遗忘型轻度认知障碍和轻度阿尔茨海默病的MRI结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分aMCI与轻度AD基于体素的全脑形态学MRI研究
     目的:利用磁共振3D T1WI成像研究遗忘型轻度认知障碍(amnestic-type mild cognitive impairement,aMCI)、轻度阿尔茨海默病(Alzheimer's disease,AD)患者相对于正常老年人灰质体积改变的特点。方法:采用3.0T磁共振,对33例aMCI患者、32例轻度AD患者及31例正常老年人进行三维T1WI扫描,利用基于SPM5的DARTEL工具箱对扫描获得的结构图像进行预处理,再对aMCI组、轻度AD组和对照组的全脑灰质体积进行基于体素的统计学比较。结果:与正常老年组比较,aMCI组左侧海马、海马旁回、舌回、颞上回,双侧岛叶、颞中回等结构的灰质体积萎缩,其差异具有统计学意义(P<0.01,FDR corrected,K≥50体素)。轻度AD组的双侧海马、海马旁回及杏仁核、双侧丘脑、双侧颞顶叶皮质等结构灰质体积萎缩,额叶与枕叶皮质也出现灰质萎缩,其差异具有统计学意义(P<0.05,FDR corrected,K≥50体素)。结论:基于体素的形态学研究能够发现早期AD患者中大脑灰质广泛的及细微结构的萎缩,从而能够更加早期、全面,客观地反映aMCI、轻度AD患者的脑结构改变。
     第二部分aMCI与轻度AD基于体素的全脑DTI研究
     目的:应用磁共振弥散张量成像(DTI)技术,探讨aMCI、轻度AD患者的脑白质异常的变化特点。方法:采用3.0T磁共振,对33例aMCI患者、32例轻度AD患者及31例正常老年人进行DTI检查。运用SPM5分析软件,采用基于体素的分析方法,比较全脑FA值的差异及变化。结果:与正常老年组比较,aMCI组的双侧额颞叶,左侧枕下回旁白质、扣带前部、舌回旁白质、梭状回旁白质、顶下小叶,右侧脑室三角区外上方白质的FA值减低,其差异具有统计学意义(P<0.001,uncorrected,K≥20体素)。轻度AD组双侧额颞枕叶、海马旁白质、扣带前部、胼胝体、侧脑室三角区旁旁白质、顶下小叶,右侧楔前叶与楔叶、距状裂邻近白质、左侧颞干FA值减低,其差异具有统计学意义(P<0.001,uncorrected,K≥20体素)。与本课题第一部分出现灰质萎缩的部位进行比较,我们发现aMCI患者组脑白质FA值减低的脑区与灰质萎缩脑区大部分不一致,仅在左侧颞中叶有部位相近的差异区域;轻度AD患者组脑白质FA值减低的脑区与灰质萎缩脑区部分一致。结论:基于体素的全脑FA图分析,能够比较客观、全面地发现aMCI、轻度AD患者脑白质异常的区域。脑白质改变的模式与灰质萎缩的模式不尽相同,可能是多种因素导致的结果。
     第三部分aMCI与轻度AD的静息态fMRI研究
     目的:应用成组独立成分分析技术(GroupICA),探讨aMCI与轻度AD患者静息态脑功能的变化特点。方法:采用3.0T磁共振,对33例aMCI、32例轻度AD患者和31例正常老年人进行静息态fMRI扫描。运用REST、GIFT、SPM5分析软件,进行基于体素的全脑分析,比较静息态功能网络的变化。结果:种子相关分析及成组独立成分分析技术发现的正常老年组的默认模式网络构成脑区类似,包括:后扣带回(posterior cingulate cortex,PCC)、楔叶及楔前叶、顶下小叶、前额叶内侧区(Dorsal-medial prefrontal cortex,DMPFC)、前额叶背外侧区(Dorsal-lateral prefrontal cortex,DLPFC)、部分颞枕叶(P<0.05,FWER,K≥10体素),此外成组独立成分分析结果还包括双侧丘脑、海马、海马旁回、岛叶。aMCI患者默认模式网络中大部分脑区都出现了激活程度的减低,而在双侧楔前叶、楔叶、扣带回中部、壳核、纹状体、右侧顶下小叶出现激活程度的增加(P<0.05,FWER,K≥10体素);aMCI患者组视觉网络中BA(18、19)区在也出现了激活程度的增加(P<0.001,uncorrected,K≥10 voxels);轻度AD患者两个偏侧化的网络中右侧额中回(BA9)、右侧顶下小叶(BA40)、左侧顶下小叶(BA40)与顶上小叶(BA7)、左侧额叶(BA 6、9、8)的激活减弱及右侧额中回(BA 10、46)激活增加(P<0.05,FWER,K≥10体素)。默认模式网络激活程度减低的脑区中除了左侧海马等少许脑区,其余的静息态网络脑区功能的异常在形态学异常之前出现;两个偏侧化的网络中激活减弱的脑区未发现明显的灰质萎缩。DTI发现的结构连接的破坏为功能连接的异常提供了解剖学上的证据。结论:通过成组ICA可以在aMCI、轻度AD患者脑结构出现异常之前发现静息态脑功能网络特征性得改变。联合MRI结构与功能分析能够提供更多的信息,是将来研究的方向。
PARTⅠVoxel-Based MRI Analysis of Whole Brain Gray Matter in Patients withaMCI and mild Alzheimer's Disease
     Objective To study the pattern of volume changes of the whole braingray matter in patients with amnestic mild cognitive impairment(aMCI) and mildAlzheimer's disease (AD) by voxel-based morphometry (VBM). Material andMethods 33 patients with aMCI, 32 patients with mild AD and 31 normal agingvolunteers as control subjects were enrolled in the study. Gray matter volumedifferences of the whole brain were assessed using SPM5-based DARTEL toolbox tomake voxel-based morphometric comparison between patients and the control group.Results The volume of the left hippocampus,parahippocampal gyrus,lingualgyrus,superior temporal gyrus, bilateral insulae, middle temporal gyri,etc in the aMCIpatient group was significantly smaller than that in the control group (P<0.05, FDRcorrected,K≥50 voxels). The volume of the bilateral hippocampi, parahippocampalgyri, amygdalae,thalami,temporo-occipital gyri,inferior parietal lobules,superiorparietal lobules,precuneuses,middle frontal gyri,and left cuneus,fusiform gyrus, rightposterior cngulate gyrus,inferior frontal gyrus,etc in the mild AD patients group wassignificantly smaller than that in the control group(P<0.05,FDR corrected P<0.05,FDR corrected,K≥50 voxels). Conclusion VBM can reveal widespreadvolumetric reduction of gray matter's fine structure in early-stage Alzheimer's diseasewith the advantage of objectivity.
