抑制水稻主要病原菌的药剂混配及多环芳香烃的生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻生长发育过程中需要应对生物及非生物胁迫。可以通过水稻种子传播的稻瘟病(Magnaporthe oryzae)和恶苗病(Gibberella fuiikuroi)是危害水稻生产的重要真菌病害,白叶枯病(Xanthomonas oryzae pv.oryzae)和细菌性条斑病(Xanthomonas oryzae pv. oryzicola)是重要的细菌病害。土壤中累积的多环芳香烃物质是影响水稻种子萌发、秧苗生长和产量的化学胁迫因子之一。防控水稻种子传播的重大病害、挖掘降解多环芳香烃物质的微生物资源对水稻安全生产具有重要意义。本研究据此开展了水稻种子处理药剂混配研究以其为防控水稻种传病害提供技术支持;分离自黑龙江水稻种子的菌株HLJ-RS18为多环芳香烃的降解提供了新的生物修复菌株,以及对三环芳香烃菲的降解途径展开研究。相关研究结果如下:
     1)防治水稻种传真菌病害和细菌病害的杀菌剂混配研究:以防治真菌病害的杀菌剂戊唑醇、咪鲜胺和防治细菌病害的杀菌剂噻菌铜为有效成分,通过菌丝生长速率法、混浊度法等进行毒力测定和联合毒力评价,表明杀菌剂咪鲜胺对水稻稻瘟病菌和恶苗病菌具有显著抑制作用,其ECso分别为0.06μg/ml和0.04μg/ml;戊唑醇对两种真菌的EC5o分别为2.43μg/ml和0.10μg/ml。噻菌铜对白叶枯病病、细菌性条斑病的ECso分别为30.20μg/ml和61.06μg/ml.混配药剂室内毒力测定结果显示,戊唑醇和噻菌铜按照9:1、咪鲜胺和噻菌铜按照7:3混配,对稻瘟病菌和恶苗病菌具有加和或者增效作用,同时对白叶枯病病菌、细菌性条斑病菌亦具有增效或加和作用。在此基础上,确立了适合于水稻种传病原真菌和细菌消毒处理的混配制剂—戊唑醇和噻菌铜混配制剂、咪鲜胺和噻菌铜混配制剂,获得2项中国发明专利,为防控水稻种传真菌和细菌病害的传播蔓延和发生危害提供了新的技术支持。
     2)水稻种子寄藏新鞘氨醇杆菌属细菌HLJ-RS183(?)种鉴定及其对芴的降解:从来自于黑龙江的水稻种子样品中分离得到]HLJ-RS18,为Novosphingobium属分离物;经16S rRNA,系统发育树、表型特征、生理生化、化学分类特征等数据分析表明,HLJ-RS18菌株为新鞘氨醇杆菌属的一个新种,命名为Novosphingobium fluoreni sp. nov. HLJ-RS18T。该菌已经获得国际菌种保藏机构的认定,菌株备存于德国DSMZ (=DSM27568T)和中国农业微生物菌种保藏管理中心(=ACCC19180T)。 HLJ-RS18能够降解三环芳香烃芴,降解常数为0.13d-1,半衰期为2.76d。HLJ-RS18对四种供试水稻品种的发芽率和发芽势无影响,对稻瘟病菌和恶苗病、白叶枯病病和细菌性条斑病的供试菌株的生长无影响;分析认为,]HLJ-RS18对多环芳香烃物质的降解具有潜在的应用价值。
     3) Stenotrophomonas maltophilia C6菌株降解菲的研究:研究结果显示,S.maltophilia C6能够在14d内完全降解50ug/ml的菲;从C6菌株和菲共培养液中分离鉴定了22个代谢中间产物,通过对代谢产物的分析,发(?)S. maltophilia C6菌株能够通过1,2-,3,4-,及9,10-C途径降解菲,进一步对1,2-,3,4-,及9,10-C途径上层代谢物的总浓度分析,表明菌(?)S. maltophilia C6对菲的降解主要通过3,4-C途径,这是首次对S. maltophilia降解菲的代谢途径的报道。S. maltophilia C6对多环芳香烃物质的降解具有潜在的应用价值。
Plants suffer from both biotic and abiotic stress. Magnaporthe oryzae, Gibberella fujikuroi, Xanthomonas oryzae pv.oryzae, and Xanthomonas oryzae pv. oryzicola are the main rice pathogen that cause fungi and bacteria disease, which bring enormouse economic losses. Polycyclic Aromatic Hydrocarbons (PAHs), the most prevalent and persistent pollutants in the environment, could affect the germination and growth of plants and verified in many references. It is vital to control rice main fungi and bacteria disease and put efforts on bioremediation microbes. This research forcus on both the rice seed chemicals treatment to protect rice from pathogen affected and studies on bioremediation microbes to get possibilities to remove PAHs pollutions. The main results are as below:
     1) Seed treatment with chemicals mixture research. Tebuconazole and prochloraz are chemicals that registered as fungicide, and thiediazole copper were used to kill bacteria. To well protect seeds from both fungi and bacteria disease, a mixture proportion of tebuconazole and thiediazole copper or prochloraz and thiediazole copper to prevent rice from seed-borne bacteria and fungi disease were conducted. Tebuconazole and thiediazole cooper mixed as9:1is the optimum proportion as seed treatment, which could well protect rice seeds from both fungi and bacteria. Also prochloraz and thiediazole copper mixed as7:3could protect rice seeds from both fungi and bacteria infection. Two patents were granted by the China patent office for the two chemicals mixture used for seed treatment, which gave techonoly supports for controlling rice seed-borne bacteria and fungi disease.
