Si_3N_4基陶瓷材料的微结构控制及其力学性能的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用溶胶-凝胶法合成了BaAl_2Si_2O_8 (BAS)及Ba_(0.75)Sr_(0.25)Al_2Si_2O_8 (BSAS)非晶粉末,通过DSC非等温结晶动力学及1450℃等温结晶试验,揭示了Sr~(2+)对钡长石玻璃粉末的结晶行为及其六方→单斜相变的影响规律。采用热压烧结法合成了50wt%Si_3N_4/BSAS陶瓷材料,XRD物相及热膨胀分析表明单斜钡长石仅能与α相Si_3N_4共存,β-Si_3N_4使得六方钡长石更加稳定。
     以氧化物原位反应生成BAS或BSAS玻璃陶瓷为基础,采用放电等离子烧结法(1800℃/5min)和无压烧结法(1900℃/60min)合成了70wt%Si_3N_4增强BAS及BSAS陶瓷材料,并进行(1800℃/60min/2.0MPaN2)后续热处理;采用热压烧结法1800℃/80min和1700℃/40min+1800℃/120min合成了70wt%Si_3N_4/BAS和60wt%Si_3N_4/BAS陶瓷材料。系统研究了烧结方式、烧结工艺及热处理对显微组织及力学性能的影响规律。结果表明:(1)热压和SPS法与无压烧结法相比可促进液相润湿Si_3N_4,从而提高Si_3N_4的转变速率;(2) SPS烧结不但能够实现Si_3N_4/BAS和Si_3N_4/BSAS陶瓷材料的快速致密化,还能够完成Si_3N_4/BAS陶瓷材料中Si_3N_4的α→β转变;(3) SPS结合后续热处理或两步烧结法,避免致密化过程中Si_3N_4的α→β转变,利用原料中混入β-Si_3N_4晶粒的成核作用,可在Si_3N_4/BAS陶瓷材料中产生双模式组织;(4)经过热处理调整显微结构并缓解残余应力,材料的弯曲强度和断裂韧性可达968 MPa和8.9 MPa·m1/2,断口为穿晶断裂,棒晶传递并承受载荷、裂纹桥连和偏转是主要的强韧化机制。
     以10wt%BAS作添加剂,采用热压烧结法(1800℃/80min)合成了高韧性的复相(10%α+90%β)-SiAlON和(40%α+60%β)-SiAlON陶瓷材料。显微组织的特征为高长径比β-SiAlON棒晶均匀分布在α-SiAlON及BAS共同构成的基体上。晶间相BAS有利于界面脱开及裂纹偏转、棒晶桥连,使复相(α+β)-SiAlON/BAS陶瓷材料具有较高的弯曲强度和断裂韧性。
     以5wt%BAS作添加剂,采用热压烧结法合成了化学式为RE_(1/3)Si_(10)Al_2ON_(15)的自韧化α-SiAlON/BAS陶瓷材料,系统地研究了烧结工艺、后续热处理、稀土类型(单元和双元)对自韧化α-SiAlON/BAS陶瓷材料的物相、显微组织演变及力学性能的影响规律。阐述了中间相β-SiAlON出现的原因,并采用控制烧结工艺参数及高温热处理两种方法予以消除;采用1200℃/2h-1500℃/1h-1800℃/1h三步烧结法排除BAS溶解RE、Al、N等因素的影响,促进α-SiAlON的形成,获得了理想相组成的α-SiAlON/BAS(5wt%)陶瓷材料;BAS液相能够显著改变α-SiAlON晶粒的生长行为,提高α-SiAlON陶瓷材料中棒晶的含量及其长径比,有效地实现了α-SiAlON/BAS (5wt%)陶瓷材料的自韧化。这种新型陶瓷材料的显微组织及力学性能可通过改变稀土类型及可控热处理等方法进行优化。BAS溶解少量的稀土元素可促进钡长石结晶及六方→单斜相转变。
Amorphous BaAl_2Si_2O_8 (BAS) and Ba_(0.75)Sr_(0.25)Al_2Si_2O_8 (BSAS) powders were synthesized by a sol-gel process. The effect of Sr on the non-isothermal crystallization kinetics and hexacelsian to celsian phase transformation were studied by DSC and heating at 1450℃for 30min to 210min. Si_3N_4 reinforced BAS/BSAS composites were hot-pressed, using the sol-gel BAS, BSAS, andα-Si_3N_4 as starting powders. Phase compatibility research results suggested that hexacelsian was stabilized by the presence ofβ-Si_3N_4, and consequently the desired celsian phase was unobtainable in the Si_3N_4/BAS system.
     Si_3N_4 reinforced BAS/BSAS glass ceramic matrix composites of optimal compositions were synthesized by spark plasma sintering (SPS, 1800℃/5min), pressureless sintering (PLS, 1900℃/60min), and hot pressing (HP1, 1800℃/80min, and HP2, 1700℃/40min+1800℃/120min), using oxides as the BAS/BSAS precursors. Post heat-treatment at 1800℃for 60 min in 2.0MPa nitrogen was held. The effects of the transient liquid, sintering techniques, and heat-treatment, on the microstructure and thereof the mechanical performances of the composites was elucidated. The results indicated that (1) SPS and HP increased theα→β-Si_3N_4 phase transformation rate because of the promoted wetibility by the external pressure in comparison to PLS; (2) In case of SPS, Si_3N_4/BAS and Si_3N_4/BSAS composites were densified rapidly within 5min during sintering, butα→β-Si_3N_4 phase transformation was completed only in the Si_3N_4/BAS system; (3) By manipulating the grain growth driving force through a two-step hot-pressing or through the combination of SPS with heat-treatment, the abnormal growth of theβ-Si_3N_4 nuclei in the starting powders resulted in a bimodal microstructure, hence enhancement of mechanical properties; (4) When microstructure optimization and thermal mismatch stress release were achieved by controlled heat-treatment, high flexure strength and fracture toughness could reach 968MPa and 8.9MPam1/2 respectively. Load transfer, bridging, and crack deflection were the main reinforcing mechanisms revealed by fracture SEM observation.