     PARTⅡWhite Matter Abnormalities in Patients with aMCI and mildAlzheimer's Disease investigated with Voxel-Vased Diffusion Tensor Imaging
     Objective To detect white matter abnormalities in patients with amnesticmild cognitive impairment(aMCI) and mild Alzheimer's disease (AD) by voxel-basedDTI analysis. Material and Methods 33 patients with aMCI,32 patients with mild ADand 31 normal aging volunteers as control subjects were enrolled in the study.Fractional anisotropy (FA) maps were preprocessed using SPM5 to make voxel-wisecomparison of anisotropy in whole brain between patients and the control group.
     Results Significant reductions in FA values were found in the white matter of inferioroccipital gyrus,anterior part of cingulum,lingual gyrus,fusiform gyrus,inferior parietallobule in the left side and the white matter adjacent to the triangular part of the rightlateral ventricle and the white matter in bilateral frontal and temporal lobes in patientswith aMCI(P<0.001,uncorrected, K≥20 voxels). In patients with mild AD, significantreductions in FA values were found in the corpus callosum,bilateral anterior part ofcingulum and the white matter of bilateral frontal lobes,temporal lobes,occipitallobes,inferior parietal lobules,right precuneus and cuneus and the white matter adjacentto bilateral hippocampi, the triangular part of the bilateral lateral ventricle and the rightcalcarine sulcus(P<0.001,uncorrected, K≥20 voxels). Most of the areas with reducedFA values were not consistent with those with reduced gray matter volume in patientswith aMCI.While some of the areas with reduced FA values were in concordance withthose with reduced gray matter volume in patients with mild AD.ConclusionVoxel-wise comparison of anisotropy in whole brain between patients and the controlgroup can reveal widespread reduction of white matter anisotropy in aMCI and mildAlzheimer's disease with the advantage of objectivity.The fact that the pattern ofanisotropic changes of white matter was not in concordance with that of volumetricreduction of gray matter reveals that white matter anisotropic changes may be outcomefrom a couple of factors rather than wallerian degeneration solely.
     PARTⅢResting-State Functional MRI Analysis in aMCI and mild Alzheimer'sDisease
     Objective To investigate the brain activity in resting-state of patientswith aMCI and mild Alzheimer's disease by GroupICA. Material and Methods 33patients with aMCI,32 patients with mild AD and 31 normal aging volunteers ascontrol subjects were scanned with 3.0T MRI.fMRI data were preprocessed with suchsoftwares as SPM5,REST,GIFT and then compared between patients and the controlgroup. Results GroupICA detected 8 resting-state networks which act for differentfunctions.The spatial map of Default mode network(DMN) of aging volunteersrevealed by ROI-based correlation analysis was similar with that found by GroupICAwhich includes bilateral PCC,precuneus,cuneus,inferior parietal lobules,dorsomedialprefrontal cortices(DMPFC),dorsolateral prefrontal cortices(DLPFC),part of temporaland occipital Iobes(P<0.05, FWER, K≥10 voxels).In addition, the DMN revealed byGroupICA also includes bilateral thalami,hippocampi,parahippocampi,insulae,whichindicate that ICA can reveal more areas than ROI-based