钛合金表面激光熔覆制备生物陶瓷涂层及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作利用高功率CO_2激光器,通过激光熔覆技术在Ti-6Al-4V合金表面制备了梯度生物活性陶瓷涂层,实现了钛合金的生物活化改性处理。通过光学显微镜(OM)、扫描电镜(SEM)、荧光显微镜、X射线衍射仪(XRD)、电子探针(EPMA)、同步热分析仪(TG-DSC)、电感偶合等离子体发射光谱仪(ICP)、显微硬度计等检测手段,主要开展了以下几方面研究:
     首先对本试验条件下的激光熔覆工艺参数进行了优化。当固定输出功率P=2.5kW、光斑尺寸D=15mm×1mm,激光熔覆扫描速度为120~160mm/min时方有可能生成HA。通过显微组织观察及显微硬度测试,结合激光熔覆传热、传质过程的分析计算,确定本工作条件下的优化工艺参数为:激光输出功率P=2.5kW,光斑尺寸D=15mm×1mm,扫描速度V=140mm/min,Ar气保护。
     其次对激光熔覆生物陶瓷复合涂层的组织结构进行了研究。结果表明:涂层与基材之间实现了牢固的冶金结合;由涂层至基体存在成分梯度,钛含量逐渐减少,磷、钙含量逐渐增多;涂层由HA、β-TCP、CaTiO_3等多种陶瓷相组成,熔覆粉末Ca/P为1.4时生物活性陶瓷相的生成能力更佳;凹凸不平的涂层表面除了具备典型的粒状和短杆状HA形貌特征外还出现了团絮状、蜂窝状及片状等多种微观形貌。多种形貌共存的表面使涂层的微观表面积大大增加,为新生骨组织的生长提供更多的接触面,起到更好的生物固定作用;局部出现的微孔(熔覆带中间区域孔径约为1~10μm,两侧约为100~600μm)通过组织液的微循环能使宿主骨长入材料并与之相互嵌插连成一体,对新生骨组织沿着攀附生长十分有利。
     本工作还研究了0.2~0.8wt.%稀土氧化物CeO_2对梯度复合涂层的影响及其催化合成机理。利用SEM、XRD、TG-DSC和显微硬度等检测手段发现:添加0.4~0.6wt.%CeO_2时涂层组织均匀,降低了熔覆层的开裂倾向性,对生成HA和β-TCP等生物活性陶瓷相具有促进作用;添加0.6wt.%CeO_2激光熔覆涂层中的断裂韧性值比未添加稀土氧化物试样略有提高,接近人体致密骨;涂层中添加0.6wt.%CeO_2的残余应力比未添加稀土氧化物涂层中的小;结合反应动力学计算,提出稀土氧化物CeO_2催化生物活性陶瓷相的可能机理:对应生物活性陶瓷相可能生成的温度范围,添加0.6wt.%CeO_2体系对应温度范围的反应活化能比未添加稀土氧化物体系的小,更易使反应物分子热激活成为可以发生有效碰撞的活化分子,使生物活性陶瓷相能在更大的温度范围内形成,提高HA和β-TCP的高温稳定性,从而促进HA等生物活性相的生成。
     最后,通过模拟体液浸泡和体外细胞培养实验对激光熔覆生物陶瓷复合涂层的生物活性和细胞相容性进行了测试。模拟体液浸泡实验表明,激光熔覆生物陶瓷复合涂层具备生物活性。利用SEM、XRD、EDX、ICP等检测手段发现:随着在SBF中浸泡时间的延长,涂层表面团絮状物质不断增多,磷灰石相在其表面形核并不断长大;表面沉积物以片状为主,还出现了球状、毛绒状及一些密集生长的细针状等,局部还发现了少量HA晶须(直径约0.3~0.8μm,长径比约为10~40),这对增强涂层韧性十分有利。该涂层在SBF中浸泡后磷灰石所对应的衍射峰明显增强,CaO对应的衍射峰强度大幅降低,表明该涂层在SBF溶液中具有快速诱导磷灰石沉积的能力。而未处理的基材即使在SBF中浸泡14天后,其表面仍未生成磷灰石相的沉积物,只有残留的浸泡痕迹及生长的盐类沉积物。
     体外细胞培养实验表明,随细胞培养时间(2d、4d、6d)的延长,激光熔覆生物陶瓷涂层表面的细胞增殖呈现上升趋势,而且其成骨细胞增殖数量比未处理的基材及培养板对照组高,细胞生长更为旺盛,细胞毒性评级为0级(无毒)。SEM观察发现细胞很好地铺展于涂层表面,紧密贴壁,呈长梭形,形态完整饱满,伪足往外伸展明显;荧光显微镜观察发现活细胞在涂层表面存活完好且成长旺盛。这表明该涂层能够很好的被成骨细胞所接受,具有良好的细胞相容性。
Based on high power CO_2 laser,the bioactive modified treatment of Ti-6Al-4V alloy was realized.The gradient bioactive ceramic coating was fabricated on the surface of Ti-6Al-4V alloy by laser cladding.The composite coating was investigated by optical microscopy(OM),scanning electron microscope(SEM), fluorescence microscope,X-ray diffraction(XRD),electron probe microanalysis (EPMA),thermal gravimetry and differential scanning calorimetry(TG-DSC), Inductively Coupled Plasma(ICP) and microhardness(HV) instrumentation.The main research results are as follows.