     Dual-phase (α+β)-SiAlON with 10wt% and 40wt%α-SiAlON were obtained using 10wt% BAS as additives via hot pressing. Elongatedβ-SiAlON grains with large aspect ratio over 10 dispersing homogeneously in the BAS andα-SiAlON matrix was the microstructure feature of the composites. BAS intergranular phase benefited the interfacial debonding, crack deflection, pull-out, and bridging of the largeβ-SiAlON grains, imparting high toughness to the materials.
     Self-reinforcedα-SiAlON ceramics of RE_(1/3)Si_(10)Al_2ON_(15) composition with 5wt% BAS additive were fabricated using hot-pressing. The effects of sintering parameters, post heat-treatment, types of rare-earths and dual-rare-earth dopants on the phase assemblage development were systemically manifested. The presence of metastableβ-SiAlON and its elimination by means of sintering process control and post sintering heat-treatment were established. The successful application of the three-step sintering of 1200℃/2h-1500℃/1h-1800℃/1h to elude the dissolve of rare earth, and AlN into the BAS liquid yieldedα-SiAlON/BAS(5wt%) ceramics of ideal phase constituents. High aspect ratio ofα-SiAlON grains from the elongated growth which was secured by the steady BAS liquid during sintering, guaranteed the self-reinforcing of the composites. Microstructure and mechanical properties could be further improved by tailoring the rare-earth dopants and the sintering-heat treatment procedures. Small amount of rare-earth dissolving in the BAS accelerated its crystallization and the hexacelsian to celsian phase transformation, which should have positive effects on the high temperature strength of the SiAlON.
引文
1 H. Kaya. The Application of Ceramic-Matrix Composites to Automotive Ceramic Gas Turbine. Composites Science and Technology. 1999, 59: 861-872
    2 M. Savitz. Commercialization of Advanced Structural Ceramics: Patience is a Necessity, Part I. American Ceramic Society Bulletin. 1999, 78: 53-56
    3 D. W. Richerson. Evolution in the US of Ceramic Technology for Turbine Engines. American Ceramic Society Bulletin. 1985, 64: 282-286
    4 H. T. Larker, R. Lundberg. Near Net Shape Production of Monolithic and Composite High Temperature Ceramics by Hot Isostatic Pressing. Journal of the European Ceramic Society. 1999, 19: 2367-2373
    5 M. Yoshida, K. Tanaka. Development of Silicon Nitride Components for Ceramic Gas Turbine Engine. Industrial Ceramics. 1999, 19: 188-192
    6 M. Taguchi. Application of High Technology Ceramics in Japanese Automibles. Advanced Ceramc Materials. 1987, 2: 754-762
    7 E. Y. Sun, P. F. Becher, K. P. Plucknett, C. H. Hsueh. Microstructural Design of Silicon Nitride with Improved Fracture Toughness: II, Effects of Yttria and Alumina Additives. Journal of the American Ceramic Society. 1998, 81: 2831-2840
    8 I. W. Chen, A. Rosenflanz. A Tough SiAlON Ceramic Based on α-Si3N4 with a Whisker-Like Microstructure. Nature. 1997, 389: 701-704
    9 宋银锁. 高速战术导弹天线罩材料综述. 航空兵器. 2003, 1: 42-44
    10 韩桂芳, 张立同. 高温透波材料研究进展. 航空材料学报. 2003, 23: 57-60
    11 齐共金, 张长瑞, 王思青. 无机天线罩功能材料的新进展. 功能材料. 2004, 35:1700-1703
    12 A. Zerr, G. Miehe, G. Serghiou, M. Schwarz. Synthesis of Cubic Silicon Nitride. Nature. 1999, 400: 340-342
    13 R. Grun. The Crystal Structure of α-Si3N4: Structural and Stability Considerations between α and β-Si3N4. Acta Cryst. B. 1979, 35: 800-804
    14 V. S. Urbanovich, Y. G. Gogotsi, K. G. Nikel. Properties of High Density α-Silicon Nitride Ceramics Sintered at High Static Pressure. Proc. Br. Ceram. Soc.. 1999, 2: 9-10
    15 P. A. Hare, I. Tomaszkiewicz, C. Belk. The Standard Molar Enthalpies of Formation of α-Si3N4 and β-Si3N4 by Combustion Calorimetry in Fluorine and the Enthalpy of the α-β Transition at the Temperature of 298.15K. Journal of Materials Research. 1997, 12: 3203-3205
    16 J. Liang, L. Topor, A. Navrotsky. Silicon Nitride Enthalpy of Formation of the α and β Phase and the Effect of the C and O Impurities. Journal of Materials Research. 1999, 14: 1959-1967
    17 N. Hirosaki, A. Okada, K. Matoba. Sintering of Si3N4 with the Addition of Rare-Earth Oxides. Journal of the American Ceramic Society. 1988, 71: 144-147