     2) Identification and classification of fluorene-degradation species Novosphingobium fluoreni sp. nov. HLJ-RS18T.We isolated a bacteria strain HLJ-RS18from Sanjiang rice variety of Heilongjiang Province of China, which could degrade fluorene (three rings of polycyclic aromatic hydrocarbons/PAH). Further analysis of16S rRNA, genotypic characterization, chemotaxonomic results and phenotypic analysis indicated that HLJ-RS18T represents a novel species in the genus Novosphingobium. Therefore, we propose the species Novosphingobium fluoreni sp. nov. with HLJ-RS18T (=DSM27568=ACCC19180) as the type strain. HLJ-RS18T showed no effect on the germination of four rice varieties provided. There was no interaction of strain HLJ-RS181with Magnaporthe oryzae YN08-1, Gibberella fujikuroi US01, Xanthomonas oryzae pv.oryzae PXO99, and Xanthomonas oryzae pv. oryzicola RS105.HLJ-RS18T is a new potential bioremediation strain that could be used in the PAHs degradation.
     3) Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia strain C6. Stenotrophomonas maltophilia C6was isolated by our cooperation lab, and strain C6could completely degrade phenanthrene through14days. To further well understanding the phenanthrene pathway, we isolated and identified22metabolites from the culture periodically. Finally we proposed the phenanthrene pathway by strain Stenotrophomonas maltophilia C6. Stenotrophomonas maltophilia C6could degrade phenanthrene starting from1,2-,3,4-,9,10-C position and following with ortho and meta cleavage. The concentration analysis of upper metabolites from1,2-,3,4-,9,10-C pathway, respectively, showed strain Stenotrophomonas maltophilia C6degrade phenanthrene mainly through3,4-C pathway. This is the first study of detailed phenanthrene metabolic pathways by Stenotrophomonas maltophilia. Stenotrophomonas maltophilia C6is also a potential biomediation bacteria that could contribute to the remove of phenanthrene with clearly proposed degradation pathway.
引文
陈世军,祝贤凌,冯秀珍,黄烈琴,梅运群.多环芳香烃对植物的影响.生物学通报,2010,45(2):9
    产祝龙,丁克坚,檀根甲.水稻恶苗病的研究进展.安徽农业科学,2002,6
    陈彦,赵彤华,王兴亚,徐蕾.52.5%丙环唑·三环唑悬浮剂防治水稻稻瘟病和纹枯病药效评价,辽宁农业科学,2012,(1):69-71
    方兴洲,陈莉,产祝龙,等.水稻恶苗病与浸种、催芽和播种等因子的关系研究[J].热带作物学报,2012,33(6):1107-1110
    程龙军.水稻恶苗病的发生与种子处理技术.农技服务,2012,29(2):163
    林晓华,唐久芳.科学发展观视域下我国农业污染问题研究.中南民族大学学报,2011,4
    刘泓,叶媛蓓,崔波,郑荔敏,黄炎和,王宗华.多环芳香烃荧蒽诱导拟南芥氧化胁迫.应用生态学报,2008,19(2):413-418
    刘姮;李雪琴.水稻细菌性条斑病的研究概述.湖北植保,2011,5
    骆苑蓉,郑天凌.多环芳香烃降解菌的降解特性与降解途径研究.[博士学位论文].厦门:厦门大学,2008