correlationanalysis(P<0.05,FWER, K≥10 voxels). GroupICA found that most areas of DMN haddecreased BOLD signal while increased BOLD signal were found in such areas asbilateral precuneus,cuneus,the middle part of cingulate gyri, putamina, striatumes andfight inferior parietal lobule(P<0.05,FWER, K≥10 voxels).Increased activity werealso revealed in visual network(BA 18, 19) in patients with aMCI (P<0.001,uncorrected,K≥10 voxels).These areas may provide compensation for the malfunction of memorysystem.GroupICA found areas with decreased activity in 2 lateralized networks withincreased activity in fight middle frontal gyrus (BA10,46) in patients with mildAD(P<0.05,FWER, K≥10voxels).Both of the 2 lateralized networks play an importantrole in memory and attention function.Among all the areas of DMN found byGroupICA,only few areas such as left hippocampus presented gray matter atrophy aswell as decreased resting-state activity in the aMCI group.All the other areasmanifested decreased resting-state activity before the gray matter atrophy waspresented.The result of partⅡprovided the evidence that the damage of structuralconnectivity might be the physical foundation in the impairment of functionalconnectivity.Conclusion GroupICA can detect the abnormalities of resting-state brain activity before the structural altemation can be demonstrated.The combination ofstructural and functional analysis of the brain can reveal much more information thaneach of them solely, which is an important direction for future research.
引文
[1] Mckhann G, Drachman D,Folstein M,et al.Clinical diagnosis of Alzheime's disease :report of the N1NCDS -ADRDA work group under the auspices of Department of Health and Human Service Task Force on Alzheimer's disease.Neurology, 1984,34(7):909-944.
    [2] Petersen RC. Mild cognitive impairment as a diagnostic entity[J].Intem Med,2004, 256(3): 240-246.
    [3] Petersen RC, Doody R, Kurz A, et al.Current concepts in mild cognitive impairment[J].Arch Neurol,2001,58(12):1985-1992.
    [4] Petersen RC,Smith GE,Waring SC,et al.Mild Cognitive Impairment:Clinical Characterization and Outcome[J].Arch Neurology, 1999,56(6):303-308.
    [5] 郭小娟,姚力,金真.基于像素的形态测量学方法及其在脑图像处理中的应用.北京师范大学学报(自然科学版),2006,42(2):213-216.
    [6] Baron JC,Chetelat G, Desgranges B,et al.In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer' s disease. Neuroimage,2001,14:298-309.
    [7] Rombouts SA,Barkhof F, Witter MP, et al.Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease.Neurosci.Lett. 2000,285:231 - 233.
    [8] Bookstein FL. "Voxel-based morphometry" should not be used with imperfectly registered images. Neuroimage, 2001, 14:1454-1462.
    [9] Good CD,Johnsrude I,Ashburner J,et al.Cerebral asymmetry and the effects of sex and handedness on brain structure:a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage, 2001, 14:685-700.
    [10] Good CD,Johnsrude IS,Ashburner J,et al.A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage,2001:14, 21-36.
    [11] Karas GB, Burton EJ, Rombouts SARB,et al. A comprehensive study of gray matter loss in patients with Alzheimer' s disease using optimized voxel-based morphometry. NeuroImage,2003,18:895-907.
    [12] 董问天,刘琳,裴新龙等.基于像素形态测量法分析精神分裂症患者脑白质结构.中国组织工程研究与临床康复,2007,11(13):2454-58.
    [13] Ashburner J, Friston KJ .Unified segmentation.Neuroimage,2005,26 (3):839-851.
    [14] Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage,2007,July 3, 38:95-113.
    
