五指仿人灵巧手的结构设计及其控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵巧手是仿人机器人系统的重要组成部分,影响着整个机器人系统的灵巧化、智能化水平。随着人类对空间等未知领域的探索,应用的广泛性和作业条件的复杂性对机器人灵巧手提出了更高的要求。研制智能化、灵巧化、稳定可靠的机器人灵巧手成为机器人领域重要的研究课题。本课题来源于国家科技部(863计划)先进制造技术领域“新一代五指仿人灵巧手及其协调控制的研究”。本课题结合机械、驱动、传感等领域的先进技术研制了HIT/DLR-II型五指仿人灵巧手,包括手指和手掌的本体结构设计、单指控制和多指抓取规划的研究。
     新一代HIT/DLR-II型仿人灵巧手具有高度集成化、模块化、高可靠性、易于维护以及具有可重构的手掌结构等特点。HIT/DLR-II灵巧手由五个模块化的手指组成,每个模块化的手指具有三个自由度、四个关节。由于采用微型的盘式电机、谐波减速器及合理的结构布置,该灵巧手的外形尺寸相对于上一代灵巧手得到了极大的改善。此外,新一代灵巧手还具有一个可重构化的手掌结构,包括五指的空间布置和内敛/外收的拇指结构。可以通过配置拇指的不同位置来满足不同的抓取要求。
     单指控制是多指控制的基础层和执行层。本文基于灵巧手的手指结构,分析了灵巧手的手指运动学、动力学和手掌运动学,为实现灵巧手控制做准备。手指控制分为自由空间的位置控制和约束空间的柔顺控制,本文实现了HIT/DLR-II灵巧手关节空间的位置控制、指尖笛卡尔空间的位置控制和基于位置的阻抗控制。
     抓取规划是实现HIT/DLR-II灵巧手抓取操作的前提。传统的多指抓取矩阵过于复杂,难于在实际中得到应用。本文通过总结抓取理论和简化抓取模型,提出了对不同尺寸的球体的抓取规划算法,确定最佳抓取点和手指的运动分配。最后通过在Adams中进行抓取仿真验证了算法的正确性。
As an important constructional part, hominine dexterous robot hand is affecting the intelligent and manipulative levels of the whole robot system. Along with the wider exploration of such unknown domains as outer-space, modern robot hand is needed to the application universality and the complexity of working condition. Developing dexterous hand with intelligence, dexterity and reliability has become one of the most promising researches in robot field. This dissertation roots in the national high technique program“a new generation of hominine dexterous robot hand with five fingers and its harmonious control system”. Based on advanced technologies in these fields as mechanical engineering, actuation and sensor, this dissertation designs a new generation of five-finger dexterous robot hand named HIT/DLR-II, including the structure of the finger and palm, single finger control system and multi-fingered Grasping planning.
     HIT/DLR-II hand has five identical fingers and total sixteen degrees of freedom. It has features of integration, modularity, reliability, reconfigurable palm and so on. On account of adopting subminiature electromotor and harmonic driver, the figuration and size of this generation hand has been greatly improved. Besides this, this hand also has a reconfigurable palm, including relatively spatial installation of fingers and a reconfigurable thumb.
     Singer finger control is the base and executive level of the hand control system. Base the finger structure, hand kinematics and dynamics is firstly analyzed, which is the preparation of control. Finger control consists of position control in free space and compliance control in constrained space. In this paper, HIT/DLR-II hand joint position control is proposed based on the PID mode position controller of actuator, then position control of finger tip in Cartesian space is done, and joint impedance control is adopting to realize finger compliance.
     Grasping planning is a precondition to realize multi-fingered manipulation. It’s very difficult for traditional multi-fingered kinematics to implement real grasping manipulation due to its complexity. This dissertation summarizes grasping theory and predigest grasping model, and then present a grasping algorithm to different size balls. Establish the most suitable grasp points and the kinematic distribution of fingers, the grasping algorithm is proved by emulated in Adams finally.
引文
1姜力.具有力感知功能的机器人灵巧手手指及控制的研究.哈尔滨工业大学博士论文. 2001.