    康振生.我国植物真菌病害的研究现状及发展策略.植物保护,2010,36(3):9-12
    童贤明,徐静.水稻细菌性条斑病研究概况.植物检疫,1996,03期
    温小红,谢明杰,姜健,杨宝灵,邵艳龙,何伟,刘丽,赵毅.水稻稻瘟病防治方法研究进展.中国农学通报,2013,29(3):190-195
    杨艳,凌婉婷,高彦征,任丽丽,张翼,陈冬升.几种多环芳烃的植物吸收作用及其对根系分泌物的影响.环境科学学报,2010,3
    于卫清,陈丽,赵加林.水稻白叶枯病的发生及防治.现代农业科技,2009,21
    占新华,周立祥.多环芳烃(PAHs)在土壤-植物系统中的环境行为.生态环境,2003,4
    朱林海,丁金枝,王健健,王永吉,来利明,赵学春,鲁洪斌,赵春强,郑元润.石油污染对土壤-植物系统的生态效应.应用与环境生物学报,2012,2
    朱献丰.水稻稻瘟病菌研究进展.江西农业学报,2002,3
    Adachi, K., Iwabuchi, T., Sano, H., Harayama, S. Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, and intermediate of the phenanthrenedegradative pathway of Nocardioides sp. strain KP7. Journal of Bacteriology,1999,181,757-763
    Addison, S. L., Foote, S. M., Reid, N. M. & Lloyd-Jones, G. Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoateaccumulating diazotroph isolated from a New Zealand pulp and paper wastewater. International Journal of Systematic and Evolutionary Microbiology,2007,57, 2467-2471
    Arulazhagan, P., Vasudevan, N. Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Marine Pollution Bulletin,2011,62,388-394
    Alkio M., Tabuchi T. M., Wang X.C., Ada'n Colo'n-Carmona. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany,2005,56(421):2983-2994
    Andreoni, V., Cavalca, L., Rao, M.A., Nocerino, G., Bernasconi, S., DellOAmico, E., Colombo, M., Gianfreda, L. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 2004,57,401-412
    Annweilaer, E., Richnow, H.H., Antranikian, G., Hebenbrock, S., Grams, C., Franke, S., Franke, W., Michaelis, W. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Applied and Environmental Microbiology, 2000,66,518-523
    Baek, S. H., Lim, J. H., Jin, L., Lee, H. G. & Lee, S. T. Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. International Journal of Systematic and Evolutionary Microbiology,2011, 61,2464-2468
    Balkwill, D. L., Drake, G. R., Reeves, R. H., Fredrickson, J. K., White, D. C., Ringelberg D. B., Chandler, D. P., Romine, M. F., Kennedy, D. W. & Spadon, C. M. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. International Journal of Systematic and Evolutionary Microbiology,1997,47, 191-201
    Balashova, N.V., Stolz, A., Knackmuss, H.J., Kosheleva, I.A., Naumov, A.V., Boronin, A.M. Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Biodegradation,2001,12,179-188
    Bastiaens, L., Springael, D., Wattiau, P., Harms, H., DeWachter, R., Verachtert, H., Diels, L. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Applied and Environmental Microbiology,2000,66,1834-1843.