    [15] Scahill RI, Schott JM, Stevens JM,et al.Mapping the evolution of regional atrophy in Alzheimer' s disease: unbiased analysis of fluid-registered serial. MRI Proc Natl Acad Sci USA,2002,99:4703 - 4707.
    
    [16] Shiino A,Watanabe T, Maeda K,et al.Four subgroups of Alzheimer' s disease based on patterns of atrophy using VBM and a unique pattern for early onset disease.NeuroImage,2006, 33:17-26
    
    [17] Mega MS, Small GW, Xu M, et al. Hippocampal atrophy in persons with age-associated memory impairment:volumetry within a common space. Psychosom Med 2002;64:487 - 92.
    
    [18] Paola MD,Macaluso E,Carlesimo GA,et al. Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy.A voxel-based morphometry study. Journal of Neurology, 2007, 254(6):774-781.
    
    [19] Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 1991, 82: 239-259.
    
    [20] Jernigan TL, Salmon DP, Butters N, et al.Cerebral structure on MR I, Part II:specific changes in Alzheimer's and Huntington's diseases. Biol Psychiatry, 1991,29:68-81.
    
    [21] Thompson PM, Mega MS, Woods RP,et al.Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas.Cereb Cortex 2001,11(1):1-13.
    
    [22] Deweer B, Lehericy S, Pillon B,et al.Memory disorders in probable Alzheimer's disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry, 1995,58:590 - 597.
    
    [23] Fox NC,Warrington EK,Freeborough PA,et al.Presymptomatic hippocampal atrophy in Alzheimer' s disease.A longitudinal MRI study.Brain, 1996,119:2001 -2007.
    
    [24] Petersen RC,Jack CR Jr,Xu YC,et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 2000,54:581 - 587.
    [25] Frisoni GB, Testa C, Zorzan A, et al.Detection of gray matter loss in mild Alzheimer' s disease with voxel based morphometry. J Neurol Neurosurg Psychiatry,2002,73:657 - 664.
    
    [26] Smith AD.Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci USA,2002,99:4135 - 4137.
    
    [27] Hirono N, Mori E, Ishii K,el al. Hypofunction in the posterior cingulate gyms correlates with disorientation for time and place in Alzheimers disease. J Neurol Neurosurg Psychiatry, 1998,64(4):552-554.
    
    [28] Rusinek H, Endo Y, De Santi S, et al. Atrophy rate in medial temporal lobe during progression of Alzheimer disease. Neurology 2004;63:2354 - 9.
    
    [29] Desgranges B, Baron JC, Eustache F.The functional neuroanatomy of episodic memory: The role of the frontal lobes, the hippocampal formation and other areas.[J].Neurolmage, 1998,8(2): 198-213.
    
    [30] Cavanna AE, TrimbleMR. The precuneus: a reviewof its functional an atomy and behavioural correlates[J]. Brain,2006,129(3):564-583.
    
    [31] Fransson P, Marrelec G The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis.Neurolmage, 2008,42:1178 - 1184.
    
    [32] Fox NC, Crum WR,Scahill RI,et al. Imaging of onset and progression of Alzheimer's disease with voxel compression mapping of serial magnetic resonance images. THE LANCET,2001,July 21,358:201-205.
    
    [33] Menon R,Ogawa S,Hu S,et al.BOLD based functional MRI at 4 Tesla includes a capillary bed contribution:Echo-Planar imaging coerrlates with pervious optical imaging using intrinsic signals.Mgan.Reson.Med,1995,33:453-459.
    
    [34] Rempp KA,BrixG,Wenz F,et al.Quantification of rCBF and volume with dynamic suseeptibiliyt contrast-enhanced MRI.Radiology,1994,193:637-641.
    
    [35] Delbeuck X, Van der Linden M, Collette F. Alzheimer's disease as a disconnection syndrome? Neuropsychol Rev 2003; 13:79 - 92.
    
    [36] Fox NC, Scahill RI, Crum WR,et al. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 1999;52:1687 - 1689.
    