    2刘伊威. DLR/HIT仿人灵巧手系统及手指柔顺控制的研究.哈尔滨工业大学博士论文.2007.
    3厉春元,陶卫民. Stanford/JPL假手结构分析[J].现代机械.2003(1):2~5.
    4 M.T.Mason, J.K.Salisbury. Robot Hands and the Mechanics of Manipulation. MIT Press,Cambridge,USA,1985:3-93.
    5 S.C.Jacobsen, J.E.Wood, D.F.Knutti, K.B.Biggers. The UTAH/MIT Dextrous Hand: Work in Progress. The International Journal of Robotics Research. 1984,3(4):21-50.
    6 C.S.Lovchik, M.A.Difler, The Robonaut Hand: A Dextrous Robotic Hand for Space, Proceedings of the IEEE International Conference on Robotics and Automation. Detroit, Michigan. 1999:907-912.
    7 http://www.shadowrobot.com/hand/
    8刘宏,G. Hirzinger.智能机器人灵巧手的研究—DLR Dextrous Robot Hand I and II.西安交通大学学报. 2003, 37(4):331~337.
    9 Butterfass, G. Hirzinger, S. Knoch, H. Liu. DLR’s Multisensory Articulated Hand, Part I: Hard- and Software Architecture. Proceedings of IEEE International Conference on Robotics and Automation. 1999:2081~2086.
    10 J. Butterfass, M. Grebenstein, H. Liu, DLR-Hand II: Next generation of a dexterous robot hand, In Proceedings of the 2001 IEEE International conference on Robotics & Automation. 2001, pp. 109-114.
    11 S. Haidacher, J. Butterfass, M. Fischer, et al. DLR Hand II: Hard- and Software Architecture for Information Processing, Proceedings of the 2003 International Conference on Robotics and Automation. 2003:684~689.
    12 Tetsuya Mouri, Haruhisa Kawasaki, Keisuke Yoshikawa, Jun Takai, Satoshi Ito. Anthropomorphic Robot Hand:Gifu Hand II: Virtual SystemLaboratory.2002:1288~1290.
    13王国庆,李大寨,钱锡康等.新型三指灵巧机械手的研究.机械工程学报. 1997,33(3):71-75.
    14 Y. Zhang, Z. Han, H. Zhang, et al. Design and Control of the BUAA Four-Fingered Hand, Proceedings of the 2001 IEEE International Conference on Robotics and Automation, 2001:2517~2522.
    15谢宗武. HIT-1机器人灵巧手及其柔顺控制的研究.哈尔滨工业大学博士论文.2003.
    16刘伊威,金明河. DLR/HIT仿人机器人灵巧手的设计.机械制造.2006,11:32-35.
    17 R. M. Murray. Control Primitive for Robot System. IEEE Trans. On Sys. Man. Cyb. 1992, 22(1):183~193.
    18杨汝清等.智能控制工程.上海交通大学出版社, 2001: 181~201.
    19 Thomas Doersam, and Peter Duerrschnied. Compensation of Friction in Mechanical Drivers for a Three Fingered Robot Gripper. IEEE Proc. IROS 1996: 1060~1067.
    20 David W. Franklin, Theodore E. Milner. Adaptive control of stiffness to stabilize hand position with large loads. Exp Brain Res. 2003, 152: 211~220.
    21 Kazuo Kiguchi, Takakazu Tanaka, and Toshio Fukuda. Neuro-Fuzzy Control of a Robotic Exoskeleton With EMG Signals. IEEE Transactions on Fuzzy Systems. 2004, 12(4): 481~490.
    22 Jiang Li, Liu Hong, Cai He-gao. Cartesian impedance control of dexterous robot hand. Journal of Harbin Institute of Technology. 2005,12(3): 239~344
    23 M.H. Raibert and J.J. Craig. Hybrid Position/Force Control of Manipulator. Trans. ASME, J. DSMC, 1981,103(2):126~133.
    24 H. Liu, P. Meusel, J. Butterfass, G. Hirzinger. DLR’s Multisensory Articulated Hand, Part II: The Parallel Torque/Position Control System. Proceedings of the IEEE International Conference on Robotics and Automation. Leuven, Belgium. 1998:2087-2093.