    Burland, T. G. DNASTAR's Lasergene sequence analysis software. Bioinformatics Methods and Protocols. Humana Press,1999,71-91
    Patnaik P. A Comprehensive Guide to the Properties of Hazardous Chemical Substances. John Wiley & Sons Publishers,1964
    Dandie, C.E., Thomas, S.M., Bentham, R.H., McClure, N.C. Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons. Journal of Applied Microbiology,2004,97,246-255
    David Weisman, Merianne Alkio, Adan Colon-Carmona. RTranscriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biology,2010,10:59
    Denner, E. B. M., Paukner, S., Kampfer, P., Moore, E. R. B., Abraham, W.-R., Busse, H.-J., Wanner, G. & Lubitz, W. Description of Sphingomonas pituitosa sp. nov., a novel polysaccharide-producing sphingomonad. International Journal of Systematic and Evolutionary Microbiology,2001,51, 827-841
    Deveryshetty, J., Phale, P.S. Biodegradation of phenanthrene by Alcaligenes sp. strain PPH:partial purification and characterization of 1-hydroxy-2-naphthoic acid hydroxylase. FEMS Microbiology Letters,2010,311,93-101
    Eaton, R.W., Chapman, P.J. Bacterial metabolism of naphthalene:construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reaction. Journal of Bacteriology,1992,174,7542-7554
    Evans, W.C., Fernley, H.N., Griffiths, E. Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. Biochemical Journal,1965,95,819-831
    Feng, T.C., Cui, C.Z., Dong, F., Feng, Y.Y., Liu, Y.D., Yang, X.M. Phenanthrene biodegradation by halophilic Martelella sp. AD-3. Journal of Applied Microbiology,2012,113,779-789
    Fernandez-Luquefio, F., Valenzuela-Encinas, C., Marsch, R., Martinez-Suarez, C., Vazquez-Nunez, E., Dendooven, L., Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges:a review. Environmental Science and Pollution Research,2011,18:12-30
    Fredrickson, J. K., Brockman, F. J., Workman, D. J., Li, S. W. & Stevens, T. O. Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Applied Environmental Microbiology,1991,57,796-803
    Fujii, K., Satomi, M., Morita, N., Motomura, T., Tanaka, T. & Kikuchi, S. Novosphingobium tardaugens sp. nov., an estradiol degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. International Journal of Systematic and Evolutionary Microbiology,2003,53,47-52
    Gao, S. M, Seo, J. S., Wang, J., Keum, Y. S., Li, J. Q. & Li, Q. X. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. International biodeterioration & biodegradation, 2013,79,98-104
    Ghosal, D., Chakraborty, J., Khara, P., Dutta, T.K. Degradation of phenanthrene via meta-cleavage of 2-hydroxy-l-naphthoic acid by Ochrobactrum sp. strain PWTJD. FEMS Microbiology Letters, 2010,313,103-110
    Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington D.C,1994
    Glaeser, S. P., Kampfer, P., Busse, H. J., Langer, S. & Glaeser, J. Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. International Journal of Systematic and Evolutionary Microbiology,2009,59,323-330
    Glaeser, S. P., Bolte, K., Busse H-J, Kampfer,P., Grossart, H-P. & Glaeser, J. Novosphingobium aquaticum sp. nov. isolated from the humic matter rich Lake Grosse Fuchskuhle. International Journal of Systematic and Evolutionary Microbiology,2013,63,2630-2636
    Glaeser, S. P., Bolte, K., Martin, K., Busse, H. J., Grossart H-P, Kampfer, P. & Glaeser, J. Novosphingobium fuchskuhlense sp. nov., isolated from the north-east basin of Lake Grosse Fuchskuhle. International Journal of Systematic and Evolutionary Microbiology,2013,63,586-592
    Gupta, S. K., Lal, D. & Lal, R. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil contaminated soil. International Journal of Systematic and Evolutionary Microbiology,2009,59,156-161
    Haritash, A.K., Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs):a review. Journal of Hazardous Materials,2009,169,1-15
    Hennessee, C.T., Seo, J.S., Alvarez, A.M., Li, Q.X. Isolation and characterization of five new polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils:Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov., and Mycobacterium aromaticivorans sp. nov. International Journal of Systematic and Evolutionary Microbiology,2009,59,378-387
    John, R.C., Essien, J.P., Akpan, S.B., Okpokwasili, G.C. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria. Bulletin Environmental Contamination Toxicology,2012,88,1014-1019
    Juhasz, A.L., Britz, M.L., Stanley, G.A. Degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas cepacia. Biotechnology Letters,1996,18,577-582
    Juhasz, A.L., Stanley, G.A., Britz, M.L. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Letters in Applied Microbiology,2000,30,396-401
    Juhasz, A.L., Stanley, G.A., Britz, M.L. Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a, h]anthracene by Stenotrophomonas maltophilia VUN 10,003. Journal of Industrial Microbiology and Biotechnology,2002,28,88-96