    [37] Lassmann H,Bancher C,Breitschopf H,et al.Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol,1995,89:35-41.
    [38] Han X, Holtzman DM,McKeel DW. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem,2001,77:1168-1180.
    [39] Bronge L, Bogdanovic N, Wahlund LO.Postmortem MRI and histopathology of white matter changes in Alzheimer brains:A quantitative, comparative study. Dement Geriatr Cogn Disord, 2002,13:205-212.
    [40] Hart X, Holtzman M, McKeel DW, et al.Substantial sulfatide deficiency and ceramide elevation in very earlyAlzheimer' s disease:potential role in disease pathogenesis.J Neurochem, 2002, 82:809-818.
    [41] Stout JC, Jernigan TL, Archibald SL,et al. Association of dementia severity with cortical gray matter and abnormal white matter Volumes in dementia of the Alzheimer type.Arch. Neurol, 1996,53:742-749.
    [42] 段金海,汪华侨,陈少琼.阿尔茨海默病患者脑白质损害与认知功能的关系.中华神经科杂志,2006,39(2):76-79.
    [43] Bouhuys AL, Geerts E, Gordijn MCM. Depressed patients' perceptions of facial emotions in depressed and remitted states are associated with relapse: A longitudinal study. J Nerv Ment Dis, 1999, 187:595-602.
    [44] Surguladze SA, Young AW, Senior C, et al. Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology, 2004, 8:212-218.
    [45] Beaulieu C.The basis of anisotropic water diuffsion in the nervous system-a technical review.NMR Biomed,2002; 15:435-45
    [46] Piepraoli C,Jezzard P, Basser PJ,et al.Diffusion tensor MR imaging of the human brain.Radiology, 1996,201:637-648.
    [47] PiepraoliC, BanrettA, PajevieS, et al.Water diffusion changes in wallerian degeneration and their dependence on white matter architectuer.Neuroimage,2001,13:1174-1185,
    [48] werring DJ, Toosy AT, ClarkCA, etal.Diuffsion tensor imaging can detect and Quantify corticospinal tract degeneration after stroke.J Neurol Neuorsurg Psychiatry,2000;69:269-27.
    [49] Schmierer, K Wheeler-Kingshott CA, Boulby PA, Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage. 2007,1;35(2):467-77.
    [50]Bammer R,Augustin M, Strasser-Fuchs S, et al. Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med. 2000 Oct,44(4):583-91.
    
    [51] Rosso C, Remy P, Creange A.et al. Diffusion-weighted MR imaging characteristics of an acute strokelike form of multiple sclerosis. AJNR Am J Neuroradiol, 2006 May;27(5):1006-8.
    
    [52] Huang J, Friedland RP, Auchus AP. Diffusion Tensor Imaging of Normal-Appearing White Matter in Mild Cognitive Impairment and Early Alzheimer Disease: Preliminary Evidence of Axonal Degeneration in the Temporal Lobe. AJNR Am J Neuroradiol,2007,28:1943- 48.
    
    [53] Ikonomovic MD,Abrahamson EE,Isanski,et al. Superior Frontal Cortex Cholinergic Axon Density in Mild Cognitive Impairment and Early Alzheimer Disease.Arch Neurol. 2007;64(9):1312-1317.
    
    [54] Catani M, ffytche DH. The rises and falls of disconnection syndromes. Brain,2005, 128:2224-39.
    
    [55] Catani M, Howard RJ, Pajevic S, et al. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 2002,17:77-94.
    
    [56] Bartzokis G, Cummings JL, Sultzer D, et al.White matter structural integrity in healthy aging adults and patients with Alzheimer disease. Arch Neurol,2003,60:393 -398.
    
    [57] O' Brien JT, Wiseman R, Burton EJ, et al.Cognitive associations of subcortical white matter lesions in older people. Ann NY Acad Sci,2002,977:436 - 444.
    
    [58] Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review.Neuropsychology,2000,14:224 -232.
    
    [59] DeCarli C, Scheltens P. Structural brain changes. In: Vascular cognitive impairment (Erkinjuntti T, Gauther, eds). 2001:1 - 24.
    
    [60] Pfefferbaum A, Sullivan EV, Hedehus M, et al.Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med,2000,44:259-268.
    [61] O' Sullivan M, Jones DK, Summers PE, et al.Evidence for cortical ' disconnection' as a mechanism of age-related cognitive decline.Neurology,2001,57:632-638.
    
    [62] Abe O, Aoki S, Hayashi N,et al.Normal aging in the central nervous system:quantitative MR diffusion-tensor analysis. Neurobiol Aging,2002,23:433 - 441.
    [63] Medina D, Leyla deToledo-Morrell, Urresta F,et al. White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiology of Aging,2006, 27:663 - 672.
    
    [64] Sandson TA, Felician O, Edelman RR,et al.Diffusion weighted magnetic resonance imaging in Alzheimer's disease. Dement Geriatr Cogn Disord, 1999,10:166- 171.
    
    [65] Kantarci K, Jack CR, Xu YC, et al.Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology,2001,219:101 - 107.
    [66] Takahashi S, Yonezawa H, Takahashi J, et al.Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci Lett,2002,332:45 - 48.
    
    [67] Scheltens P, Barkhof F, Leys D, et al. Histopathologic correlates of white matter changes on MRI in Alzheimer's disease and normal aging.Neurology,1995;45:883 - 888.
    