    18 T. Ekstrom, M. Nygren. SiAlON Ceramics. Journal of the American Ceramic Society. 1992, 75: 259-276
    19 S. Hampshire, H. K. Park, D. P. Thompson. α-SiAlON Ceramics. Nature. 1978, 274: 880-882.
    20 Z. J. Shen, T. Ekstrom, M. Nygren. Ytterbium Stabilised α-SiAlON Ceramics. Journal of Physics D. 1996, 29: 893-904.
    21 C. Zhang, W. Y. Sun. Fabrication of Dy-α-SiAlON ceramics. Journal of Materials Science Letters. 1998, 17: 583-586.
    22 M. I. Jones, H. Hyuga, K. Hirao. Highly Transparent Lu-α-SiAlON. Journal of the American Ceramic Society. 2004, 87: 714-716
    23 Z. Lences, K. Hirao, Y. Yamauchi. Reaction Synthesis of Magnesium Silicon Nitride Powder. Journal of the American Ceramic Society. 2003, 86: 1088-1093
    24 G. Ziegler, J. Heinrich, G. Wotting. Relationships between Processing, Microstructures and Properties of Dense and Reaction Bonded Silicon Nitride. Journal of Materials Science. 1987, 22: 3041-3049
    25 S. L. Hwang, I. W.Chen. Reaction Hot Pressing of α- and β-SiAlON Ceramics. Journal of the American Ceramic Society. 1994, 77: 165-171
    26 G. R. Terwilliger, F. F. Lange. Hot Pressing Behavior of Si3N4. Journal of the American Ceramic Society. 1974, 57: 25-29
    27 J. C. Almeida, A. T. Fonseca, R. N. Correia. Pressureless Sintering of Silicon Nitride with Additives of the Y2O3-Al2O3-SiO2 System. Materials Science and Engineering A. 1989, 109: 395-400
    28 B. Tunaboylu, J. R. Varner. Pressureless Sintering and Characterization of Si3N4 Containing La2O3-SrO as an Additive. Journal of Materials Science Letters.1995, 14: 1246-1249
    29 E. Tani, S. Umebayashi, K. Kishi. Gas-Pressure Sintering of Si3N4 with Concurrent Addition of Al2O3 and 5wt% Rare Earth Oxide: High Fracture Toughness Si3N4 with Fiber-like Structure. American Ceramic Society Bulletine. 1986, 65: 1311-1315
    30 M. Mitomo, S. Uenosono. Microstructure Development during Gas Pressure Sintering of β-Silicon Nitride. Journal of the American Ceramic Society. 1992, 75: 103-108
    31 S. K. Biswas, F. L. Riley. Gas Pressure Sintering of Silicon Nitride Powder Coated with Al2O3 and TiO2. Journal of the American Ceramic Society. 2003, 86: 212-216
    32 A. K. Westman, H. T. Larker. Interaction of Encapsulation Glass and Silicon Nitride Ceramic During HIPing. Journal of the European Ceramic Society. 1999, 19: 2739-2746
    33 E. M. Knutson, L. K. Falk. Si3N4 Ceramics Formed by HIP Using Different Oxide Additions: Relation Between Microstructure and Properties. Journal of Materials Science. 1991, 26: 5575-5584
    34 郑昌琼, 冉均国. 新型无机材料. 科学出版社, 2003: 237-238
    35 关振铎, 张中太, 焦金生. 无机材料物理性能. 清华大学出版社, 1992: 10-13
    36 郭景坤. 陶瓷的强化与增韧新途径的探索. 无机材料学报. 1998, 13:23-26
    37 K. T. Faber, A. G. Evans. Crack Deflection Processes: I, Theory. Acta Metallurgica. 1983, 31: 565-576
    38 周玉. 陶瓷材料学. 哈尔滨工业大学出版社, 1995: 120-122
    39 S. Sridharan, M. Tomozawa. Toughening of Glass Ceramics by both Transformable and Transformed Zirconia. Journal of Non-Crystalline Solids. 1995, 182: 262-270
    40 F. F. Lange. Transformation Toughening: Part II, Contribution to Fracture Toughness. Journal of Materials Science. 1982, 17:235-239
    41 P. Sajgalik, J. Dusza, M. J. Hoffmann. Relationship between Microstructure, Toughening Mechanisms, and Fracture Toughness of Reinforced Silicon Nitride Ceramics. Journal of the American Ceramic Society. 1995, 78: 2619-2624
    42 P. F. Becher, G. S. Painter. The Importance of Amorphous Intergranular Films in Self-reinforced Si3N4 Ceramics. Acta Metallurgica. 2000, 48: 4493-4499
    43 P. F. Becher. Microstructural Design of Toughened Ceramics. Journal of the American Ceramic Society. 1991, 74(2): 255-269
    44 F. F. Lange. Phase Relations in the System Si3N4-SiO23-MgO and their Interrelation with Strength and Oxidation. Journal of the American Ceramic Society. 1978, 61: 53-58
    45 V. Guerin, M. Backhaus Ricoult. Comparison of the High Temperature Oxidation Mechanisms of Additive Free, MgO, and MgO+Al2O3 Containing Silicon Nitride Ceramics. Journal of Materials Process and Manufacture Science. 1998, 7: 23-49
    46 R. R. Wills, S. Holmquist, J. M. Wimmer. Phase Relationships in the System Si3N4-Y2O3-SiO2. Journal of Materials Science. 1976, 11: 1305-1309
    47 H. Yang, G. Yang, R. Yuan. Pressureless Sintering of Silicon Nitride with Magnesia and Ceria. Materials Research Bulletin. 1998, 33: 1467-1473
    48 H. Hayashi, K. Hirao, M. Toriyama. Mg3N2 Addition as a means of Increasing the Thermal Conductivity of β-Silicon Nitride. Journal of the American Ceramic Society. 2001, 84: 3060-3069