     Firstly,The processing parameters of laser cladding were optimized at the experimental condition.In the condition of laser output power 2.5kW and laser beam size 15mm×1mm,the hydroxyapatite could be probably formed at laser scanning speed of 120~160mm/min.Based on microstructure observation,microhardness and analytical calculations about heat transmission and mass transfer during laser cladding,the optimal processing parameters of laser cladding were as follows:laser output power 2.5kW,laser scanning speed 140mm/min,and laser beam size 15mm×1mm.
     Secondly,the microstructure of laser-cladded composite coating was investigated.The results indicated that the coating was metallurgically bonded to the titanium alloy substrate by the action of laser.Gradient component was varied from coating to substrate.The content of titanium was gradually decreased and the calcium and phosphorus were gradually increased.The laser-cladded composite coating contained such bioactive phases as hydroxyapatite(HA),β-tricalcium phosphate(β-TCP) and calcium titanate(CaTiO_3),etc.The ability of bioactive ceramic phases formation with clad powders of Ca/P=1.4 was better than other ratio. Besides granular and rod-like morphology of the classical HA morphology,the morphology of flocculent,honeycomb and micropore existed on the surface of composite coating.The appearances of multiform morphologies on the coating made the areas of coating extremely increased.And more contact area was provided for the growth and biofixation of new bone tissue.The pores(aperture:clad belt 4~9μm; clad edge 30~80μm) existed in local zone made the host bone grow into materials by the microcirculation of tissue fluid and combined together with chimerism.These may be in favor of the osseous tissue to grow along.
     Thirdly,the effect of 0.2~0.8wt.%rare earth oxide CeO_2 on laser-cladded bioactive ceramic coating and the mechanism was also investigated by SEM,XRD, TG-DSC and microhardness.The results indicated that the microstructure of coating of 0.4~0.6 wt.%rare earth oxide CeO_2 was homogeneous.Moreover,the addition of 0.4~0.6 wt.%CeO_2 could reduce the tearing tendency and accelerate the formation of HA andβ-TCP bioactive phases.According to the kinetics of reaction model,the activation energy of the system of 0.4~0.6wt.%CeO_2 addition was smaller than the system of without rare earth oxide on the temperature region of bioactive ceramic phase formation.Therefore,the molecule of reaction could easily form activated molecule of effective collision.The bioactive ceramic phases could form in an extensively range of temperature.The stabilization of high temperature was enhanced and the formation of HA bioactive phases was accelerated.
     The Simulated Body Fluid(SBF) test indicated that the composite coating at the experimental condition was of bioactivity by SEM,XRD,Energy Dispersive X-ray analysis(EDX) and Inductively Coupled Plasma(ICP).After soaking in SBF,the flocculent precipitates were increased on the surface of coating and the apatite phases were gradually nucleated and grew.The morphology of precipitates was mainly composed of flake-like and the globular,flocculent and acicular morphology were also appeared.Moreover,the appearance of a small quantity of crystal whisker (diameter about 400nm,slenderness ratio about 40~100) in local zone sufficiently benefited intensify toughness.The diffraction peak of apatite extremely intensified and the CaO distinctly decreased when the coating soaked in SBF.It indicated that the coating had the ability of depositing apatite quickly.However,the untreated substrate was not formed the apatite precipitates after a long soaking period of 14days.The surface was merely formed trace of soaking and some precipitation of salts.
