行为;另一方面不同热处理制度(高温1000-1250℃固溶处理、中温鼻尖850℃等温敏化处理和中温450-950℃热循环处理)将改变双相不锈钢中典型合金元素在两相中的分配行为,引起大量二次相(M23C6、Cr2N、s和χ)的析出,导致其点蚀行为的变化,具体指临界点蚀温度和再钝化温度的变化、点蚀萌生位置和发展趋势的转移以及电化学极化行为的不同。
     (3)采用双环动电位电化学再活法(Double Loop Electrochemical Potentiokinetic Reactivation, DL-EPR)系统研究了AISI 304奥氏体不锈钢在550-850℃温度区间敏化不同时间的晶间腐蚀演变情况,并绘制出温度-时间-敏感性曲线。通过观察材料的微观结构,得到碳化物析出形态、位置以及与晶间腐蚀敏感程度之间的对应关系。最后根据碳化物的形核、长大和贫铬区的演变情况,提出AISI 304奥氏体不锈钢整个晶间腐蚀发生过程的理论模型。
     (4)基于实验重复性、晶间腐蚀选择性、贫铬区检测的高灵敏性和与晶间腐蚀微观结构一致性的基本原则,首次确定了用于评价UNS S32101和UNS S31803双相不锈钢晶间腐蚀敏感性的DL-EPR优化测试条件,并应用于分析析出相动力学、贫铬区演变以及晶间腐蚀敏感性之间的内在联系中,研究发现:一方面由于合金成分和相结构的不同,UNS S32101和UNS S31803双相不锈钢在DL-EPR优化测试条件的建立上存在很大区别;另一方面UNS S32101和UNS S31803双相不锈钢在鼻尖温度敏化过程中,它们的晶间腐蚀敏感性的变化趋势不尽相同。前者的晶间腐蚀敏感性随着敏化时间的延长而增大,后者的晶间腐蚀敏感性在24h达到最大后开始降低,发生贫铬区的自愈合。
     深入理解微观结构演变和点蚀、晶间腐蚀敏感性之间的内在联系,对于双相不锈钢的开发和使用具有非常重要的科学和现实意义。
Stainless steels are iron-based alloys that contain a minimum of approximately 12 wt.% Cr and austenite stainless steels with higher content of Ni constitute the largest stainless steel family. With the requirements of resource saving, high quality and high corrosion resistance, duplex stainless steels (DSSs) have been developed in the past decades. Considering that the failure of stainless steels are mainly induced by pitting and intergranular corrosion, it is very important to evaluate the pitting and intergranular corrosion resistance of DSS during its manufacture process.
     Because there are two phases with different crystal structure in DSSs, the distributation behavior of alloy elements in ferrite, austenite and interface are quite different. In addition, DSSs are prone to form some unwanted secondary phases (carbides, nitrides, s,χand R) during exposure to elevated temperatures between 300 and 1300℃and their corrosion resistance are determined by the weakest phase. Thus, it is extremely important to clarify the underling relationship between alloy element distribution, secondary phase precipitation and the associated corrosion resistance. Based on the complexity in DSSs, the relative research work have been done from three viewpoints:Firtsly, the advanced techniques for corrosion evaluation should be established for detecting the role of secondary precipitates in multiphase alloys; Secondly, the relationship between new develpoed alloys and environment condition should be expored; At last, the rule for the chemical composition design and microstruture control should be put forward.
     Through understanding mechanism of pitting and intergranular corrosion of austenite stainless steel, we put forward new methods for evaluating the localized corrosion resistance of DSSs. And then we check the effect of chloride concentration on corrosion resistance of DSSs, investigate the effect of the chemical composition and heat treatment on microstructure evolution and the localized corrosion resistance and finally obtain the rule for the chemical composition design and microstruture control in typical DSSs, which is very useful for the development of DSSs. The detailed research contents and highlight of innovations are as follows:
     (1) Because there are seldom research focused on the relationship between pitting morphology, growth and stability, this work is to investigate the potentiostatic metastable and stable pitting behaviors of AISI 304L stainless steel. The results demontrate that the current-time follows the prevailing relationship I=at2 during initial growth and then their relationship changes as I=at0.5 during stable growth. The transition from metastable pitting to stable pitting is determined by the pitting stability products, e.g., ia*=(DΔC*)/(2π/3nF). At last, a model is put forward for understanding the whole pitting process.
     (2) The effect of chemical composition and heat treatment on microstructure evolution and pitting corrosion resistance of DSSs has been investigated by the integrated technique of critical pitting temperature, repassivation temperature and microscopic pitting control. The results show that the chemical composition can greatly affect the pitting corrosion resistance and polarization behavior of DSSs.In addition, different heat treatment will result in the alloy elements redistribution and secondary precipitates, which will change the value of critical pitting and repassivation temperature, the position of pitting initiation and propagation and polarization behavior of the alloy.
     (3) Intergranular corrosion (IGC) behavior of AISI 304 austenite stainless steel has been evaluated in relation to the influence of aging temperature and time. For this evaluation, double loop electrochemical potentiokinetic reactivation (DL-EPR) is performed to produce time-temperature-sensitization (TTS) diagram for AISI 304 stainless steel. The relationship between carbide morphology, precipitation position and the associated IGC has been determined by microstructure analysis. At last, we put forward a model for IGC evoluation of AISI 304 stainless steel based on the change of Cr concentration at the depleted zone.
     (4) The optimal test conditions using DL-EPR method for evaluating IGC susceptibility of UNS S32101 and UNS S31803 DSSs have been firstly defined on the basis of test response reproducibility, etching selectivity, high sensitivity to detect the dechromized zone and aggrement with IGC microstructure criteria. The results demonsrate that the optimal test condition of UNS S32101 is quite different from that of UNS S31803 due to the difference of chemical composition and microstructure. In addition, the IGC susceptibility of UNS S32101 DSS increases with increasing the aging time. However, the IGC susceptibility of UNS S31803 DSS approaches the highest value after aging up to 24 h and then decreases with aging time.
引文
[1]Beddoes J, Parr JG. Introduction to Stainless Steel[M]. Ohio:ASM international,1999:27.
    [2]Falkenberg F. Initiation and Repassivation of Austenitic Stainless Steel[D]. Gothenburg: Chalmers university of technology,2001.
    [3]Femenia M. Corrosion Behavior of Duplex Stainless Steels in Acidic-Chloride Solutions Studied with Micrometer Resolution[D]. Stockholm:Royal institute of technology,2003.
    [4]Thum EE. The Book of Stainless Steels[M]. Ohio:ASM,1933:42.
    [5]Lo KH, Shek CH, Lai JKL. Recent Developments in Stainless Steels[J]. Materials Science and Engineering R,2009,65(4-6):39-104.
    [6]IMOA. Practical Guidelines for the Fabrication of Duplex Stainless Steels[M]. London: International Molybdenum Association,2001:4-5.
    [7]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:248-250.
    [8]Cramer SD, Covino BS. Corrosion:Fundamentals, Testing and Protection[M]. Ohio: ASM International,2003:3-5.
    [9]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:240.