    49 F. A. Costa, P. Tambuyser, D. J. Baxter. The Microstructure of an Yttria-Doped Hot-Pressed Silicon Nitride. Ceramics International. 2000, 26: 571-578
    50 C. J. Hwang, R. A. Newman. Silicon Nitride Ceramics with Celsian as an Additive. Journal of Materials Science. 1996, 31: 150-156
    51 F. Ye, S. Chen, M. Iwasa. Synthesis and Properties of Barium Alumino- silicate Glass Ceramic Composites Reinforced with in situ Grown Si3N4 Whiskers. Scripta Materialia. 2003, 48: 1433-1438
    52 P. F. Becher, E.Y. Sun, K.P. Plucknett. Microstructure Design of Silicon Nitride with Improved Fracture Toughness: I, Effects of Grain Shape and Size. Journal of the American Ceramic Society. 1998, 81: 2821-2830
    53 F. C. Peillon, F. Thevenot. Grain Coarsening in Gas Pressure Sintered Silicon Nitride. Ceramics International. 2002, 28: 637-643
    54 N. Hirosaki, Y. Akimune. Effect of Grain Growth of β-Silicon Nitride on Strength, Weibull Modulus, and Fracture Toughness. Journal of the American Ceramic Society. 1993, 76: 1892-1894
    55 K. Hirao, M. E. Brito, M. Toriyama. Further Improvement in Mechanical Properties of Highly Anisotropic Silicon Nitride Ceramics. Journal of theAmerican Ceramic Society. 2000, 83(3): 495–500.
    56 K. Hirao, M. Ohasi, M. E. Brito. Processing Strategy for Producing Highly Anisotropic Silicon Nitride. Journal of the American Ceramic Society. 1995, 78(6):1687–90.
    57 M. Nakamura. Tribological Behaviour of Uni-directionally Aligned Silicon Nitride against Steel. Wear. 2002, 252: 484-490
    58 M. Nakamura, K. Hirao, Y. Yamauchi, S. Kanzaki. Tribological Properties of Unidirectionally Aligned Silicon Silicon Nitride. Journal of the American Ceramic Society. 2001, 84: 2579-2584
    59 F. Lofaj, S. M. Wiederhorn, G. G. Long. Non-cavitation Tensile Creep in Lu-Doped Silicon Nitride. Journal of the European Ceramic Society. 2002, 22: 2479-2487
    60 A. Bhatnagar, M. J. Hoffman, R. J. Dauskardt. Fracture and Subcritical Crack-Growth Bbehavior of Y-Si-Al-O-N Glasses and Si3N4 ceramics. Journal of the American Ceramic Society. 2000, 83: 585-596
    61 P. F. Becher, E. Y. Sun, C. H. Hsueh. Debonding of Interfaces between Beta Silicon Nitride Whiskers and Si-Al-Y Oxynitride Glasses. Acta Metallurgica. 1996, 44: 3881-3893
    62 X. Su, H. Garofalini. Atomistic Structure of Calcium Silicate Intergranular Film between Prism and Basal Planes in Silicon Nitride: a Molecular Dynamics Study. Journal of Materials Research. 2004, 19: 752-758
    63 H. J. Kleebe, G. Pezzotti. Microstructure and Fracture Toughness of Si3N4 Ceramics: Combined Roles of Grain Morphology and Secondary Phase Chemistry. Journal of the American Ceramic Society. 1999, 82: 1857-1867
    64 D. R. Clarke, On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials. Journal of the American Ceramic Society. 1987, 70: 15-22
    65 L. K. Falk, G. L. Dunlop. Crystallization of the Glassy Phase in a Si3N4 Material by Post-Sintering Heat Treatments. Journal of Materials Science. 1987, 22: 4369-4376
    66 D. R. Clarke. High Temperature Microstructure of a Hot-Pressed Silicon Nitride. Journal of the American Ceramic Society. 1989, 72: 1604-1609
    67 F. F. Lange. Liquid-phase Sintering in the System Si3N4-Si2N2O-Mg2SiO4, Journal of the American Ceramic Society. 1979, 62: 617-619
    68 M. K. Cinibulk, H. J. Kleebe, G. A. Schneider. Amorphous Intergranular Film in Silicon Nitride Ceramics Quenched from High Temperature. Journal of the American Ceramic Society. 1993, 76: 2801-2808
    69 M. Sheldon, K. Ferber. Silicon Nitride for Gas Turbines. Current Opinion in Solid State and Materials Science. 2001, 5: 311-316
    70 F. Lofaj. Tensile Creep Behavior in an Advanced Silicon Nitride. Materials Science and Engineering A. 2000, 279: 61-72
    71 S. Guo, N. Hirosaki, Y. Yamamoto. Improvement of High-Temperature Strength of Hot-Pressed Sintering Silicon Nitride with Lu2O3 Addition. Scripta Materialia. 2001, 45: 867-874
    72 S. Yoon, T. Akatsu, E. Yasuda. The Microstructure and Creep Deformation of Hot-pressed Si3N4 with Different Amounts of Sintering Additives. Journal Materials Research Society. 1996, 11: 120-126
    73 Z. K. Huang, I. W. Chen. Rare Earth Melilite Solid Solution and its Phase Relations with Neighboring Phases. Journal of the American Ceramic Society. 1996, 79: 2091-2097
    74 W. Y. Sun, D. S. Yan, L. Ga. Subsolidus Phase Relatioships in the System Dy2O3-Si3N4-AlN-Al2O3. Journal of the European Ceramic Society. 1996, 16: 1277-1280
    75 N. Hirosaki, Y. Yamamoto, T. Nishimura. Phase Relationships in the Si3N4-SiO2-Lu2O3 System. Journal of the American Ceramic Society. 2002, 85: 2861-2863