     The cell cutured in vitro test indicated that cell proliferation on the surface of coating exhibited ascending tendency.The osteoblast proliferation quantity of coating was higher than the untreated substrate and the cultured plate.The cell growth on the surface of coating was more luxuriance and the cytotoxicity grade was zero.The cells were well attached and spread on the surface of the coating exhibiting spindle-shaped morphologies.The cell pasted the wall closely.And the morphology was complete and full and the pseudopod obviously spread to outward.The state of viable cell was observed by fluorescence microscope.The results indicated that the viable cell commendably spread on the bioceramic coating,keeping their healthy spindle-shaped morphologies.Furthermore,the SEM morphology was corresponding to the MTT colorimetry results of cell proliferation count.The coating was fine accepted by osteoblast and had well cell biocompatibility.
引文
[1]师昌绪.材料大辞典[M].北京:化学工业出版社,1994.
    [2]崔福斋,冯庆玲.生物材料学[M].北京:科学出版社,1997.
    [3]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000.
    [4]S.I.Stupp,P.V.Braun.Molecular Manipulation of Microstructures:Biomaterials,Ceramics,and Semiconductors[J].Science,1997,277(5330):1242-1248.
    [5]C.L.F.Chau,J.F.Griffith.Musculoskeletal infections:ultrasound appearances[J].Clinical Radiology,2005,60(2):149-159.
    [6]P.E.Ochsner,S.Hailemariam.Histology of osteosynthesis associated bone infection[J].Injury,2006,37(2):S49-S58.
    [7]H.Kawahara.Bioceramics for hard tissue replacements[J].Clinical Materials,1987,2(3):181-206.
    [8]奚廷斐.生物材料进展[J].生物医学工程与临床,2004,8(3):184-189.
    [9]张兴栋.生物医用材料国际市场走势[J].新材料产业,2005,11:27-32.
    [10]K.L.Burg,S.Porter,J.Kellam.Biomaterial developments for bone tissue engineering[J].Biomaterials,2000,21(23):2347-2359.
    [11]D.L.Shi.Introduction to Biomaterials[M].Beijing:Tsinghua University Press,2005.
    [12]阮建明,邹俭鹏,黄伯云.生物材料学[M].北京:科学出版社,2004.
    [13]L.L.Hench,J.M.Polak,I.D.Xynos,et al.Bioactive materials to control cell cycle[J].Materials Research Innovations,2000,3(6):313-323.
    [14]郑玉峰,李莉.生物医用材料学[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [15]邱贵兴.骨科学[M].北京:中国协和医科大学出版社,2002.
    [16]Anne Mayes.Materials for Biomedical Applications(MIT OpenCourseWare),2006.http://www.core.org.cn/OcwWeb/Materials-Science-and-Engineering/3-051JSpring2004/CourseHome
    [17]Mar(?)a Vallet-Reg(?),Jos(?) Mar(?)a Gonz(?)lez-Calbet.Calcium phosphates as substitution of bone tissues[J].Progress in Solid State Chemistry,2004,32(1-2):1-31.
    [18]D.F.威廉姆斯,朱鹤孙译.材料科学与技术丛书(第14卷):医用与口腔材料[M].北京:科学出版社,1999.
    [19]Sandrine Dayd(?),Delphine Champmartin,Patrice Rubini,et al.Aluminium speciation studies in biological fluids.Part8.A quantitative investigation of Al(Ⅲ)-amino acid complex equilibria and assessment of their potential implications for aluminium metabolism and toxicity[J].Inorganica Chimica Acta,2002,339(15):513o524.
    [20]T.M.Rice,R.W.Clarke,J.J.Godleski,et al.Differential ability of transition metals to iInduce pulmonary inflammation[J].Toxicology and Applied Pharmacology,2001,177(1):46-53.
    [21]T.Kasuga.Bioactive calcium pyrophosphate glasses and glass-ceramics[J].Acta Biomaterialia,2005,1(1):55-64
    [22]X.X.Yan,X.H.Huang,C.Z.Yu,et al.The in-vitro bioactivity of mesoporous bioactive glasses[J].Biomaterials,2006,27(18):3396-3403
    [23]李世普,陈晓明.生物陶瓷[M].武汉:武汉工业大学出版社,1989.
    [24]山口乔,柳田博明.生物陶瓷[M].北京:化学工业出版社,1992.
    [25]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004.
    [26]L.L.Hench,R.J.Splinter,W.C.Allen,et al.Bonding mechanisms at the interface of ceramic prosthetic materials[J].Journal of Biomedical Materials Research,1972,5(6):117-141.
    [27]J.A.Helsen,J.Proost,J.Schrooten,et al.Glasses and bioglasses:Synthesis and coatings [J].Journal of the European Ceramic Society,1997,17(2-3):147-152.