    [10]Bhattacharya A, Singh PM. Effect of Heat Treatment on Corrosion and Stress Corrosion Cracking of S32205 Duplex Stainless Steel in Caustic Solution[J]. Metallurgical and Materials Transactions A,2009,40A(6):1388-1399.
    [11]Haselmair H. Stress Corrosion Cracking of Type 303 Stainless Steel in a Road Tunnel Atmosphere[J]. Materials Performance,1992,31(6):60-63.
    [12]Khatak HS, Gnanamoorthy JB, Rodriguez P et al. Evaluation of Susceptibility to Stress Corrosion Cracking of Weldments of Cold Rolled AISI Type 316 Stainless Steel[J]. Transactions of the Indian Institute of Metals,1991,44(4):311-316.
    [13]Liu ZY, Dong CF, Li XG et al. Stress Corrosion Cracking of 2205 Duplex Stainless Steel in H2S-CO2 Environment[J]. Journal of Materials Science,2009,44(16):4228-4234.
    [14]Prabha B, Sundaramoorthy P, Suresh S et al. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel[J]. Journal of Materials Engineering and Performance,2009,18(9):1294-1299.
    [15]Schvartzman M, Quinan MAD, Campos WRD et al. Stress Corrosion Cracking of Stainless Steel AISI 316L HAZ in PWR Nuclear Reactor Environment[J]. Soldagem and Inspecao,2009,14(3):228-237.
    [16]Stewart J, Wells DB, Scott PM et al. Electrochemical Noise Measurements of Stress-Corrosion Cracking of Sensitized Austenitic Stainless Steel in High Purity Oxygenated Water at 288℃[J]. Corrosion Science,1992,33(1):73-88.
    [17]Tanno K, Yashiro H, Kawamura Y et al. Intergranular Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel in Sodium-Sulfate at Approximately 100℃[J]. Corrosion,1993,49(4):319-326.
    [18]Tohgo K, Suzuki H, Shimamura Y et al. Monte Carlo Simulation of Stress Corrosion Cracking on a Smooth Surface of Sensitized Stainless Steel Type 304[J]. Corrosion Science,2009,51(9):2208-2217.
    [19]Wells DB, Stewart J, Davidson R et al. The Mechanism of Intergranular Stress Corrosion Cracking of Sensitized Austenitic Stainless Steel in Dilute Thiosulfate Solution[J]. Corrosion Science,1992,33(1):39-71.
    [20]Kusko CS, Dupont JN, Marder AR. Influence of Stress Ratio on Fatigue Crack Propagation Behavior of Stainless Steel Welds[J]. Welding Journal,2004,83(2):59S-64S.
    [21]Kusko CS, Dupont JN, Marder AR. The Influence of Microstructure on Fatigue Crack Propagation Behavior of Stainless Steel Welds[J]. Welding Journal,2004,83(1):6S-14S.
    [22]Li YF, Farrington GC, Laird C. Cyclic Response Electrochemical Interaction in Monocrystalline and Polycrystalline AISI 316L Stainless Steel in H2SO4 Solution:3. Potential Dependence of the Mechanical Behavior During Corrosion Fatigue[J]. Acta Metallurgica,1993,41(3):723-737.
    [23]Makhlouf K, Jones JW. Near Threshold Fatigue Crack Growth Behavior of a Ferritic Stainless Steel at Elevated Temperatures[J]. International Journal of Fatigue,1992, 14(2):97-104.
    [24]Murase Y, Nagakawa J, Yamamoto N. Fracture Surface Topography Analysis of In-Beam Fatigue Behavior for 20% Cold-Worked 316 Stainless Steel[J]. Journal of Nuclear Materials,2003,322(2-3):249-254.
    [25]Nakajima M, Akita M, Tokaji K et al. Fatigue Crack Initiation and Early Growth Behavior of a Ferritic Stainless Steel inLaboratory Air and in 3%NaCl Aqueous Solution[J]. Jsme International Journal Series A,2003,46(4):575-581.
    [26]Schroeder RM, Muller IL. Fatigue and Corrosion Fatigue Behavior of 13Cr and Duplex Stainless Steel and a Welded Nickel Alloy Employed in Oil and Gas Production[J]. Materials and Corrosion,2009,60(5):365-371.
    [27]Srinivasan VS, Sandhya R, Rao KBS et al. Effects of Temperature on the Low Cycle Fatigue Behavior of Nitrogen Alloyed Type 316L Stainless Steel[J]. International Journal of Fatigue,1991,13(6):471-478.
    [28]Teramoto T, Saito M, Suzuki S. Effect of High Heat Flux Irradiation by High Power CO2 Laser on Fatigue Characteristics and Fracture Behavior of Stainless Steel [J]. Journal of Nuclear Science and Technology,1990,27(9):862-869.
    [29]Young MC, Huang JY, Kuo RC. Corrosion Fatigue Behavior of Cold-Worked 304L Stainless Steel in a Simulated BWR Coolant Environment[J]. Materials Transactions, 2009,50(3):657-663.
    [30]King A, Johnson G, Engelberg D et al. Observations of Intergranular Stress Corrosion Cracking in a Grain-Mapped Polycrystal[J]. Science,2008,321(5887):382-385.
    [31]Bohni H. Breakdown of Passivity and Localized Corrosion Processes[J]. Langmuir,1987, 3(6):924-930.
    [32]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:199.
    [33]Atrens A, Baroux B, Mantel M. The Secondary Passive Film for Type 304 Stainless Steel in 0.5 M H2SO4[J]. Journal of the Electrochemical Society,1997,144(11):3697-3704.
    [34]Ferreira MGS, Dawson JL. Electrochemical Studies of the Passive Film on 316 Stainless Steel in Chloride Media[J]. Journal of the Electrochemical Society,1985,132(4):760-765.
    [35]Fujimoto S, Yamada T, Shibata T. Improvement of Pitting Corrosion Resistance of Type 304 Stainless Steel by Modification of Passive Film with Ultraviolet Light Irradiation[J]. Journal of the Electrochemical Society,1998,145(5):L79-L81.
    [36]Sugimoto K, Matsuda S, Ogiwara Y et al. Microscopic Ellipsometric Observation of the Change in Passive Film on 18Cr-8Ni Stainless Steel with the Initiation and Growth of Pit[J]. Journal of the Electrochemical Society,1984,131(8):C299-C300.
    [37]Tsuchiya H, Fujimoto S, Chihara O et al. Semiconductive Behavior of Passive Films Formed on Pure Cr and Fe-Cr Alloys in Sulfuric Acid Solution[J]. Electrochimica Acta, 2002,47(27):4357-4366.
    [38]Wijesinghe T, Blackwood DJ. Electrochemical and Photoelectrochemical Characterization of the Passive Film Formed on AISI 254SMO Super Austenitic Stainless Steel[J]. Journal of the Electrochemical Society,2007,154(1):C16-C23.
    [39]Chao CY, Lin LF, Macdonald DD. A Point Defect Model for Anodic Passive Films:1. Film Growth Kinetics[J]. Journal of the Electrochemical Society,1981, 128(6):1187-1194.