    76 A. Rosenflanz, I. W. Chen. Phase Relationships and Stability of α-SiAlON. Journal of the American Ceramic Society. 1999, 82: 1025-1036
    77 W. Y. Sun, T. Y. Tien, D. S. Yan. Subsolidus Phase Relationships in Part of the System Si-Al-Y/N-O: the System Si3N4-AlN-YN-Y2O3. Journal of the American Ceramic Society. 1991, 74: 2753-2758
    78 W. Y. Sun, T. Y. Tien, D. S. Yan. Solubility Limits of α-SiAlON Solid Solutions in the System Si-Al-Y/N-O. Journal of the American Ceramic Society. 1991, 75: 2547-2550
    79 W. Y. Sun, D. S. Yan, L. Guo. Subsolidus Phase Relationships in the System Ln2O3-Si3N4-AlN-Al2O3 (Ln=Nd, Sm). Journal of the European Ceramic Society. 1995, 15: 349-355
    80 Z. J. Shen, M. Nygren. On the Extension of α-SiAlON Phase Area in Yttrium and Rare-Earth Doped Systems. Journal of the European Ceramic Society. 1997, 17: 1639-1645
    81 P. Drew, M. H. Lewis. The Microstructure of Silicon Nitride Ceramics during Hot-Pressing Transformations. Journal of Materials Science. 1974, 9: 261-269
    82 K. M. Benn, F. L. Riley. The Reaction Hot Pressing of Compositions in the System Al-Si-O-N Corresponding to β-SiAlON. Journal of Materials Science. 1980, 15: 1407-1416
    83 M. H. Lewis, R. H. Lumby. Nitrogen Ceramics: Liquid Phase Sintering. Powder Metall. 1993, 26: 73-81
    84 M. Havier, P. L. Hansen. Hot-Pressing and α-β Phase Transformation of Compositions Corresponding to β-SiAlON. Journal of Materials Science. 1990, 25: 992-996
    85 M. Menon, I. W. Chen. Reaction Densification of α-SiAlON: I, Wetting Behavior and Acid-Base Reactions. Journal of the American Ceramic Society. 1995, 78: 545-552
    86 M. Menon, I. W. Chen. Reaction Densification of α-SiAlON: II, Densification Behavior. Journal of the American Ceramic Society. 1995, 78: 553-559.
    87 D. Adem, T. Derek. High Performance SiC-fibre Reinforced β-SiAlON CMCs Prepared from Heat Treated Nicalon fibres. Journal of the European Ceramic Society. 2001, 21: 639-647
    88 F. F. Xu, S. L. Wen, L. O. Nordberg, E. Thommy. TEM Study of Y-doped α-SiAlON Composite with 10 vol% TiN Particulates. Materials Letters. 1998, 34: 248-252
    89 Z. B. Yu, D. P. Thompson, A. R. Bhatti. Synergistic of Carbon Fibres and ZrO2 Partic in Strengthening and Toughening Li–α–SiAlON Composites. Journal of the European Ceramic Society. 2002, 22: 225-235
    90 L. Kalk, Z. Shen, T. Ekstrom. Microstructural Stability of Duplex α-β-SiAlON Ceramics. Journal of the European Ceramic Society. 1997, 17: 1099-1112
    91 H. Mandal, D. P. Thompson, T. Ekstrom. Reversible α-β SiAlON Transformation in Heat-treated SiAlON Ceramics. Journal of the European Ceramic Society. 1993, 12: 421-429
    92 F. I. Bulic, G. Korb, P. Sajgalik, Z. Lences. Gradient Structures in SiAlONs forImproved Cutting Performance. Key Engineering Materials. 2004, 264-268: 901-904
    93 J. Kim, A. Rosenflanz, I. W. Chen. Microstructure Control of in situ Toughened α-SiAlON ceramics. Journal of the American Ceramic Society. 2000, 12: 1819-1821
    94 Y. W. Li, P. L. Wang, W. Chen. Anisotropic Grain Growth of R-α-SiAlON (R =Nd and Er). Journal of Materials Science. 2001, 36: 807-810
    95 C. Zhang, K. Komeya, J. Tatami. Inhomogeneous Grain Growth and Elongation of Dy-a SiAlON Ceramics at Temperatures above 1800℃ . Journal of the European Ceramic Society. 2000, 20: 939-944
    96 M. Zenotechkine, R. Shuba, I. W. Chen. Effect of Seeding on the Microstructure and Mechanical Properties of α-SiAlON: I, Y-SiAlON. Journal of the American Ceramic Society. 2002, 85: 1254-1259
    97 R. Shuba, I. W. Chen. Effect of Seeding on the Microstructure and Mechanical Properties of α-SiAlON: II, Ca-SiAlON. Journal of the American Ceramic Society. 2002, 85: 1260-1267
    98 A. Rosenflanzy, I. W. Chen. Kinetics of Phase Transformations in SiAlON Ceramics: I. E.ects of Cation Size, Composition and Temperature. Journal of the European Ceramic Society. 1999, 19: 2325-2335
    99 Z. Shen, Z. Zhao, H. Peng. Formation of Tough Interlocking Micro-structures in Silicon Nitride Ceramics by Dynamic Ripening. Nature. 2002, 417: 266-269
    100 H. Peng, Z. Shen, M. Nygren. Formation of In-Situ Rerinforced Microstructures in α-SiAlON Ceramics: Part III. Static and Dynamic Ripening. Journal of Materials Research. 2004, 19: 2402-2409
    101 F. Ye, M. J. Hoffmann, S. Holzer. Effect of the amount of Additives and Post-Heat Treatment on the Microstructure and Mechanical Properties of Y-α-SiAlON Ceramics. Journal of the American Ceramic Society. 2003, 86(12): 2136-2142
    102 Z. Shen, T. Ekstroem, M. Nygren. Temperature Stability of Samarium doped α-SiAlON Ceramics. Journal of the European Ceramic Society. 1996, 16: 43-53.