    [28]Qizhi Z.Chen,Ian D.Thompson,Aldo R.Boccaccini.45S5 Bioglass~-derived glass-ceramic scaffolds for bone tissue engineering[J].Biomaterials,2006,27(11):2414-2425.
    [29]H.A.Elbatal,M.A.Azooz,E.M.A.Khalil,et al.Characterization of some bioglass-ceramics[J].Materials Chemistry and Physics,2003,80(3):599-609.
    [30]T.Kokubo.Bioactive glass ceramics:properties and applications[J].Biomaterials,1991,12(2):155-163.
    [31]K.R.Williams,A.W.Blayney.An optical and electron microscopy study of materials implanted in the rat middle ear Ⅱ.A bioactive glass ceramic[J].Biomaterials,1986,7(4):287-291.
    [32]M.I.Kay,R.A.Young,A.S.Posner.Crystal structure of hydroxyapatite[J].Nature,1964,204(4963):1050-1052.
    [33]G.Boivin.The hydroxyapatite crystal:a closer look[J].Medicographia,2007,29(2):126-132.
    [34]H.B.Hu,C.J.Lin,R.Hu,et al.A study on hybrid bioceramic coatings of HA/poly(vinyl acetate) co-deposited electrochemically on Ti-6Al-4V alloy surface[J].Materials Sciences and Engineering C,2002,20(1-2):209-214.
    [35]Gary J.Cheng,Daniel Pirzada,M.Cai,et al.Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser[J].Materials science and Engineering C,2005, 25(4):541-547.
    [36]S.Joschek,B.Nies,R.Krotz,et al.Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone[J].Biomaterials,2000,21(16):1645-1658.
    [37]K.de Groot.Bioceramics consisting of calcium phosphate salts[J].Biomaterials,1980,1(1):47-50.
    [38]J.C.Le Huec,T.Schaeverbeke,D.Clement,et al.Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress[J].Biomaterials,1995,16(2):113-118.
    [39]D.Tadic,F.Beckmann,K.Schwarz,et al.A novel method to produce hydroxyapatite objects with interconnecting porosity that avoid sintering[J].Biomaterials,2004,25(16):3335-3340.
    [40]D.C.Tancred,B.A.O.McCORmack,A.J.Carr.A synthetic bone implant macroscopically identical to cancellous bone[J].Biomaterials,1998,19(24):2303-2311.
    [41]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000.
    [42]邓春林.Ca-P生物陶瓷表面类骨磷灰石的形成、机理及其成骨性能研究[四川大学博士学位论文].成都:四川大学,2004.
    [43]Jack E.Lemons.Ceramics:past,present,and future[J].Bone,1996,19(1):121-128.
    [44]L.Yin,X.F.Song,Y.L.Song,et al.An overview of in vitro abrasive finishing &CAD/CAM of bioceramics in restorative dentistry[J].International Journal of Machine Tools and Manufacture,2006,46(9):1013-1026.
    [45]方芳,阎玉华.β-TCP陶瓷的生物降解过程及机理探讨[J].硅酸盐学报,2003,22(4):75-77.
    [46]牟善松,毛萱,石海涛等.骨组织工程支架-多孔β-磷酸三钙陶瓷的制备与性能[J].材料科学与工程学报,2003,21(4):569-571.
    [47]C.M.Lopatin,T.L.Alford,V.B.Pizziconi,et al.A new technique for characterization of pore structures in materials—application to the study of hydroxyapatite thin films[J].Materials Letters,1998,37:211-214.
    [48]M.Sous,R.Bareille,F.Rouais,et al.Cellular biocompatibility and resistance to compression of macroporous β-tricalcium phosphate ceramics[J].Biomaterials,1998,19(23):2147-2153.
    [49]C.A.Wang,Y.Huang,Q.F.Zan,et al.Biomimetic structure design-a possible approach to change the brittleness of ceramics in nature[J].Materials science and Engineering C,2000,11(1):9-12.
    [50]C.T.Wu,J.Chang,W.Y.Zhai.A novel hardystonite bioceramic:preparation and characteristics[J].Ceramics International,2005,31:27-31.
    [51]H.L.Dai,S.P.Li,Y.H.Yan.The osteogenesis process of tricalcium phosphate ceramics in vivo[J].Transact Nonferr Metals Soc China,2003,13(1):65-68.
    [52]Y.H.Yan,S.P.Li,F.Chen.Studies on the biodegradation mechanism of beta-tricalcium phosphate ceramics[J].Journal of Wuhan University Technology,1997,12(4):1-6.