    [40]Chao CY, Lin LF, Macdonald DD. A Point Defect Model for Anodic Passive Films:3. Impedance Response[J]. Journal of the Electrochemical Society,1982,129(9):1874-1879.
    [41]Lin LF, Chao CY, Macdonald DD. A Point Defect Model for Anodic Passive Films:2. Chemical Breakdown and Pit Initiation [J]. Journal of the Electrochemical Society,1981, 128(6):1194-1198.
    [42]Newman RC, Isaacs HS. Diffusion Coupled Active Dissolution in the Localized Corrosion of Stainless Steels[J]. Journal of the Electrochemical Society,1983, 130(7):1621-1624.
    [43]Tester JW, Isaacs HS. Diffusional Effects in Simulated Localized Corrosion[J]. Journal of the Electrochemical Society,1975,122(11):1438-1445.
    [44]Valor A, Caleyo F, Alfonso L et al. Stochastic Modeling of Pitting Corrosion:A New Model for Initiation and Growth of Multiple Corrosion Pits[J]. Corrosion Science,2007, 49(2):559-579.
    [45]Buchler M, Schmuki P, Bohni H. A Light Reflectance Technique for Thickness Measurements of Passive Films[J]. Electrochimica Acta,1998,43(5-6):635-637.
    [46]Chin YT, Cahan BD. An Ellipsometric Spectroscopic Study of the Passive Film on Iron Potential and Chloride-Ion Dependence [J]. Journal of the Electrochemical Society,1992, 139(9):2432-2442.
    [47]Chen CT, Cahan BD. The Nature of the Passive Film on Iron:1. Automatic Ellipsometric Spectroscopy Studies[J]. Journal of the Electrochemical Society,1982,129(1):17-26.
    [48]Heusler KE, Fischer L. Kinnetics of Pit Initiation at PassiveIron[J]. Werkstoffe Korrosion, 1976,27(8):551-556.
    [49]Heusler KE, Fischer L. Film Growth and Dissolution of Iron ions at Passive Iron in Neutral Solutions Containing Chloride [J]. Werkstoffe Korrosion,1976,27(10):679-701.
    [50]Bardwell JA, Macdougall B, Sproule GI. Use of Sims to Investigate the Induction Stage in the Pitting of Iron[J]. Journal of the Electrochemical Society,1989,136(5):1331-1336.
    [51]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2008:178.
    [52]Richardson JA, Wood GC. A Study of the Pitting Corrosion of Al by Scanning Electron Microscopy[J]. Corrosion Science,1970,10(5):313-323.
    [53]Sato N. A Theory for Breakdown of Anodic Oxide Films on Metals [J]. Electrochimica Acta,1971,16(10):1683-1692.
    [54]Galvele JR. Transport Processes and Mechanism of Pitting of Metals[J]. Journal of the Electrochemical Society,1976,123(4):464-474.
    [55]Laycock NJ, Moayed MH, Newman RC. Metastable Pitting and the Critical Pitting Temperature[J]. Journal of the Electrochemical Society,1998,145(8):2622-2628.
    [56]Moayed MH, Newman RC. The Relationship between Pit Chemistry and Pit Geometry near the Critical Pitting Temperature[J]. Journal of the Electrochemical Society,2006, 153(8):B330-B335.
    [57]Pistorius PC, Burstein GT. Metastable Pitting Corrosion of Stainless Steel and the Transition to Stability[J]. Philosophical Transactions of the Royal Society of London: Mathematical Physical and Engineering Sciences,1992,341(1662):531-559.
    [58]Moayed MH, Newman RC. Evolution of Current Transients and Morphology of Metastable and Stable Pitting on Stainless Steel near the Critical Pitting Temperature[J]. Corrosion Science,2006,48(4):1004-1018.
    [59]Newman RC. The Dissolution and Passivation Kinetics of Stainless Alloys Containing Molybdenum:1. Coulometric Studies of Fe-Cr and Fe-Cr-Mo Alloys[J]. Corrosion Science,1985,25(5):331-339.
    [60]Laycock NJ, Newman RC. Localised Dissolution Kinetics, Salt Films and Pitting Potentials[J]. Corrosion Science,1997,39(10-11):1771-1790.
    [61]Ernst P, Newman RC. Pit Growth Studies in Stainless Steel Foils:Ⅰ. Introduction and Pit Growth Kinetics[J]. Corrosion Science,2002,44(5):927-941.
    [62]Ernst P, Newman RC. Pit Growth Studies in Stainless Steel Foils:Ⅱ. Effect of Temperature, Chloride Concentration and Sulphate Addition[J]. Corrosion Science,2002, 44(5):943-954.
    [63]Ryan MP, Williams DE, Chater RJ et al. Why Stainless Steel Corrodes[J]. Nature,2002, 415(6873):770-774.
    [64]Rondelli G, Vicentini B, Cigada A. Influence of Nitrogen and Manganese on Localized Corrosion Behaviour of Stainless Steels in Chloride Environments[J]. Materials and Corrosion,1995,46(11):628-632.
    [65]Hanninen H. Corrosion properties of HNS[A]. In:S. Hertzman.5th International Conference on High Nitrogen Steels[C]. Stockholm:Trans. Tech. Publications LTD, 1999:479-488.
    [66]Suter T, Bohni H. Microelectrodes for Corrosion Studies in Microsystems[J]. Electrochimica Acta,2001,47(1-2):191-199.
    [67]Stewart J, Williams DE. The Initiation of Pitting Corrosion on Austenitic Stainless Steel on the Role and Importance of Sulfide Inclusions[J]. Corrosion Science,1992, 33(3):457-474.
    [68]Baker MA, Castle JE. The Initiation of Pitting Corrosion at MnS Inclusions[J]. Corrosion Science,1993,34(4):667-682.
    [69]Barbosa MA. The Pitting Resistance of AISI-316 Stainless Steel Passivated in Diluted Nitric Acid[J]. Corrosion Science,1983,23(12):1293-1305.
    [70]Manning PE, Duquette DJ, Savage WF. Effect of Test Method and Surface Condition on Pitting Potential of Single and Duplex Phase 304L Stainless Steel[J]. Corrosion,1979, 35(4):151-157.
    [71]Scotto V, Ventura G, Traverso E. Influence of Non-metallic Inclusion Nature and Shape on the Pitting Corrosion Susceptibility of 18Cr9Ni and 17Cr11Ni2Mo Austenitic Stainless Steels[J]. Corrosion Science,1979,19(4):237-245.
    [72]Verduzco JA, Gonzalez-Sanchez J, Verduzco VH. Microstructure and Electrochemical Properties of the Bonding Zone of AISI 316L Steel Joined with a Fe based Amorphous Foil [J]. Journal of Materials Processing Technology,2010,210(8):1051-1060.
    [73]Smialowska ZS. Pitting Corrosion of Metals [M]. Texas:National Association of Corrosion Engineers,1986:431.
    [74]Vignal V, Mary N, Oltra R et al. A Mechanical-Electrochemical Approach for the Determination of Precursor Sites for Pitting Corrosion at the Microscale[J]. Journal of the Electrochemical Society,2006,153(9):B352-B357.