    103 Z. Shen, T. Ekstroem, M. Nygren. Homogeneity Region and Thermal Stability of Neodymium Doped α-SiAlON Ceramics. Journal of the American Ceramic Society. 1996, 79: 721-732
    104 N. Camuscu, D. P. Thompson, H. Mandal. Effect of Starting Composition, Type of Rare Earth Sintering Additive and Amount of Liquid Phase on α-β SiAlON Transformation. Journal of the European Ceramic Society. 1997, 17: 588-613
    105 Y. B. Cheng, D. P. Thompson. Preparation and Grain Boundary Devitrification of Samarium α-SiAlON ceramics. Journal of the European Ceramic Society. 1994, 14: 13-21
    106 Z. Shen, P. Kall, M. Nugren. Effects of Phase Equilibrium on the Oxidation Behavior of Rare Earth Doped α-SiAlON Ceramics. Journal of Materials Research. 1999, 14: 1462-1470
    107 M. I. Jones, K. Hirao, Y. Yamauchi. Wear Behavior of Single Phase and Composite SiAlON Ceramics Stabilized with Y2O3 and Lu2O3. Journal of the European Ceramic Society. 2004, 24: 3271-3277
    108 M. I. Jones, K. Hirao, Yukihiko Yamauchi. Effects of Rare-Earth Species on the Wear Properties of α-SiAlON and β Silicon Nitride Ceramics under Triochemical Type Conditions. Journal of Materials Research. 2004, 19: 2750-2758
    109 M. I. Jones, H. Hyugab, K. Hirao. Wear Properties under Dry Sliding of Lu-α-SiAlONs with in situ Reinforced Microstructures. Journal of the European Ceramic Society. 2004, 24: 3581-3589
    110 M. I. Jones, K. Hirao. Wear Properties of Self Reinforced α-SiAlON Ceramics Produced by Spark Plasma Sintering. Wear. 2004, 257: 292-296
    111 P. Pettersson, Z. Shen, M. Johnsson. Thermal Shock Resistance of β-SiAlON ceramic. Journal of the European Ceramic Society. 2002, (22): 1361-1364
    112 P. Pettersson, Z. Shen. Thermal shock resistance of α/β-SiAlON Ceramic Composites. Journal of the European Ceramic Society. 2001, (21): 1001-1004
    113 H. T. Lin, M. K. Ferber. Mechanical Reliability Evaluation of Silicon Nitride Ceramic Components after Exposure in Industrial Gas Turbines. Journal of the European Ceramic Society. 2002, 22: 2789-2797
    114 H. Klemm. Corrosion of Silicon Nitride Materials in Gas Turbine Environment. Journal of the European Ceramic Society. 2002, 22: 2735-2740
    115 M. K. Cinibulk, G. Thomas, S. M. Johnson. Oxidation Behavior of Rare Earth Disilicate Silicon Nitride Ceramics. Journal of the American Ceramic Society. 1992, 75: 2044-2049
    116 C. P. Gazzara, D. R.Messier. Determination of Phase Content of Si3N4 by X-rayDiffraction Analysis. Journal of American Ceramic Society Bulletine. 1977, 56: 777-780
    117 T. Ekstroem, M. Nygren, P. O. Olssen, Dense Singlephase β-SiAlON Ceramics by Glass-Encapsulated Hot Isostatic Pressing. Journal of Materials Science. 1998, 24: 1853-1861
    118 M. Omori. Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS). Materials Science and Engineering A. 2000, 287: 183-188
    119 S. H. Hwang, P. F. Becher. Desintering Process in the Gas-Pressure Sintering of Silicon Nitride. Journal of American Ceramics Society. 1997, 80: 329-335
    120 J. F. Yang, T. Ohji. Influence of Yttria-Alumina Content on Sintering Behavior and Microstructure of Silicon Nitride Ceramics. Journal of the American Ceramic Society. 2000, 83: 2094-2096
    121 Y. M. Sung, J. W. Ahn. Sintering and Crystallization of off-Stoichiometric BaO-Al2O3-SiO2 Glasses. Journal of Materials Science. 2000, 35: 4913-4918
    122 H. C. Lin, W. R. Foster. Studies in the System BaO-Al2O3-SiO2: I. The Polymorphism of Celsian. American Minerals. 1968, (53): 134-138
    123 K. K. Richardson. Barium Aluminosilicate Reinforced in situ with Silicon Nitride. Journal of the American Ceramic Society. 1995,78(10): 2662-2668
    124 F. Yu, K. W. White. Relationship between Microstrure and Mechanical Performance of Silicon Nitride Barium Aluminum Silicate Self-Reinforced Ceramic Composites. Journal of the American Ceramic Society. 2001, 84: 5-12