    [53]傅小妮,季金苟,冉均国等.双相钙磷生物陶瓷研究进展[J].化工进展,2004,23(2):158-161.
    [54]R.Z.Legreros,S.Lin,R.Rohanizadeh,et al.Biphasic calcium phosphate bioceramics:preparation,properties and applications[J].Journal of Materials Science:Materials in Medicine,2003,14:201-209.
    [55]A.Piattelli,A.Scarano,L.D.Alberti,et al.Histological and histochemical analyses of acid and alkaline phosphatases around hydroxyapatite-coated implants:a time course study in rabbit[J].Biomaterials,1997,18(17):1191-1194.
    [56]K.Kurashina,H.Kurita,Q.Wu,et al.Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits[J].Biomaterials,2002,23(2):407-412.
    [57]K.O.Henkel,T.Gerber,P.D(o|¨)rfling.Repair of bone defects by applying biomatrices with and without autologous osteoblasts[J].Journal of Cranio-Maxillofacial Surgery,2005,33(1):45-49.
    [58]J.Zhang,X.Zhang,U.Gross.The early host and material response of hydroxyapatite/β-TCP porous ceramics after implantation into the femur of rats[J].Journal of Materials and Science:Materials Medicne,1994,5:243-251.
    [59]M.Kon,K.Ishikawa,Y.Miyamoto,et al.Development of calcium phosphate based functional gradient bioceramics[J].Biomaterials,1995,16(9):709-714.
    [60]新野正之,平井敏雄,渡边龙三.倾斜机能材料—宇宙机用超耐热材料应用[J].日本复合材料学会志,1987,13(6):257-264.
    [61]S.Suresh,A.Mortensen.Functionally graded materials[M].London:The Institute of Materials,IOM Communications Ltd,1998.
    [62]储成林,朱景川,尹钟大等.HA-Ti/Ti/HA-Ti轴对称生物功能梯度材料的制备及其热应力缓和特性[J].中国有色金属学报,1999,9(S1):57-62.
    [63]H.Guo,K.A.Khor,Y.C.Boey.Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering[J].Biomaterials,2003,24(4):665-675.
    [64]邹俭鹏,阮建明,黄伯云.HA(ZrO_2)/316L不锈钢纤维对称功能梯度生物材料[J].材料研究学报,2005,19(3):261-268.
    [65]P.Cheang,K.A.Khor,L.L.Teoh,et al.Pulsed laser treatment of plasma-sprayed hydroxyapatite coatings[J].Biomaterials,1996,17(19):1901-1904.
    [66]K.A.Gross,C.C.Berndt.In vitro testing of plasma-sprayed hydroxyapatite coatings[J].Journal of Materials Science:Materials in Medicine,1994,5:219.
    [67]L.Sun,C.C.Berndt,K.A.Gross,et al.Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings:A review[J].Journal of Biomedical Materials Research,2001,58(5):570-592.
    [68]P.Fauchais,J.F.Coudert,M.Vardelle,et al.Plasma Spraying:Theory and Applications [M].Singapore:World Scientific,1993.
    [69]郑学斌,周霞明,张叶方等.等离子喷涂制备HA/TiO_2复合涂层[J].无机材料学报,1999,14(6):956-962.
    [70]K.de Groot,R.G.T.Geesink,P.Serekian,et al.Plasma sprayed coatings of hydroxylapatite[J].Journal of Biomedial Materials Research,1987,21:1375.
    [71]K.A.Thomas,J.F.Kay,S.D.Cook,et al.The effect of surface macrotexture and hydroxylapatite coating on the mecanical strengths and histologic profiles of titanium implant materials[J].Journal of Biomedial Materials Research,1987,21:1395.
    [72]郑学斌,丁传贤.等离子喷涂制备HA/ZrO_2复合涂层[J].无机材料学报,2000,15(2):341-346.
    [73]郑学斌,薛卫昌,丁传贤.生物陶瓷涂层材料的研究进展[J].生物骨科材料与临床研究,2004,1(6):1-4.
    [74]R.B.Heimann H.Kurzweg,T.Troczynski,M.L.Wayman.Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia[J].Biomaterials,1998,19(16):1507-1511.
    [75]C.Doyle Y.C.Tsui,T.W.Clyne.Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1:Mechanical properties and residual stress levels[J].Biomaterials,1998,19(22):2015-2029.
    [76]C.Doyle Y.C.Tsui,T.W.Clyne.Plasma sprayed hydroxyapatite coatings on titanium substrates Part 2:optimisation of coating properties[J].Biomaterials,1998,19(22):2031-2043.