    [75]Suter T, Webb EG, Bohni H et al. Pit Initiation on Stainless Steels in 1 M NaCl with and without Mechanical Stress[J]. Journal of the Electrochemical Society,2001, 148(5):B174-B185.
    [76]Liao CM. Particle Induced Pitting Corrosion of Aluminum Alloys[D]. Bethlehem:Lehigh University,1997.
    [77]Leckie HP, Uhlig HH. Environmental Factors Affecting the Critical Potential for Pitting in 18-8 Stainless Steel[J]. Journal of the Electrochemical Society,1966, 113(12):1262-1267.
    [78]Wang JH, Su CC, Szklarskasmialowska Z. Effects of C- Concentration and Temperature on Pitting of AISI 304 Stainless Steel[J]. Corrosion,1988,44(10):732-737.
    [79]Naderi R, Mahdavian M, Attar MM. Electrochemical Behavior of Organic andInorganic Complexes of Zn(Ⅱ) as Corrosion Inhibitors for Mild Steel:Solution Phase Study[J]. Electrochimica Acta,2009,54(27):6892-6895.
    [80]Hassan N, Holze R. A Comparative Electrochemical Study of Electrosorbed 2-and 4-Mercaptopyridines and Their Application as Corrosion Inhibitors at C60 steel[J]. Journal of Chemical Sciences,2009,121(5):693-701.
    [81]Gao Y, Ana U, Wilcox GD. Corrosion Inhibitor Doped Protein Films for Protection of Metallic Surfaces:Appraisal and Extension of Previous Investigations by Brenner, Riddell and Seegmiller[J]. Transactions of the Institute of Metal Finishing,2006, 84(3):141-148.
    [82]ASTM G 48-03. Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride[S]. Pennsyvania:ASTM International 2003.
    [83]ASTM G 150-99. Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels[S]. Pennsyvania:ASTM International,1999.
    [84]GB/T17899-1999.不锈钢点蚀电位测量方法[S].北京:中国标准出版社,1999.
    [85]Semino CJ, Pedeferri P, Burstein GT et al. Localized Corrosion of Resistant Alloys in Chloride Solutions[J]. Corrosion Science,1979,19(12):1069-1078.
    [86]Wilde BE. Critical Appraisal of Some Popular Laboratoral Electrochemical Tests for Predicting the Localized Corrosion Resistance of Stainless Alloys in Sea Water[J]. Corrosion,1972,28(8):283-291.
    [87]Wilde BE, Williams E. The Use of Current-Voltage Curves for the Study of Localized Corrosion and Passivity Breakdown on Stainless Steels in Chloride Media[J]. Corrosion Science,1971,16(11):1971-1985.
    [88]Brigham RJ, Tozer EW. Temperature as a Pitting Criterion[J]. Corrosion,1973, 29(1):33-35.
    [89]Brigham RJ, Tozer EW. Effect of Alloying Additions on the Pitting Resistance of 18% Cr Austenitic Stainless Steel[J]. Corrosion,1974,30(5):161-166.
    [90]Brigham RJ, Tozer EW. Pitting Resistance of 18% Cr Ferritic Stainless Steels Containing Molybdenum[J]. Journal of the Electrochemical Society,1974,121(9):1192-1193.
    [91]Qvarfort R. Critical Pitting Temperature Measurements of Stainless Steels with an Improved Electrochemical Method[J]. Corrosion Science,1989,29(8):987-993.
    [92]Newman RC, Liew KH. Repassivation Temperatures of Artifical Pit Electrodes [J]. Corrosion,1987,43(1):58-60.
    [93]Salinasbravo VM, Newman RC. An Alternative Method to Determine Critical Pitting Temperature of Stainless Steels in Ferric Chloride Solution[J]. Corrosion Science,1994, 36(1):67-77.
    [94]Krakowiak S, Darowicki K. Corrosion Resistance Evaluation of Al-based Alloys by Means of Dynamic Electrochemical Impedance Spectroscopy[J]. Anti-Corrosion Methods and Materials,57(1):28-32.
    [95]Pujar MG, Anita T, Shaikh H et al. Analysis of Electrochemical Noise (EN) Data using MEM for Pitting Corrosion of 316 SS in Chloride Solution[J]. International Journal of Electrochemical Science,2007,2(4):301-310.
    [96]Bohni H, Suter T, Schreyer A. Microtechniques and Nanotechniques to Study Localized Corrosion[J]. Electrochimica Acta,1995,40(10):1361-1368.
    [97]Davoodi A, Pan J, Leygraf C et al. In Situ Investigation of Localized Corrosion of Aluminum Alloys in Chloride Solution Using Integrated EC-AFM/SECM Techniques[J]. Electrochemical and Solid State Letters,2005,8(6):B21-B24.
    [98]Davoodi A, Pan J, Leygraf C et al. Integrated AFM and SECM for in Situ Studies of Localized Corrosion of Al Alloys [J]. Electrochimica Acta,2007,52(27):7697-7705.
    [99]Davoodi A, Pan J, Leygraf C et al. The Role of Intermetallic Particles in Localized Corrosion of an Aluminum Alloy Studied by SKPFM and Integrated AFM/SECM[J]. Journal of the Electrochemical Society,2008,155(5):C211-C218.
    [100]Davoodi A, Pan J, Leygraf C et al. Multianalytical and In Situ Studies of Localized Corrosion of EN AW-3003 Alloy:Influence of Intermetallic Particles[J]. Journal of the Electrochemical Society,2008,155(4):C138-C146.
    [101]Kamrunnahar M, Braatz RD, Alkire RC. Parameter Sensitivity Analysis of Pit Initiation at Single Sulfide Inclusions in Stainless Steel [J]. Journal of the Electrochemical Society, 2004,151(2):B90-B97.
    [102]Kucernak ARJ, Peat R, Williams DE. Dissolution and Reaction of Sulfide Inclusions in Stainless Steel Imaged Using Scanning Laser Photoelectrochemical Microscopy[J]. Journal of the Electrochemical Society,1992,139(8):2337-2340.
    [103]Leblanc P, Frankel GS. A Study of Corrosion and Pitting Initiation of AA2024-T3 Using Atomic Force Microscopy [J]. Journal of the Electrochemical Society,2002, 149(6):B239-B247.
    [104]Paik CH, White HS, Alkire RC. Scanning Electrochemical Microscopy Detection of Dissolved Sulfur Species from Inclusions in Stainless Steel[J]. Journal of the Electrochemical Society,2000,147(11):4120-4124.
    [105]Webb EG, Alkire RC. Pit Initiation at Single Sulfide Inclusions in Stainless Steel:Ⅰ. Electrochemical Microcell Measurements[J]. Journal of the Electrochemical Society, 2002,149(6):B272-B279.
    [106]Webb EG, Alkire RC. Pit Initiation at Single Sulfide Inclusions in Stainless Steel:Ⅱ. Detection of Local pH, Sulfide and Thiosulfate[J]. Journal of the Electrochemical Society, 2002,149(6):B280-B285.