    [68] Smith CD,Snowdon DA,Wang H,et al.White matter volumes and periventricular white matter hyperintensities in aging and dementia. Neurology,2000,54:838-842.
    [69] Hanyu H, Shindo H, Kakizaki D, et al. Increased water diffusion in cerebral white matter in Alzheimer's disease. Gerontology, 1997,43:343 - 351.
    [70] Hanyu H, Sakurai H, Iwamoto T,et al.Diffusion-weighted MR imaging of the hippocampus and temporal white matter in Alzheimer' s disease. J Neurol Sci,1998,156:195-200.
    
    [71] Bozzali M, Franceshi M, Falini A,et al.Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI., Neurology,2001,57:1135 -1137.
    
    [72] Bozzao A,Floris R,Baviera ME,et al.Diffusion and perfusion MR imaging in cases of Alzheimer's disease:correlations with cortical atrophy and lesion load. Am J Neuroradiol,2001,22:1030- 1036.
    [73] Bartzokis G Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol Aging,2004;25:5 - 18.
    
    [74] Kalaria RN. The role of cerebral ischemia in Alzheimer's disease.Neurobiol Aging 2000;21:321-30.
    
    [75] Kalaria RN. Small vessel disease and Alzheimer's dementia: Pathological considerations. Cerebrovasc Dis,2002;13(Suppl 2):48 - 52.
    
    [76] Cada A,De La Torre JC,Gonzalez-Lima F.Chronic cerebrovascular ischemia in aged rats:effects on brain metabolic capacity and behavior[J].Neurobiol Aging,2000,21(2) :225 - 233.
    
    [77] Munoz PG,Hastak SM,Harper B,et al. Pathalogic correlates of increased signals of the centrum ovale on magnetic resonance imaging[J].Arch Neurol ,1993,50:492-497.
    
    [78] Brown WR , Moody DM, Thore CR ,et al. Cerebrovascular pathology in Alzheimer's disease and leukoaraiosis [J].Ann N Y Acad Sci,2000,903:39-45.
    
    [79] Chen SQ, Kang Z,Hu XQ,et al.Diffusion tensor imaging of the brain in patients with Alzheimer's disease and cerebrovascular lesions.Journal of Zhejiang University Science B, 2007,8(4):242-247.
    
    [80] Yoshiura T,Mihara F,Ogomori K,et al.Diffusion tensor in posterior cingulate gyrus:correlation with cognitive decline in Alzheimer's disease. Neuroreport 2002,13:2299 - 302.
    
    [81] Selden NR, Gitelman DR, Salamon-Murayama N,et al.Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain,1998,121:2249-57.
    
    [82] Mesulam M-M.The cholinergic innervation of the human cerebral cortex. Prog Brain Res,2004,145:67-78.
    
    [83] Mesulam M-M,Geula C.Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol,1988,275:216-40.
    