    Kallimanis, A., Frillingos, S., Drainas, C., Koukkou, A.I. Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Applied Microbiology and Biotechnology,2007,76,709-717
    Kallimanis, A., Kavakiotis, K., Perisynakis, A., Sproer, C., Pukall, R., Drainas, C., Koukkou, A.I., Arthrobacter phenanthrenivorans sp. nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp. strain Sphe3. International Journal of Systematic and Evolutionary Microbiology, 2009,59,275-279
    Kampfer, P., Steiof, M. & Dott, W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microbial Ecology,1991, 21,227-251
    Kampfer, P., Witzenberger, R., Denner, E. B. M., Busse, H.-J. & Neef, A. Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. International Journal of Systematic and Evolutionary Microbiology,2002,25,37-45
    Kampfer, P., Young, C. C., Busse, H. J., Lin, S. Y., Rekha, P. D., Arun, A. B., Chun, W. M., Shen,T. F. & Wu, Y. H. Novosphingobium soli sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology,2011,61,259-263
    Keith, L., Telliard, W. Priority pollutants. I. A perspective view. Environmental Science and Technology,1979,13,416-423
    Kim, Y.H., Freeman, J.P., Moody, J.D., Engesser, K.H., Cerniglia, C.E. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Applied Microbiology and Biotechnology,2005,67,275-285
    Krivobok, S., Kuony, S., Meyer, C., Louwagie, M., Willison, J.C., Jouanneau, Y. Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1:evidence for two ring-hydroxylating dioxygenases. Journal of Bacteriology,2003,185,3828-3841
    K. Rehmann, H.P. Noll, C.E.W. Steiberg, A.A. Kettrup, Pyrene degradation by Mycobacterium sp. Strain KR2, Chemosphere,1998,36 (14):2977-2992
    Lane, D. J.16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics. 1991,115-175
    Lim, Y. W., Moon, E. Y. & Chun, J. Reclassification of Flavobacterium resinovorum Delaporte and Daste 1956 as Novosphingobium resinovorum comb, nov., with Novosphingobium subarcticum (Nohynek et al.1996) Takeuchi et al.2001 as a later heterotypic synonym. International Journal of Systematic and Evolutionary Microbiology,2007,57,1906-1908
    Lin, S.Y., Hameed, A., Liu, Y.C., Hsu, Y.H., Lai, W.A., Huang, H. I., Young, C.C. Novosphingobium arabidopsis sp. nov., a novel DDT-resistant bacterium isolated from the Arabidopsis thaliana rhizosphere. International Journal of Systematic and Evolutionary Microbiology,2013, ijs.0.054460-0 (Epub ahead of print)
    Liu, Z.-P., Wang, B.-J., Liu, Y.-H. & Liu, S. J. Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. International Journal of Systematic and Evolutionary Microbiology,2005,55,1229-1232
    Marmur, J. & Doty, P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology,1962,5,109-118
    Mallick, S., Chatterjee, S., Dutta, T.K. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-l-naphthoic acid:formation of trans-2,3-dioxo-5-(29-hydroxyphenyl)-pent-4-enoic acid. Microbiology.2007,153,2104-2115
    Meckenstock, R.U., Safinowski, M., Griebler, C. Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology,2004,49,27-36
    Moody, J.D., Freeman, J.P., Doerge, D.R., Cerniglia, C.E. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 2001,67,1476-1483
    Nayak, A.S., Veeranagouda, Y., Lee, K., Karegoudar, T.B. Metabolism of acenaphthylene via 1,2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK. Biodegradation.2009,20, 837-843
    Niharika, N., Moskalikova, H., Kaur, J., Sedlackova, M., Hampl, A., Damborsky, J., Prokop, Z.& Lai, R. Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International Journal of Systematic and Evolutionary Microbiology,2013,63,667-72
    Pinyakong, O., Habe, H., Supaka, N., Pinpanichkarn, P., Juntongjin, K., Yoshida, T., Furihata, K., Nojiri, H., Yamane, H., Omori, T. Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiology Letters.2000,191,115-121
    Radianingtyas, H., Robinson, G.K., Bull, A.T. Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology.2003,149,3279-3287
    Rodrigues, A.C., Wuertz, S., Brito, A.G., Melo, L.F. Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514:kinetics and physiological aspects. Biotechnology and Bioengineering,2005,90,281-289
    Romero, M.C. Cazau, S. Giorgieri, A.M. Arambarri, Phenanthrene degradation by microorganisms isolated froma contaminated stream, Environ. Pollut,1998,101:355-359
    Roy, M., Khara, P., Dutta, T.K. meta-Cleavage of hydroxynaphthoic acids in the degradation of phenanthrene by Sphingobium sp. strain PNB. Microbiology.2012,158,685-695
    Saitou N. and Nei M. The neighbor-joining method:A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4,406-425
    Samanta, S.K.; Chakraborti, A.K.; Jain, R.K. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Applied Microbiology and Biotechnology,1999,53,98-107