    [107]Webb EG, Alkire RC. Pit Initiation at Single Sulfide Inclusions in Stainless Steel:Ⅲ. Mathematical Model[J]. Journal of the Electrochemical Society,2002, 149(6):B286-B295.
    [108]Williams DE, Mohiuddin TF, Zhu YY. Elucidation of a Trigger Mechanism for Pitting Corrosion of Stainless Steels Using Submicron Resolution Scanning Electrochemical and Photoelectrochemical Microscopy [J]. Journal of the Electrochemical Society,1998, 145(8):2664-2672.
    [109]Suter T, Bohni H. A New Microelectrochemical Method to Study Pit Initiation on Stainless Steels[J]. Electrochimica Acta,1997,42(20-22):3275-3280.
    [110]Albritton OW. A Study of Sensitization in Types 301 and 304L Stainless Steels Using Mossbauer Spectroscopy[R]. Washington:NASA,1968
    [111]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:151.
    [112]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:190.
    [113]Sedriks AJ. Corrosion of Stainless Steels, Second Edition[M]. Virginia:Office of Naval Research Arlington,1996:233.
    [114]ASTM G108-94. Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels[S]. Pennsyvania: ASTM International,1994.
    [115]Majidi AP, Streicher MA. The Double Loop Reactivation Method for Detecting Sensitization in AISI 304 Stainless Steels[J]. Corrosion,1984,40(11):584-593.
    [116]Cocco V, Iacoviello F, Di Bartolomeo O et al. Heat Treatment Influence on Localized and Selective Corrosion Resistance in a 21Cr1Ni Duplex Stainless Steel [J]. Metallurgia Italiana,2008,45(5):25-31.
    [117]Amadou T, Braham C, Sidhom H. Double Loop Electrochemical Potentiokinetic Reactivation Test Optimization in Checking of Duplex Stainless Steel Intergranular Corrosion Susceptibility[J]. Metallurgical and Materials Transactions A,2004, 35A(11):3499-3513.
    [118]Garz I, Schultze S, Gollner J. Investigation of Intercrystalline Corrosion of Duplex Stainless Steels Using Thioacetamide as an Activator for EPR Test[J]. Materials and Corrosion,1997,48(3):165-170.
    [119]Dhooge A. Survey on Reheat Cracking in Austenitic Stainless Steels and Ni Base Alloys[J]. Welding in the World,1998,41(6):206-219.
    [120]Hong HU, Rho BS, Nam SW. Correlation of the M23C6 Precipitation Morphology with Grain Boundary Characteristics in Austenitic Stainless Steel[J]. Materials Science and Engineering A,2001,318(1-2):285-292.
    [121]Kim SB, Paik KW, Kim YG Effect of Mo Substitution by W on High Temperature Embrittlement Characteristics in Duplex Stainless Steels[J]. Materials Science and Engineering A,1998,247(1-2):67-74.
    [122]Matula M, Hyspecka L, Svoboda M et al. Intergranular Corrosion of AISI 316L Steel[J]. Materials Characterization,2001,46(2-3):203-210.
    [123]Min KS, Nam SW. Correlation between Characteristics of Grain Boundary Carbides and Creep Fatigue Properties in AISI 321 Stainless Steel[J]. Journal of Nuclear Materials, 2003,322(2-3):91-97.
    [124]Ortner SR. A Stem Study of the Effect of Precipitation on Grain Boundary Chemistry in AISI 304 Steel[J]. Acta Metallurgica Et Materialia,1991,39(3):341-350.
    [125]Parvathavarthini N, Dayal RK. Influence of Chemical Composition, Prior Deformation and Prolonged Thermal Aging on the Sensitization Characteristics of Austenitic Stainless Steels[J]. Journal of Nuclear Materials,2002,305(2-3):209-219.
    [126]Schwind M, Kallqvist J, Nilsson JO et al. Sigma Phase Precipitation in Stabilized Austenitic Stainless Steels[J]. Acta Materialia,2000,48(10):2473-2481.
    [127]Shankar V, Gill TPS, Mannan SL et al. Fusion Zone and Heat Affected Zone Cracking Susceptibility of Stabilised Austenitic Stainless Steels [J]. Science and Technology of Welding and Joining,1998,3(1):17-24.
    [128]Thomas RD. Haz Cracking in Thick Sections of Austenitic Stainless Steels [J]. Welding Journal,1984,63(12):24-32.
    [129]Wasnik DN, Kain V, Samajdar I et al. Controlling Grain Boundary Energy to Make Austenitic Stainless Steels Resistant to Intergranular Stress Corrosion Cracking[J]. Journal of Materials Engineering and Performance,2003,12(4):402-407.
    [130]Mudali UK, Baldev R. High Nitrogen Steels and Stainless Steels:Manufacturing, Properties and Applications [M]. Pangbourne:Alpha Science Internaional,2004:45.
    [131]Hanneman RE, Aust KT. Solute Clustering and Intergranular Corrosion [J]. Scripta Metallurgica,1968,2(4):235-237.
    [132]华保定,沈行素.铬在18铬-8镍型不锈钢晶粒边界的贫铬层中的分布[J].金属学报,1965,8(1):98-102.
    [133]Caroll KG, Hopkinson BE. Chromium Distribution Around Grain Boundary Carbides Found in Austenitic Stainless Steel[J]. Nature,1959,184(6):1479-1480.
    [134]Briant CL, Hall EL. A Comparison between Grain-Boundary Chromium Depletion in Austenitic Stainless Steel and Corrosion in the Modified Strauss Test[J]. Corrosion,1986, 42(9):522-531.
    [135]Sahlaoui H, Sidhom H, Philibert J. A Predictive Model of the Evolution of Chromium Profiles During the Ageing of NiCr-Fe Alloys[J]. Acta Materialia,2003,28(5):1-16.
    [136]Bi HY, Kokawa H, Wang ZJ et al. Suppression of Chromium Depletion by Grain Boundary Structural Change During Twin-Induced Grain Boundary Engineering of 304 Stainless Steel[J]. Scripta Materialia,2003,49(3):219-223.
    [137]Kumar MS, Sujata M, Venkataswamy MA et al. Failure Analysis of a Stainless Steel Pipeline[J]. Engineering Failure Analysis,2008,15(5):497-504.
    [138]Linton VM, Laycock NJ, Thomsen SJ et al. Failure of a Super Duplex Stainless Steel Reaction Vessel[J]. Engineering Failure Analysis,2004, 11(2):243-256.
    [139]Sedek P, Brozda J, Gazdowicz J. Pitting Corrosion of the Stainless Steel Ventilation Duct in a Roofed Swimming Pool[J]. Engineering Failure Analysis,2008,15(4):281-286.
    [140]Invernizzi AJ, Sivieri E, Trasatti SP. Corrosion Behaviour of Duplex Stainless Steels in Organic Acid Aqueous Solutions[J]. Materials Science and Engineering A,2008, 485(1-2):234-242.
    [141]Shibata T, Takeyama T. Stochastic Theory of Pitting Corrosion[J]. Corrosion,1977, 33(7):243-251.