    25 H. Liu, J. Butterfass, S.Knoch, P.Meusel, G. Hirzinger. A New Control Strategy for DLR’s Multisensory Articulated Hand. IEEE Control Systems. 1999,19(2):47-54.
    26 J.K. Salisbury. Active Stiffness Control of a Manipulator in Cartesian Coordinates. Proc. 19th IEEE Conf. on Decision and Control. 1980: 984~992.
    27理查德.摩雷,李泽湘,夏恩卡.萨斯特里.机器人操作的数学导论.机械工业出版社,1997:139~170.
    28何平.基于物体阻抗的机器人灵巧手控制.哈尔滨工业大学博士论文. 2004.
    29王滨.机器人臂/手抓取及操作规划的研究.哈尔滨工业大学博士论文. 2007.
    30 Nguyen V. D, Constructing force–closure grasps. IEEE International Conference on Robotics and Automation. pp. 1368–1373, 1986.
    31 Ponce J. and Faverjon B. On computing three–finger force–closure grasps of polygonal objects, IEEE Transactions on Robotics and Automation, Vol. 11, No. 6, December 1995.
    32李家炜.多指仿人灵巧手协调抓取与遥操作的研究.哈尔滨工业大学博士后论文. 2001.
    33 Boivin, E, Sharf, I. Optimum grasp of planar and revolute objects with gripper geometry constraints. IEEE International Conference on Robotics and Automation. 2004.
    34 Nguyen T. N. And Stephanou H. E. A topological algorithm for continuous grasp planning. IEEE International Conference on Robotics and Automation, 1990.
    35杨磊.基于指尖传感器的DLR/HIT机器人灵巧手阻抗控制的研究.哈尔滨工业大学博士论文. 2005.
    36蔡自兴.机器人学.清华大学出版社.2000:265~272.
    37 Yoshikawa T., Zheng X. Coordinated dynamic hybrid position?force control for multiple robot manipulators handling one constrained object. the International Journal of Robotics Research. 1993.
    38 Hirzinger G, Butterfass J, Knoch S, Liu H. DLR's multisensory 4–fingered hand. 6th IEEE Mediterranean Conference on Control and System. 1998.
    39 Y. Liu. Computing n-finger form-closure grasps on polygonal objects. Int. J. Robotics Research. 2000.
    40 Maximo A. Roa and Raul Suarez. Independent contact regions for frictional graspson
    3D objects, IEEE International Conference on Robotics and Automation. 2008.
    41陶永华,尹怡欣,葛芦生.新型PID控制及应用.机械工业出版社,2000:1~4.
    42 Yu Zheng, Wen-Han Qian. Dynamic Force Distribution in Multifingered Grasping by Decomposition and Positive Combination. IEEE Transactions on Robotics. 2005, 21(4): 718~726.
    43 Jacopo Aleotti, Stefano Caselli. Grasp Recognition in Virtual Reality for Robot Pregrasp Planning by Demonstration. Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida, 2006.
    44姜力,蔡鹤皋,刘宏.多指灵巧手的位置/力矩控制.控制理论与应用. 2005, 22(3): 364~376.
    45陈铁鸣,王连明.机械设计.哈尔滨工业大学出版社.2004.
    46 L. Jiang, D. Sun, H. Liu, Y. H. Liu. Study on Inverse Kinematics and Trajectory Tracking Control of Humanoid Robot Finger with Nonlinearly Coupled Joints. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation. 2007: 3214~3219.
    47殷跃红,尉忠信,朱剑英.机器人柔顺控制研究.机器人. 1998, 20(3): 232~240.
    48郑建荣. ADAMS——虚拟样机技术入门与提高.机械工业出版社, 2002:12~15.
    49 G. Morel, E. Malis, and S. Boudet. Impedance Based Combination of Visual and Force Control. Proceedings of the IEEE International Conference on Robotics and Automation, 1998: 1743~1748.
    50卢江舟,熊有伦,熊蔡华.多指手的协调阻抗控制.华中理工大学学报, 1995, 23(7): 91~96.
    51 R. M. Marry. Control Primitive for Robot Systems. IEEE Trans. On Sys. Man. Cyb. 1992,22(1):183~193.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.