    125 S. W. Quander, A. Bandy, P. B. Aswath. Synthesis and Properties of in situ Si3N4-Reinforced BaO-Al2O3-SiO2 Ceramic Matrix Composites. Journal Materials Science. 1997, 32: 2021-2029
    126 A. Bandyopahyay, S. W. Quander, P. B. Aswath. Kinetics of in situ α to β-Si3N4 Transformation in a Barium Aluminosilicate Matrix. Scripta Metallurgica et Materialia. 1995, 32: 1417-1422
    127 D. W. Freitag. In situ Processed Si3N4 Whiskers in the System Barium Aluminosilicate-Si3N4. Materials Science and Engineering A. 1995, 195: 197-205
    128 F. Yu, C.R. Longo, K. W. white. The Microstructural Charcterization of in situ Grown Si3N4 Whisker-Reinforced Barium Aluminosilicate Ceramic Matrix Composite. Journal of Materials Science. 1999, 34: 2821-2835 - 117 -
    129 F. Yu, N. Nagarajan, Y. Fang. Microstructural Control of 70% Silicon Nitride Barium Aluminum Silicate Selfreinforced Composite. Journal of the American Ceramic Society. 2001, 84: 13-22
    130 Y. Fang, F. Yu, K. W. White. Bimodal Microstructure in Silicon Nitride-Barium Aluminum Silicate Cemramic-Matrix Composites by Pressureless Sinering. Journal of the American Ceramic Society. 2000, 83: 1828-1830
    131 Y. Fang, F. Yu, K. W. White. Microstructural Modification to Improve Mechanical Properties of a 70%Si3N4-BAS Selfreinforced Ceramic Composite. Journal of Materials Science. 2000, 37: 4411-4417
    132 K. Matshiro, T. Takahashi. The Effect of Grain Size on the Toughness of Sintered Si3N4. Ceramics Engineering and Science. 1989, 10: 807-816
    133 P. F. Becher, M. K. Ferber. Temperature Dependent Viscosity of SiREAl-Based Glasses as a Function of N:O and RE:Al Ratios. Journal of the American Ceramic Society. 2004, 87: 1274-1279
    134 M. A. Lamkin, F. L. Riley, R. J. Fordam. Oxygen Mobility in Silicon Dioxide and Silicate Glasses: A Review. Journal of the European Ceramic Society. 1992, 10: 347-367
    135 N. Hirosaki, Y. Akimune, M. Mitomo. Microstructure Design by Selective Grain Growth of β-Si3N4. Materials Research Society Symposium Process. 1993, 287: 405-410
    136 H. D. Kim, B. D. Han, D. S. Park. Novel Two-Step Sintering Pprocess to Obtain a Bimodal Microstructure in Silicon Nitride. Journal of the American Ceramic Society. 2002, 85: 245-252
    137 K. Hirao, T. Nagaoka, M. E. Brito. Mechanical Properties of Silicon Nitrides with Tailored Microstructure by Seeding. Journal of the Ceramic Society of Japan. 1996, 104(1):54-58
    138 M. J. Hoffmann, G. Petzow. Microstructure Design of Si3N4 Based Ceramics. Materials Research Society Symposium Process. 1993, 287: 3-15
    139 H. Emoto, H. Hirotsuru. Microstructure Control of Silicon Nitride Ceramics Fabricated from a Powder Containing Fine β-Nuclei, Journal of the Ceramic Society of Japan. 1999, 161-163: 469-474
    140 H. H. Lu, J. L. Huang. Microstructure in Silicon Nitride Containing β-Phase Seeding: III, Grain Growth and Coalescence. Journal of the American CeramicSociety. 2001, 84: 1891-1895
    141 N. P. Bansal. Celsian Formation in Fiber-Reinforced Barium Alumino- silicate Glass-Ceramic Matrix Composites. Materials Science and Engineering A. 2003, 342: 23-27
    142 C. H. Drummond. Application of Glass-Cermaic Process for the Fabrication of Wisker Reinforced Celsian-Composites. Ceramic Engineering Science Process. 1999, 11: 1078-1086
    143 S. M. Bleay, V. D. Scott. Effect of Heat Treatment in Air on the Structure and Properties of Barium Osumilite Rreinforced with Nicalon Fibres. Journal of Materials Science. 1992, 27: 825-838
    144 N. P. Bansal. CVD SiC Fiber Reinforced Barium Alumniosilicate Glass Ceramic Matrix Composites. Materials Science and Engineering A. 1996, 220:129-139
    145 N. P. Bansal. Mechanical Behavior of Silicon Carbide Fiber Reinforced Strontium Aluminosilicates Glass Ceramic Composites. Materials Science and Engineering A. 1997, 231: 117-127
    146 N. P. Bansal, J. A. Setlock. Fabrication of Fiber Reinforced Celsian Matrix Composites. Composites A. 2001, 32: 1021-1029