    [142]Perren RA, Suter T, Solenthaler C et al. Corrosion resistance of Super Duplex Stainless Steels in Chloride Ion Containing Environments Investigations by means of a New Microelectrochemical Method:Ⅱ. Influence of Precipitates[J]. Corrosion Science,2001, 43(4):727-745.
    [143]Perren RA, Suter TA, Uggowitzer PJ et al. Corrosion Resistance of Super Duplex Stainless Steels in Chloride Ion Containing Environments Investigations by means of a New Microelectrochemical Method:Ⅰ. Precipitation Free States[J]. Corrosion Science, 2001,43(4):707-726.
    [144]Moura VS, Lima LD, Pardal JM et al. Influence of Microstructure on the Corrosion Resistance of the Duplex Stainless Steel UNSS31803[J]. Materials Characterization,2008, 59(8):1127-1132.
    [145]Pohl M, Storz O, Glogowski T. Effect of Intermetallic Precipitations on the Properties of Duplex Stainless Steel[J]. Materials Characterization,2007,58(1):65-71.
    [146]Tavares SSM, Moura V, da Costa VC et al. Microstructural Changes and Corrosion Resistance of AISI 310 Steel Exposed to 600-800℃[J]. Materials Characterization,2009, 60(6):573-578.
    [147]秦丽雁,张寿禄,宋诗哲.典型不锈钢晶间腐蚀敏化温度的研究[J].中国腐蚀与防护学报,2006,26(1):1-5.
    [148]Fargas G, Anglada M, Mateo A. Effect of the Annealing Temperature on the Mechanical Properties, Formability and Corrosion Resistance of Hot-Rolled Duplex Stainless Steel[J]. Journal of Materials Processing Technology,2009,209(4):1770-1782.
    [149]Michalska J, Sozanska M. Qualitative and Quantitative Analysis of Sigma and Chi Phases in 2205 Duplex Stainless Steel[J]. Materials Characterization,2006,56(4-5):355-362.
    [150]Frankel GS, Stockert L, Hunkeler F et al. Metastable Pitting of Stainless Steel[J]. Corrosion,1987,43(7):429-436.
    [151]Frankel GS. Pitting Corrosion of Metals:A Review of the Critical Factors[J]. Journal of the Electrochemical Society,1998,145(6):2186-2198.
    [152]Newman RC, Franz EM. Growth and Repassivation of Single Corrosion Pits in Stainless Steel[J]. Corrosion,1984,40(7):325-330.
    [153]Williams DE, Stewart J, Balkwill PH. The Nucleation, Growth and Stability of Micropits in Stainless Steel[J]. Corrosion Science,1994,36(7):1213-1235.
    [154]Balkwill PH, Westcott C, Williams DE. Stochastic Approach to the Initiation of Pitting Corrosion[J].1989,44-45(1):299-313.
    [155]Ezuber H, Newman RC. Growth Rate Distribution of Metastable Pits [A]. In:G.S. Frankel. Critical Factors in Localized Corrosion[C]. Pennington:The Electrochemical Society, 1992:
    [156]Galvele JR, Torresi RM, Carranza RM. Passivity Breakdown and its Relation to Pitting and Stress Corrosion Cracking Processes[J]. Corrosion Science,1990,31(563-571.
    [157]Sato N. The Stability of Localized Corrosion[J]. Corrosion Science,1995, 37(12):1947-1967.
    [158]Laycock NJ, White SP, Noh JS et al. Perforated Covers for Propagating Pits[J]. Journal of the Electrochemical Society,1998,145(4):1101-1108.
    [159]Moayed MH, Newman RC. Using Pit Solution Chemistry for Evaluation of Metastable Pitting Stability of Austenitic Stainless Steel[J]. Materials and Corrosion,2005, 56(3):166-173.
    [160]Gaudet GT, Mo WT, Hatton TA et al. Mass Transfer and Electrochemical Kinetic Interactions in Localized Pitting Corrosion[J]. Aiche Journal,1986,32(6):949-958.
    [161]Charles J. Super Duplex Stainless Steels:Structure and Properties[A]. In:J. Charles. Duplex Stainless Steels'91[C]. Beaune:es Editions de Physique,1991:3-48.
    [162]Eriksson H, Bernhardsson S. The Applicability of Duplex Stainless Steels in Sour Environments[J]. Corrosion,1991,47(9):719-727.
    [163]Vannevik H, Nilsson JO, Frodigh J et al. Effect of Elemental Partitioning on Pitting Resistance of High Nitrogen Duplex Stainless Steels[J]. ISIJ International,1996, 36(7):807-812.
    [164]Weber L, Uggowitzer PJ. Partitioning of Chromium and Molybdenum in Super Duplex Stainless Steels with respect to Nitrogen and Nickel Content[J]. Materials Science and Engineering A,1998,242(1-2):222-229.
    [165]Tsuge H, Tarutani Y, Kudo T. The Effect of Nitrogen on the Localized Corrosion Resistance of Duplex Stainless Steel Simulated Weldments[J]. Corrosion,1988, 44(5):305-314.
    [166]Nilsson JO. Super Duplex Stainless Steels[J]. Materials Science and Technology,1992, 8(8):685-700.
    [167]Nilsson JO, Wilson A. Influence of Isothermal Phase Transformations on Toughness and Pitting Corrosion of Super Duplex Stainless Steel SAF2507[J]. Materials Science and Technology,1993,9(7):545-554.
    [168]Weng KL, Chen HR, Yang JR. The Low-Temperature Aging Embrittlement in a 2205 Duplex Stainless Steel[J]. Materials Science and Engineering A,2004,379(1-2):119-132.
    [169]Tavares SSM, Terra VF, Neto PD et al. Corrosion Resistance Evaluation of the UNSS31803 Duplex Stainless Steels aged at Low Temperatures (350 to 550 ℃) using DLEPR tests[J]. Journal of Materials Science,2005,40(15):4025-4028.
    [170]Tavares SSM, Terra VF, Pardal JM et al. Influence of the Microstructure on the Toughness of a Duplex Stainless Steel UNSS31803[J]. Journal of Materials Science,2005, 40(1):145-154.
    [171]Bonollo F, Ferro P, Cervo R et al. Metallurgical and Mechanical Characterization of UNS S32750 Welded Joints with Innovative Filler Wire[J]. Metallurgia Italiana,2009, 10):55-62.
    [172]Cvijovic Z, Radenkovic G. Microstructure and Pitting Corrosion Resistance of Annealed Duplex Stainless Steel[J]. Corrosion Science,2006,48(12):3887-3906.
    [173]Dominguez-Aguilar MA, Newman RC. Detection of Deleterious Phases in Duplex Stainless Steel by Weak Galvanostatic Polarization in Alkaline Solution[J]. Corrosion Science,2006,48(9):2560-2576.
    [174]Dominguez-Aguilar MA, Newman RC. Detection of Deleterious Phases in Duplex Stainless Steel by Weak Galvanostatic Polarization in Halide Solutions[J]. Corrosion Science,2006,48(9):2577-2591.
    [175]Ferro P, Tiziani A, Bonollo F. Influence of Induction and Furnace Postweld Heat Treatment on Corrosion Properties of SAF2205 (UNS 31803)[J]. Welding Journal,2008, 87(12):298S-306S.