    [84] Swartz RH, Sahlas DJ, Black SE. Strategic involvement of cholinergic pathways and executive dysfunction: Does location of white matter signal hyperintensities matter?J Stroke Cerebrovasc Dis,2003,12:29-36.
    [85] Nikos M, Kennedy DN,Mclnerney S,et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans:a quantitative,in vivo, DT-MRI study. Cereb Cortex,2005,15:854-869.
    [86] Rose SE,Chen F,Chalk JB,et al.Loss of connectivity in Alzheimer's disease:an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging.J Neurol Neurosurg Psychiatry,2000,69:528-530.
    [87] Preuss TM, Goldman-Rakic PS. Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in primate frontal association cortex. J Comp Neurol,1989,282:293-316.
    [88] Xie S, Xiao JX, Gong GL,et al.Voxel-based detection of white matter abnormalities in mild Alzheimer disease. NEUROLOGY,2006,66:1845-1849
    [89] de Lacoste MC, Kirkpatrick JB, Ross ED.Topography of the hulnan corpus callosum. J Neuropathol Exp Neurol, 1985.44:578-591.
    [90] Bartzokis G, Sultzer D, Po HL, et al. Heterogeneous age-related breakdown of white matter structural integrity:implications for cortical 'disconnection' in aging and Alzheimer's disease. Neurobiol Aging,2004,25:843-851.
    [91] Rose SE,Chen F,Chalk JB,et al.Loss of connectivity in Alzheimer's disease:an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging.J Neurol Neurosurg Psychiatry, 2000, 69:528-530.
    [92] Choi S J, Lim KO, Monteiro I, et al.Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer's disease: a preliminary study.J Geriatr Psychiatry Neurol,2005,18:12-19.
    [93] 马恒芬,刘桂华,李恩中.语言文字加工神经机制的fMRI研究进展.中国生物医学工程学报.2008,27(6):922-925.
    [94] 李健萍,黄勇.面孔识别中梭状回视觉加工的脑功能成像研究,中国医学计算机成像杂.2008,14:293-298.
    [95] Duffau H, Gatigno P, Mandonnet E,et al.New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain,2005,128:797-810.
    [96] Thomas C, Avidan G, Humphreys K, et al. Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia.Nature Neuroscience,2009,12(1):29-31.
    [97] 郭起浩,史伟雄,洪震等.阿可尔茨海默病患者的汉字阅读能力研究.中国临床心理学杂志,2006,14(3):263-265.
    [98] Cogan, DG.Visual disturbances with focal progresive dementing disease. Am J Ophthalmol, 1985,100:68-72.
    [99] Kier EL, Lawrence HS, Lawrence MD,et al. MR Imaging of the Temporal Stem: Anatomic Dissection Tractography of the Uncinate Fasciculus, Inferior Occipitofrontal Fasciculus,and Meyer' s Loop of the Optic Radiation. AJNR Am J Neuroradio,2004,25:677-691.
    [100] Fellgiebel A,Wille P, Matthias JM,et al.Ultrastructural Hippocampal and White Matter Alterations in Mild Cognitive Impairment:A Diffusion Tensor Imaging Study. Dement Geriatr Cogn Disord,2004,18:101-108.
    [101] Head D, Buckner RL, Shimony JS, et al. Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging.Cereb Cortex,2004,4:410-23.
    [102] Zhang Y, Schuff N, Jahng GH, et al.Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease[J].Neurology,2007,68(1):13-19.
    [103] Rose SE, McMahon KL,Janke AL,et al.Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment[J].J Neurol Neurosurg Psychiatry,2006,77(10):1122-1128.
    [104] Mayberg HS, Brannan SK, Tekell JL, et al.Regional metabolic effects of fluoxetine in major depression:Serial changes and relationship to clinical response. Biol Psychiatry,2000,48:830-843.
    [105] Raichle ME, MacLeod AM, Snyder AZ, et al.A default mode of brain function. Proc Natl Acad Sci USA ,2001, 98:676-682.
    [106] Biswal B,Yet kin FZ, Haughton VM,et al.Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995,34(4):537-541.
    [107] Cordes D,Haughton VM,Arfanakis K,et al.Mapping functionally related regions of brain wit h functional connectivity MR imaging.Am J Neuroradiol,2000,21(9):1636-1644.
    
    [108] Hampson M,Peterson BS,Skudlarski P,et al.Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp,2002,15 (4):247-262.
    
    [109] De Luca M,Beckmann CF,De Stefano N,et al.fMRI resting state networks define distinct modes of long-distance interactions in t he human brain.Neuroimage,2006,29(4):1359-1367.
    
    [110] Lowe MJ,Mock BJ,Sorenson JA.Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage,1998,7(2): 119-132.
    
    [110] Fox MD , Corbetta M , Snyder AZ , et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems.Proc Natl Acad Sci USA,2006,103(26): 10046-10051.
    
    [111] Stein T,Moritz C,Quigley M,et al.Functional connectivity in the thalamus and hippocampus studied with functional MR imaging. Am J Neuroradiol,2000,21(8):1397-1401.
    
    [112] Greicius MD,Krasnow B,Reiss AL,et al.Functional connectivity in the resting brain: a network analysis of the default mode hypot hesis. Proc Natl Acad Sci USA,2003,100(1):253-258.
    
    [114] Wu X, Yao L, Long ZY,et al. Functional Connectivity in the Resting Brain:An Analysis Based on ICA. ICONIP 2006,Part I,LNCS 4232:175-182.
    
    [115] Damoiseaux JS, Rombouts SARB, Barkhof F,et al.Consistent resting-state networks across healthy subjects.PNAS, 2006,103(37): 13848 - 13853.
    
    [116] Bai F, Zhang ZJ, Yu H,et al.Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state functional MRI study. Neuroscience Letters,2008,438:111-115.
    