    [77]王迎军,宁成云,赵子衷等.HA生物活性陶瓷涂层的爆炸法与等离子喷涂[J].华南理工大学学报,1998,26(7):124-128.
    [78]M.T.Pham,W.Taubert,M.B(u|¨)rger,et al.Biocompatible reactive titanium surface endowed by ion implantation[Annual report of institute of ion beam physics and materials research].Germany:1997.
    [79]刘江南.金属表面工程学[M].北京:兵器工业出版社,1995.
    [80]A.L.Hench,J.K.West.The sol-gel process[J].Chemistry Reviews,1990,90:22-72.
    [81]K.A.Gross,C.S.Chia,S.K.Kannangara,et al.Thin hydroxyapatite coating via sol-gel synthesis[J].Journal of Materials Science:Materials in Medicine,1998,8:839-843.
    [82]E.Milella,F.Cosentino,A.Licciulli.Preparation and characterization of titania/hydroxyapatite composite coatings obtained by sol-gel process[J].Biomaterials,2001,22(11):1425-1431.
    [83]陈元春,艾兴,黄传真.溶胶.凝胶法陶瓷涂层的界面结合机制和性能[J].科学通报,2000,45(5):497-502.
    [84]D.Krause,B.Thomas,C.Leinenbach,et al.The electrophoretic deposition of Bioglass(?)particles on stainless steel and Nitinol substrates[J].Surface and Coatings Technology,2006,200(16-17):4835-4845.
    [85]胡皓冰,林昌健,陈菲等.电化学沉积制备羟基磷灰石涂层及机理研究[J].电化学,2002,8(3):288-294.
    [86]M.H.Prado Da Silva,J.H.C.Lima,G.A.Soares.Transformation of monetite to hydroxyapatite in bioactive coatings on titanium[J].Surface and Coatings Technology,2001,137(2-3):270-276.
    [87]J.L.Zhu,Y.H.Zhou,C.Q.Gao.Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution[J].Journal of Power Sources,1998,72(2):231-235.
    [88]关振中.激光加工工艺手册[M].北京:中国计量出版社,1998.
    [89]M.F.Schneider.Laser cladding with powder[M].Ensehede:Print Partners Ipskamp,1998.
    [90]D.S.Gnanamuthu.Laser Surface Treatment[J].Optical Engineering,1980,19(5):783.
    [91]J.C.Ion.Laser processing of engineering materials[M].Oxford:Elsevier Butterworth-Heinemann,2005.
    [92]E.Toyserkani,A.Khajepour,S.Corbin.Laser Cladding[M].New York:CRC Press,2005.
    [93]D.S.Gnanamuthu.U.S.Patent 3952180,April,20,1976
    [94]李强,欧阳家虎,雷廷权等.材料表面激光熔覆研究进展[J].材料科学与工艺,1996,4(4):22-36.
    [95]C.P.Lin,F.H.Lin,Y.C.Tseng,et al.Treatment of tooth fracture by medium energy CO_2laser and DP-bioactive glass paste:compositional,structural,and phase changes of DP-bioglass paste after irradiation by CO_2 laser[J].Biomaterials,2000,21(6):637-643.
    [96]C.P.Lin,Y.C.Tseng,F.H.Lin,et al.Treatment of tooth fracture by medium-energy CO_2laser and DP-bioactive glass paste:the interaction of enamel and DP-bioactive glass paste during irradiation by CO_2 laser[J].Biomaterials,2001,22(5):489-496.
    [97]F.Lusqui(?)os,J.Pou,M.Boutinguiza,et al.Main characteristics of calcium phosphate coatings obtained by laser cladding[J].Applied Surface Science,2005,247(1-4):486-492.
    [98]张亚平,高家诚,谭继福等.激光熔覆生物陶瓷复合涂层[J].材料研究学报,1994,8(1):93-95.
    [99]K.A.Khor,A.Vreeling,Z.L.Dong,et al.Laser treatment of plasma sprayed HA coating [J].Materials Science and Engineering A,1999,266(1-2):1-7.
    [100]J.Lawrence,L.Li,J.T.Spencer.High power diode laser modification of the wettability characteristics of an Al_2O_3/SiO_2 based oxide compound for improved enamelling[J].Materials Science and Engineering A,1999,266(1-2):167-174.
    [101]李文,关振中.激光熔覆技术及其界面问题发展评述[J].金属热处理学报,1997,18(2):45-50.
    [102]赵冰,杜芝归.羟基磷灰石生物涂层的制备及其新进展[J].功能材料,2003,34(2):126-129.