    [176]Garzon CM, Serna CA, Brandi SD et al. The Relationship between Atomic Partitioning and Corrosion Resistance in the Weld Heat Affected Zone Microstructures of UNSS32304 Duplex Stainless Steel[J]. Journal of Materials Science,2007, 42(21):9021-9029.
    [177]Muthupandi V, Srinivasan PB, Seshadri SK et al. Effect of Nitrogen Addition on Formation of Secondary Austenite in Duplex Stainless Steel Weld Metals and Resultant Properties[J]. Science and Technology of Welding and Joining,2004,9(1):47-52.
    [178]Dobranszky J, Szabo PJ, Berecz T et al. Energy-Dispersive Spectroscopy and Electron Backscatter Diffraction Analysis of Isothermally Aged SAF2507 Type Superduplex Stainless Steel[J]. Spectrochimica Acta B,2004,59(10-11):1781-1788.
    [179]Park CJ, Kwon HS, Lohrengel MM. Micro-electrochemical Polarization Study on 25% Cr Duplex Stainless Steel[J]. Materials Science and Engineering A,2004,372(1-2):180-185.
    [180]Park JO, Matsch S, Bohni H. Effects of Temperature and Chloride Concentration on Pit Initiation and Early Pit Growth of Stainless Steel[J]. Journal of the Electrochemical Society,2002,149(2):B34-B39.
    [181]Bastos IN, Tavares SSM, Dalard F et al. Effect of Microstructure on Corrosion Behavior of Superduplex Stainless Steel at Critical Environment Conditions[J]. Scripta Materialia, 2007,57(10):913-916.
    [182]Burstein GT, Moloney JJ. Cyclic Thermammetry[J]. Electrochemistry Communications, 2004,6(10):1037-1041.
    [183]Bernard F, Rao VS, Kwon HS. A Study on the Repassivation Kinetics and SCC Behavior of Duplex Stainless Steel in Chloride Solution[J]. Journal of the Electrochemical Society, 2005,152(10):B415-B420.
    [184]El Meguid EAA, El Latif AAA. Critical Pitting Temperature for Type 254 SMO Stainless Steel in Chloride Solutions[J]. Corrosion Science,2007,49(2):263-275.
    [185]Lieu HY, Pan YT, Hsieh RL et al. Effects of Alloying Elements on the Mechanical Properties and Corrosion Behaviors of 2205 Duplex Stainless Steels[J]. Journal of Materials Engineering and Performance,2001,10(2):231-241.
    [186]Sathirachinda N, Pettersson R, Pan JS. Depletion Effects at Phase Boundaries in 2205 Duplex Stainless Steel Characterized with SKPFM and TEM/EDS[J]. Corrosion Science, 2009,51(8):1850-1860.
    [187]Angelini E, De Benedetti B, Rosalbino F. Microstructural Evolution and Localized Corrosion Resistance of an Aged Superduplex Stainless Steel [J]. Corrosion Science,2004, 46(6):1351-1367.
    [188]Nilsson JO, Kangas P, Karlsson T et al. Mechanical Properties, Microstructural Stability and Kinetics of Sigma Phase Formation in 29Cr-6Ni-2Mo-0.38N Superduplex Stainless Steel[J]. Metallurgical and Materials Transactions A,2000,31(1):35-45.
    [189]Wang SG, Dong GP, Ma QH. Welding of Duplex Stainless Steel Composite Plate: Influence on Microstructural Development[J]. Materials and Manufacturing Processes, 2009,24(12):1383-1388.
    [190]Magnabosco R, Alonso-Falleiros N. Pit Morphology and its Relation to Microstructure of 850 Degree Aged Duplex Stainless Steel[J]. Corrosion,2005,61(2):130-136.
    [191]ASTM A262-93. Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels[S]. Pennsyvania:ASTM International 1993.
    [192]ASTM A358/A358M-04. Standard Specification for Electric Fusion Welded Austenitic Chromium Nickel Stainless Steel Pipe for High Temperature Service and General Applications[S]. Pennsyvania:ASTM International 2004.
    [193]Kina AY, Souza VM, Tavares SSM et al. Microstructure and Intergranular Corrosion Resistance Evaluation of AISI 304 Steel for High Temperature Service[J]. Materials Characterization,2008,59(5):651-655.
    [194]Trillo EA, Murr LE. Effects of Carbon Content, Deformation, and Interfacial Energetics on Carbide Precipitation and Corrosion Sensitization in 304 Stainless Steel[J]. Acta Materialia,1998,47(1):235-245.
    [195]Kai JJ, Yu GP, Tsai CH et al. The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690[J]. Metallurgical Transactions A,1989,20(10):2057-2067.
    [196]Pardo A, Merino MC, Coy AE et al. Influence of Ti, C and N Concentration on the Intergranular Corrosion Behaviour of AISI 316Ti and 321 Stainless Steels[J]. Acta Materialia,2007,55(7):2239-2251.
    [197]Stickler R, Vinckier A. Morphology of Grain Boundary Carbides and its Influence on Intergranular Corrosion of 304 Stainless Steel[J]. Transactions of the ASM,1961, 54(3):362-380.
    [198]Aydogdu GH, Aydinol MK. Determination of Susceptibility to Intergranular Corrosion and Electrochemical Reactivation Behaviour of AISI 316L Type Stainless Steel[J]. Corrosion Science,2006,48(11):3565-3583.
    [199]王治宇,韩俭,江来珠.304与301B奥氏体不锈钢在线固溶热处理工艺研究[J].宝钢技术,2007,4(5):16-32.
    [200]Stawstrom C, Hillert M. Improved Depleted Zone Theory of Intergranular Corrosion of 18-8 Stainless Steel[J]. Japanese Iron Steel Institute,1969,207(6):
    [201]Borello A, Casadio S, Saltelli A. Susceptibility to the Intergranular Corrosion of Alloy 800[J]. Corrosion,1981,37(9):498-505.
    [202]Sahlaoui H, Sidhom H, Philibert J. Prediction of Chromium Depleted Zone Evolution during Aging of Ni-Cr-Fe Alloys [J].Acta Materialia,2002,50(6):1383-1392.
    [203]Dabala M, Calliari I, Variola A. Corrosion Behavior of a Superduplex Stainless Steel in Chloride Aqueous Solution[J]. Journal of Materials Engineering and Performance,2004, 13(2):237-240.
    [204]Lee KM, Cho HS, Choi DC. Effect of Isothermal Treatment of SAF 2205 Duplex Stainless Steel on Migration of Delta/Gamma Interface Boundary and Growth of Austenite[J]. Journal of Alloys and Compounds,1999,285(1-2):156-161.
    [205]ASTM Practice A262-98. Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels[S]. Pennsyvania:ASTM International 1998.
    [206]ASTM G28-97. Standard Test Methods of Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys[S]. Pennsyvania:ASTM International 1997.
    [207]Buhler HE, Gerlach L, Greven O et al. The Electrochemical ReactivationTest (ERT) to Detect the Susceptibility to Intergranular Corrosion[J]. Corrosion Science,2003, 45(10):2325-2336.