    Saxena, A., Anand, S., Dua, A., Sangwan, N., Khan, F. & Lai, R. Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH Dumpsite. International Journal of Systematic and Evolutionary Microbiology,2013,63,2160-2167
    Samanta, S.K., Chakraborti, A.K., Jain, P.K. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Applied Microbiology and Biotechnology.1999,53,98-107
    Seed Treatment Market by Type (Chemical & Non - Chemical), by Application (Fungicide, Insecticide, Bio-Control and Others) And by Crop (Cereals, Oilseeds and Others), Global Trends, Forecasts and Technical Insights up to 2018. By:marketsandmarkets.com Publishing Date:2013 Report Code: AGI 1870
    Seo, J.S., Keum, Y.S., Harada, R.M., Li, Q.X. Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. Journal of Agricultural and Food Chemistry.2007a,55, 5383-5389
    Seo, J.S., Keum, Y.S., Hu, Y.T., Lee, S.E., Li, Q.X. Degradation of phenanthrene by Burkholderia sp. C3:initial 1,2- and 3,4-dioxygenation and meta-and orthocleavage of naphthalene-1,2-diol. Biodegradation,2007b,18,123-131
    Seo, J.S., Keum, Y.S., Li, Q.X. Bacterial degradation of aromatic compounds. International Journal of Environmental Research and Public Health,2009,6,278-309
    Seo, J.S., Keum, Y.S., Li, Q.X. Mycobacterium aromativorans JS19b1(T) degrades phenanthrene through C-1,2, C-3,4 and C-9,10 dioxygenation pathways. International Biodeterioration and Biodegradation,2012,70,96-103
    Sohn, J. H., Kwon, K. K., Kang, J. H., Jung, H. B., Kim S. J. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. International Journal of Systematic and Evolutionary Microbiology,2005, 54,1483-1487
    Song, X.H., Xu, Y., Li, G.M., Zhang, Y., Huang, T.W., Hu, Z. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Marine Pollution Bulletin,2011,62,2122-2128
    Stanier, R.Y., Palleroni, N.J. and Doudoroff, M. The Aerobic Pseudomonads:a Taconomic Study. Journel of General Microbiology,1966,43,159-271
    Suzuki, S. & Hiraishi, A. Novosphingobium naphthalenivorans sp. nov., a naphthalene degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. The Journal of General and Applied Microbiology,2007,53,221-228
    TeBeest, D. O., Guerber C., Ditmore M.. Rice blast. The Plant Health Instructor,2007
    Takeuchi, M., Sakane, T., Yanagi, M., Yamasato, K., Hamana, K.&Yokota, A. Taxonomic study of bacteria isolated from plants:proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. International Journal of Systematic and Evolutionary Microbiology,1995,45,334-341
    Takeuchi, M., Hamana, K. & Hiraishi, A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. International Journal of Systematic and Evolutionary Microbiology, 2001,51,1405-1417
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. MEGA5:Molecular evolutionary genetics analysis using likelihood, distance, and parsimony methods. Molecular and Evolution,2011,28,2731-2739
    Tiirola, M. A., Busse, H.-J., Kampfer, P. & Mannisto, M. K. Novosphingobium lentum sp. nov., a psychrotolerant bacterium from apolychlorophenol bioremediation process. International Journal of Systematic and Evolutionary Microbiology,2005,55,583-588
    Tindall, B.J. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Systematic and Applied Microbiology,1990a,13,128-130
    Tindall, B.J. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiology Letters,1990b, 66,199-202
    Vila, J., Lopez, Z., Sabate, J., Minguillo, C., Solanas, A.M., Grifoll, M. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1:actions of the isolate on two-and three-ring polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 2001,67,5497-5505
    Wild S R, Jones K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment:a preliminary sourse inventory and budget [J]. Environmental pollution,1995,88(1):91-108
    Yanhong Zhu, Lingxiao Yang, Qi Yuan, Chao Yan, Can Dong, Chuanping Meng, Xiao Sui, Lan Yao, Fei Yang, Yaling Lu, Wenxing Wang. Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain:Concentration, size distribution, toxicity and sources. Science of the total environment,2014,466-467(1):357-368
    Yuan, J., Lai, Q., Zheng, T. & Shao, Z. Polycyclic aromatic hydrocarbon-degrading bacterium Novosphingobium sp. H25 isolated from deep sea and its degrading genes. Acta Microbiologica Sinica (in Chinese),2008,48,1208-1213
    Yuan, J., Lai, Q., Zheng, T. & Shao, Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. International Journal of Systematic and Evolutionary Microbiology,2009,59,2084-2088
    Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H. Proposals of Sphingomonas paucimobilisgen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiology and Immunology,1990, 34,99-119
    Zhao, H.P., Wu, Q.S., Wang, L., Zhao, X.T., Gao, H.W. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. Journal of Hazardous Materials, 2009,164,863-869
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.