    [103]F.Lusquinos,A.De Carlos,J.J.Pou.[J].Biomed Mater Res,2003,64A(4):630-637.
    [104]M.B.Major,J.L.Arias.Bioceramics coating prepared on tooth by laser ablation[J].Revista.de.Metalurgia(Spain),1998,34(2):89-93.
    [105]J.Pou,J.L.Arias,F.C.M.Driessens.Alloying of hydroxyapatite onto Ti6Al4V by high power laser irradiation[J].Journal of Materials Science:Materials in Medicine,2002,13:601-605.
    [106]L.Hao,J.Lawrence.CO_2 laser modification of the wettability characteristics of a magnesia partially stabilized zirconia bioceramic[J].Journal of Physics D:Applied Physics,2003,36(3):1292-1299.
    [107]L.Hao,J.Lawrence.CO_2 laser induced microstructure features in magnesia partially stablised zirconia bioceramic and effects thereof on the wettability characteristics[J].Materials Science and Engineering A,2004,364(1-2):171-181.
    [108]L.Hao,J.Lawrence,L.Li.Manipulation of the osteoblast response to a Ti-6Al-4V titanium alloy using a high power diode laser[J].Applied Surface Science,2005,247(1-4):602-606.
    [109]L.Hao,J.Lawrence,G.C.Lim,et al.Examination of CO_2 laser-induced rapid solidification structures on magnesia partially stabilised zirconia and the effects thereof on wettability characteristics[J].Optics and Lasers in Engineering,2004,42(3):355-374.
    [110]H.Li,K.A.Khor,P.Cheang.Young's modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings[J].Surface and Coatings Technology, 2002,155(1):21-32.
    [111]高家诚,张亚平,陈明飞.激光合成HA生物陶瓷涂层的热力学动力学研究[J].功能材料,1998,29(6):635-638.
    [112]高家诚,张亚平,文静.稀土对激光涂覆生物陶瓷涂层组织的影响[J].稀有金属材料与工程,1997,26(3):30-33.
    [113]高家诚,张亚平,文静.稀土对激光涂覆生物陶瓷涂层性能的影响[J].材料研究学报,1998,12(2):95-98.
    [114]王勇,高家诚,张亚平.激光熔覆梯度生物陶瓷涂层的研究[J].中国激光,2004,31(4):487-490.
    [115]张亚平,高家诚,文静.激光熔覆生物陶瓷涂层生物相容性的研究[J].材料科学与工程,1999,17(3):20-22.
    [116]刘其斌.宽带激光熔覆梯度生物陶瓷复合涂层及其生物相容性[大连理工大学博士学位论文].大连:大连理工大学,2005.
    [117]刘其斌,郑敏,朱维东等.钛合金表面宽带激光熔覆梯度生物陶瓷复合涂层[J].功能材料,2005,36(1):50-53.
    [118]T.Kokubo,H.Takadama.How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006,27(15):2907-2915.
    [119]李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2002.
    [120]刘江龙,邹至荣,苏宝嫆.高能束热处理[M].北京:机械工业出版社,1997.
    [121]李恒德,肖纪美.材料表面与界面[M].北京:清华大学出版社,1990.
    [122]J.A.Dean,尚久方等译.兰氏化学手册[M].北京:科学出版社,1991.
    [123]R.Vilar.Laser cladding[J].The International Journal of Powder Metallurgy,2001,37(2):31-48.
    [124]W.Kurz,D.J.Fisher.Fundamentals of solidification[M].Switzerland:Trans.Tech.Pub.,1989.
    [125]陈浩,刘传云,潘春旭等.激光熔覆钴基合金的凝固组织特征及性能研究[J].金属热处理,2001,26(12):10-13.
    [126]张敏,汪宏斌,全仁夫等.羟基磷灰石-二氧化锆生物复合材料的制备及其生物相容性[J].复合材料学报,2006,23(2):115-122.
    [127]G.Carotenuto,G.Spagnuolo,L.Ambrosio,et al.Macroporous hydroxyapatite as alloplastic material for dental applications[J].Journal of Materials Science:Materials in Medicine,1999,10(10-11):671-676.
    [128]卢建熙.多孔生物陶瓷的研究进展[J].材料科学与工程,2000,18(18):775-778.
    [129]Y.Oshida.Bioscience.and.Bioengineering.of.Titanium.Materials[M].Oxford:Elsevier,2007.
    [130]吴人洁.复合材料[M].天津:天津大学出版社,2000.