    [208]Cihal V, Stefec R. On the Development of the Electrochemical Potentiokinetic Method[J]. Electrochimica Acta,2001,46(24-25):3867-3877.
    [209]Clarke WL, Romero VM, Danko JC. Detection of Sensitization in Stainless Steels using Electrochemical Techniques[J]. Corrosion,77(6):130-133.
    [210]Akashi M, Kawamoto T, Umemura F. Evaluation of IGSCC Susceptibility of Austenitic Stainless Steels using Electrochemical Reactivation Method [J]. Corrosion Engineering 1980,29(3):163-169.
    [211]Mudali UK, Dayal RK, Gnanamoorthy JB et al. Influence of Thermal Aging on the Intergranular Corrosion Resistance of Types 304LN and 316LN Stainless Steels[J]. Metallurgical and Materials Transactions A,1996,27(10):2881-2887.
    [212]Pujar MG, Parvathavarthini N, Dayal RK et al. Assessment of Intergranular Corrosion (IGC) in 316(N) Stainless Steel using Electrochemical Noise (EN) Technique[J]. Corrosion Science,2009,51(8):1707-1713.
    [213]Garcia C, De Tiedra MP, Blanco Y et al. Intergranular Corrosion of Welded joints of Austenitic Stainless Steels Studied by using an Electrochemical Minicell[J]. Corrosion Science,2008,50(8):2390-2397.
    [214]Neto PL, Farias JP, Herculano LFG et al. Determination of the Sensitized Zone Extension in Welded AISI 304 Stainless Steel using Non-destructive Electrochemical Techniques [J]. Corrosion Science,2008,50(4):1149-1155.
    [215]Majidi AP, Streicher MA. The Effect of Methods of Cutting and Grinding on Sensitization in Surface Layers on AISI304 Stainless Steel[J]. Corrosion,1984,40(9):445-458.
    [216]Majidi AP, Streicher MA. The Double Loop Reactivation Method for Detecting Sensitization in AISI 304 Stainless Steels[J]. Corrosion,1984,40(9):584-593.
    [217]Scully JR, Kelly RG. An Electrochemical Test for Detecting the Intergranular Corrosion Susceptibility of a Duplex Stainless Steel[J]. Corrosion,1986,42(9):537-542.
    [218]Goodwin SJ, Quayle B, Noble FW. Polarization Behavior of Austenitic and Duplex Stainless Steels in the Double Loop Reactivation Test[J]. Corrosion,1987, 43(12):743-747.
    [219]Reichert DL, Stoner GE. A Modified Double Loop EPR Technique for Detection of Sensitization in Cast Stainless Steel[J]. Journal of the Electrochemical Society,1990, 137(2):411-413.
    [220]Liu C, Huang H, Chen S. Activators for EPR Test in Detecting Sensitization of Stainless Steels[J]. Corrosion,1992,48(8):686-690.
    [221]Fang Z, Wu YS, Zhang L et al. Application of the Modified Electrochemical, Potentiodynamic Reactivation Method to Evaluate Intergranular Corrosion Susceptibility of Stainless Steels[J]. Corrosion,1998,54(5):339-346.
    [222]Fang Z, Zhang L, Wu YS et al. Thioacetamide as an Activator for the Potentiodynamic Reactivation Method in Evaluating Susceptibility of Type 304L Stainless Steel to Intergranular Corrosion[J]. Corrosion,1995,51(2):124-130.
    [223]Wu TF, Tsai WT. Effect of KSCN and its Concentration on the Reactivation Behavior of Sensitized Alloy 600 in Sulfuric Acid Solution [J]. Corrosion Science,2003, 45(2):267-280.
    [224]Maday MF, Mignone A, Vittori M. The Application of the Electrochemical Potentiokinetic Reactivation Method for Detecting Sensitization in Inconel-600:the Influence of Some Testing Parameters[J]. Corrosion Science,1988,28(9):887-900.
    [225]Cetre Y, Eichner P. Development of EPR Technique for the Control of Cast Alloys[J]. Materials and Corrosion,2001,52(1):20-25.
    [226]Thual CD, Bonis M, Crolet JL. Application of the EPR Method to Duplex Stainless Steels[J]. Materials and Corrosion,2001,52(1):37-44.
    [227]Amadou T, Braham C, Sidhom H. Double Loop Electrochemical Potentiokinetic Rreactivation Test Optimization in Checking of Duplex Stainless Steel Intergranular Corrosion Susceptibility[J]. Metallurgical and Materials Transactions A,2004, 35A(11):3499-3513.
    [228]Lilias M, Johansson P, Liu HP et al. Development of a Lean Duplex Stainless Steel[J]. Steel Research International,2008,79(6):466-473.
    [229]Wang J, Uggowitzer PJ, Magdowski R et al. Nickel Free Duplex Stainless Steels[J]. Scripta Materialia,1998,40(1):123-129.
    [230]Merello R, Botana FJ, Botella J et al. Influence of Chemical Composition on the Pitting Corrosion Resistance of Non-Standard Low-Ni high-Mn-N Duplex Stainless Steels [J]. Corrosion Science,2003,45(5):909-921.
    [231]Zhang W, Jiang LZ, Hu JC et al. Study of Mechanical and Corrosion Properties of a Fe-21.4Cr-6Mn-1.5Ni-0.24N-0.6Mo Duplex Stainless Steel[J]. Materials Science and Engineering A,2008,497(1-2):501-504.
    [232]Zhang W, Jiang LZ, Hu JC et al. Effect of Ageing on Precipitation and Impact Energy of 2101 Economical Duplex Stainless Steel[J]. Materials Characterization,2009, 60(1):50-55.
    [233]Angelini E, De Benedetti B, Rosalbino F. Microstructural Evolution and Localized Corrosion Resistance of an Aged Superduplex Stainless Steel[J]. Corrosion Science,2004, 46(6):1351-1367.
    [234]Chen TH, Yang JR. Effects of Solution Treatment and Continuous Cooling on Sigma Phase Precipitation in a 2205 Duplex Stainless Steel[J]. Materials Science and Engineering A,2001,311(1-2):28-41.
    [235]Lee TH, Oh CS, Kim SJ. Effects of nitrogen on Deformation-Induced Martensitic Transformation in Metastable Austenitic Fe-18Cr-10Mn-N Steels[J]. Scripta Materialia, 2008,58(2):110-113.
    [236]Bhattachatya A, Singh PM. Role of Microstructure on the Corrosion Susceptibility of UNSS32101 Duplex Stainless Steel[J]. Corrosion,2008,64(6):532-540.
    [237]Lopez N, Cid M, Puiggali M et al. Application of DoubleLoop Electrochemical Potentiodynamic Reactivation Test to Austenitic and Duplex Stainless Steels[J]. Materials Science and Engineering A,1997,229(1-2):123-128.
    [238]Herrera C, Ponge D, Raabe D. Characterization of the Microstructure, Crystallographic Texture and Segregation of an As-Cast Duplex Stainless Steel Slab[J]. Steel Research International,2008,79(6):482-488.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.