    147 钟连兵. Cf/BAS玻璃陶瓷基陶瓷材料的制备及其高温损伤机理. 哈尔滨工业大学硕士学位论文. 2006: 26-26
    148 N. Frety, A. Taylor, M. H. Lewis. Microstructure and Crystallisation Behavior of sol-gel Derived SrO-BaO-Al2O3-2SiO2 Glass-Ceramic. Journal of Non- crystalline Solid. 1996, 195: 28-37
    149 J. C. Debsikar. Effect of Zirconia Addition on Cystallinity, Hardness and Microstructure of gel Derived Barium Aluminosilicate. Journal of Materials Science. 1992, (27): 5320-5324
    150 C. Liu. Crystallization and Seeding Effect in BaAl2Si2O8 Gels. Journal of the American Ceramic Society. 1995, 78:2521-2526
    151 N. P. Bansal, C. H. Drummond. Kinetics of Hexacelsain to Celsian Phase Transformation in SrAl2Si2O8. Journal of the American Ceramic Society. 1993, 76:1321-1324
    152 N. P. Bansal, M. J. Hyatt. Crystallization Kinetics of BaO-Al2O3-SiO2 Glasses. Journal of Materials Research. 1989: 1257-1264
    153 B. Yoshiki, K. Matsumoto. High-Temperature Modification of Barium. Feldspar.Journal of the American Ceramic Society. 1951, 34: 283-287
    154 K. T. Lee, P .B. Aswath. Role of Mineralizers on the Hexacelsian to Celsian Transformation in the Barium Aluminosilicate System. Materials Science and Engineering A. 2003, 352: 1-7
    155 K. T Lee, P. B. Aswath. Kinetics of the Hexacelsian to Celsian Transformation in Barium Aluminosilicates Doped with CaO. International Journal of Inorganic Materials. 2001, 3: 687-692
    156 A. Bandyopadhyay, P. B. Aswath. W. D. Porter. The Low Temperature Hexacelsian to Orthorhombic Transformation in Si3N4 Reinforced BAS Matrix Composites. Journal of Materials Research. 1995, 10: 1256-1263
    157 刘利盟. Si3N4/BAS陶瓷基陶瓷材料的合成与显微组织优化. 哈尔滨工业大学硕士论文. 2003: 45-46
    158 A. Y. Liu, M. L. Cohen. Structural Properties and Electronic Strcture of Low Compressibility Materials: β-Si3N4 and Hypothetical β-C3N4. Physics Review B. 1990, 41: 727-734
    159 Z. Shen, M. Nygren. On the Extension of the α-SiAlON Phase Area in Yttrium and Rare Earth Doped System. Journal of the European Ceramic Society. 1997, 17: 1639-1645
    160 A. Rosenflanz, I. W. Chen. Kinetics of Phase Transformations in SiAlON Ceramics: II. Reaction Paths. Journal of the European Ceramic Society. 1999, 19: 2337-2348
    161 M Haviar. Influence of Oxygen Content on Formation of Yttrium α-SiAlON Ceramics. Journal of the American Ceramic Society. 1994, 77: 2425-2428
    162 P. L. Wang, J. H. Zhang, J. B. He. Formation Behavior and Microstructure of Multi Cation α-SiAlONs Containing Neodymium and Ytterbium or Yttrium. Journal of the European Ceramic Society. 2000, 20: 1987-1995
    163 P. O. Kall, T. Ekstrom. SiAlON Ceramics Made with Mixtures of Y2O3-Nd2O3 as Sintering Aids. Journal of the European Ceramic Society. 1990, 6: 119-127
    164 R. L. Satet. M. J. Hoffmann, R. M. Cannon. Experimental Evidence of the Impact of Rare Earth Elements on Particle Growth and Mechanical Behavior of Silicon Nitride. Materials Science and Engineering A. 206, 422: 66-76
    165 A. Ziegler, J. C. Idrobo, M. K. Cinibulk. Interface Structure and Atomic Bonding Characteristics in Silicon Nitride Ceramics. Science. 2004, 306: 1768-1770
    166 N. Shibata, S. J. Pennycook, T. R. Gosnell. Observation of Rare Earth Segration in Silicon Nitride Ceramics at Subnanometre Dimensions. Nature. 2004, 428: 730-732
    167 S. L. Hwang, I. W. Chen. Nucleation and growth of α-SiAlON on α-Si3N4. Journal of the American Ceramic Society. 1994, 77: 1711-1718
    168 H. Suematsu, M. Mitomo, T. Mitchell. The α-β Transformation in Silicon Nitride Sigle Crystals. Journal of the American Ceramic Society. 1997, 80: 615-620
    169 T. M. Shaw, J. W. Steeds, D. R. Clarke. Fault Structures in CVD Silicon Nitride. Journal of the American Ceramic Society. 1993, 76: 2136-2138
    170 P. F. Becher, S. L. Hwang, C. H. Hsueh. Using Microstructure to Attack the Brittle Nature of Silicon Nitride Ceramics. MRS Bulletine. 1995, 20: 21-27
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.