    [131]A.Kurella,N.B.Dahotre.Laser induced hierarchical calcium phosphate structures[J].Acta Biomaterialia,2006,2:677-683.
    [132]P.A.Kralchevsky,N.D.Denkov.Capillary forces and structuring in layers of colloid particles[J].Current Opinion in Colloid & Interface Science,2001,6(4):383-401
    [133]郑子樵,李红英.稀土功能材料[M].北京:化学工业出版社,2003.
    [134]卢惠民 邹兴,方克明.变价稀土氧化物对催化剂性能的影响[J].稀土,2000,2(21):17-19.
    [135]余宗森.稀土在钢铁中的应用[M].北京:冶金工业出版社,1987.
    [136]张玉梅,付涛,许可为,等.含镧羟基磷灰石的合成和性能研究[J].牙体牙髓牙周病学杂志,2000,10(3):149-151.
    [137]刘湘陶,李榕.镧,铈,钇,铽离子对人红细胞膜自由基氧化的影响[J].中国稀土学报,2000,18(1):88-90.
    [138]陈静,林鑫,王涛等.316L不锈钢激光快速成形过程中熔覆层的热裂机理[J].稀有金属材料与工程,2003,32(3):183-186.
    [139]王勇.钛合金表面激光合成与熔覆稀土生物陶瓷复合涂层的研究[重庆大学博士学位论文].重庆:重庆大学,2002.
    [140]M.Wang,X.Y.Yang,K.A.Khor,et al.Preparation and characterization of bioactive monolayer and functionally graded coatings[J].Journal of Materials Science:Materials in Medicine,1999,10:269-273.
    [141]S.Lin,D.A.Hills,P.D.Warren.A theoretical investigation of sharp indentation testing of a nearly-brittle material,with some experimental results[J].Journal of Mechanics and Physics of Solids,2000,48(10):2057-2075.
    [142]S.Carlsson,P.L.Larsson.On the determination of residual stress and strain fields by sharp indentation testing.Part Ⅰ:theoretical and numerical analysis[J].Acta Materialia,2001,49(12):2179-2191.
    [143]S.Carlsson,P.L.Larsson.On the determination of residual stress and strain fields by sharp indentation testing.Part Ⅱ:experimental investigation[J].Acta Materialia,2001,49(12):2193-2203.
    [144]M.Ogiso,Y.Yamashita,T.Matsumoto.Differences in microstructural characteristics of dense HA and HA coating[J].Journal of Biomedial Materials Research,1998,41:296.
    [145]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995.
    [146]徐瑞,荆天辅.材料热力学与动力学[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [147]袁子洲,陈学定,王冰霞.基于热分析的非晶合金非等温晶化动力学参数计算[J].材料科学与工艺,2008,16(1):103-106.
    [148]张维平,刘硕.激光熔覆原位生成TiB_2热力学及动力学分析[J].材料科学与工程学报,2004,22(5):701-705.
    [149]C.M.L.Wu,D.Q.Yu,C.M.T.Law,et al.Properties of lead-free solder alloys with rare earth element additions[J].Materials Science and Engineering R,2004,44(4):1-44.
    [150]Q.J.Zhai,S.K.Guan,Q.Y.Shang.Alloy Thermo-Mechanism:Theory and Application [M].Beijing:Metallurgy Industry Press,1999.
    [151]胡汉启.金属凝固原理[M].北京:机械工业出版社,2000.
    [152]K.L.Wang,Q.B.Zhang,M.L.Sun,et al.Rare earth elements modification of laser-clad nickel-based alloy coatings[J].Applied Surface Science,2001,174(3-4):191-200.
    [153]S.Fujibayashi,M.Neo,T.Kokubo,et al.A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na_2O-CaO-SiO_2 glasses[J].Biomaterials,2003,24(1):1349-1356.
    [154]T.Kokubo.Surface chemistry of bioactive glass-ceramics[J].Journal of Non-Crystalline Solids,1990,120(1-3):138-151.
    [155]T.Kokubo,H.M.Kim,M.Kawashita.Ceramics for biomedical applications[Handbook of Advanced Ceramics].Oxford:Academic Press,2003.
    [156]杨抚华,胡以平.医学细胞生物学[M].北京:科学出版社,2002.
    [157]T.Mosmann.Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J].Journal of Immunological Methods,1983,65(I-2):55-63.
    [158]K.C.Dee,黄楠译.组织-生物材料相互作用导论[M].北京:化学工业出版社,2005.
    [159]H.M.Kim,T.Himeno,T.Kokubo,et al.Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid[J].Biomaterials,2005,26:4366-4373.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.