    [117] Yang H, Long XY, Yang YH,et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage, 2007,36:144-152
    
    [118] Maldjian JA, Laurienti PJ, Kraft RA, et al.An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI datasets.Neuroimage 2003; 19:1233-9
    [119] Stone J V. Independent component analysis: an introduction [J].Trends in Cognitive Sciences,2002,6 (2) :59-64.
    [120] 李可,闫镔,单保慈.功能磁共振图像处理的ICA方法综述.中国图象图形学报, 2005,10(5):561-566.
    [121] Calhoun VD,Adalit T, Pealson GD,et al.A method for making group inferences from funct ional MR I data using independent component analysis[J].Hum Brain Mapp, 2001,14:140-151.
    [122] Correa N, AdalV T, Li Y-O, Calhoun VD. Comparison of blind source separation algorithms for fMRI using a new MATLAB toolbox: GIFT.Proceedings of ICASSP, Philadelphia, PA, USA, 2005.
    [123] Qian YF, Wang HB,Yu YQ,et al.An fMRI study of locolization of Chinese character s episodic memory. Chin J Med Imaging Technol,2004,20 (11): 1647-1649.
    [124] Budson AE,Price BH.Memory dysfunction.N Engl J Med,2005,352 (7):692-699.
    [125] He Y, Wang L, Zang YE Regional coherence changes in the early stages of Alzheimer' s disease:A combined structural and resting-state functional MRI study. NeuroImage 35 (2007) 488-500.
    [126] Sorg C, Riedl V, Muhlau M,et al.Selective changes of resting-state networks in individuals at risk for Alzheimer' s disease.PNAS,2007,104(47):18760-18765.
    [127] Buckner RL,Wheeler ME.The cognitive neuroscience of remembering. Nat Rev, Neurosci,2001,2:624-634.
    [128] Kohler S,McIntosh AR,Moscovitch M, Winocur G.Functional interactions between the medial temporal lobes and posterior neocortex related to episodic memory retrieval. Cereb. Cortex, 1998,8:451-461.
    [129] Mazoyer B, Zago L, Mellet E,et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin,2001, 54(3):287-298.
    [130] Max JE, Manes FF, Robertson BAM,et al. Prefrontal and Executive Attention Network Lesions and the Development of Attention-Deficit/Hyperactivity Symptomatology. J AM ACAD CHILD ADOLESC PSYCHIATRY,2005,44(5):443-450.
    [131] 郝晶,李坤成.Alzheimer病记忆缺陷的脑功能成像研究进展.临床放射学杂志,2004,23(8):730-733.
    [132]郭起浩,洪震,吕传真等.Stroop色词测验在早期识别阿尔茨海默病中的作用.中华神经医学杂志,2005,4(7):701-704.
    [133]陆骏超,郭起浩,洪震等.连线测验(中文修订版)在早期识别阿尔茨海默病中的作用.中国临床心理学杂志,2006,14(2):118-120.
    [134]Hao J,Li KC, Li K,et al.Visual search in Alzheimer's disease-fMR I study. In: Computer Science, Lecture Notes in Computer Science,Medical Imaging and Augmented Reality. Second International, Proceedings, Springer Berlin Heidelberg. New York:Springer-Verlag GmbH, 2004,204-212.
    [135]Wilkinson DT, Halligan PW, Henson RN, et al. The effects of interdistracter similarity on search processes in superior parietal cortex. Neuroimage, 2002, 15: 611-619.
    [136]郝晶,李坤成,李可等.Alzheimer病视觉注意缺陷的功能MR I研究.中华放射学杂志,2005,39(5):453-458.
    [137]Wang K,Liang M,Wang L,et al.Altered functional connectivity in early Alzheimerps disease:a resting-state fMRI study[J]. Human Brain Mapping,2007,28 (10):967-978.
    [138]汤妮,王志群,邬霞等.基于独立成分分析和相关分析的fMRI功能连接方法.北京师范大学学报(自然科学版),2008 02,44(1):54-7.
    [139]Achard S, Salvador R, Whitcher B,et al.A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs. The Journal of Neuroscience, 2006, 26(1):63-72
    [140]Remy F, Mirrashed F, Campbell B, et al.Verbal episodic memory impairment in Alzheimer' s disease: a combined structural and functional MRI study. NeuroImage, 2005, 25:253-266.
    [141]Prvulovic D, Hubl D, Sack AT, et al. Functional imaging of visuospatial processing in Alzheimer's disease. NeuroImage,2002,17:1403-1414.
    [142]Greicius MD, SrivastavaG, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer' s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA,2004,101:4637-4642.
    [143]Matthews PM,Honey GD,Bullmore ET.Applications of fMRI in translational medicine and clinical practice.NatureReviews Neuroscience,2006,7:732-744.
    [144] Rombouts SA,Barkhof F,Goekoop R,Stam CJ,et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer' s disease: An fMRI study. Human Brain Mapping,2005, 26,231 - 239.
    [1] Mckhann G,Drachman D,Folstein M,et al.Clinical diagnosis of Alzheime's disease :report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Service Task Force on Alzheimer's disease.Neurology, 1984,34(7):909-944.
    [2] Selkoe DJ.Translating cell biology into therapeutic advances in Alzheimer's disease.Nature, 1999,399 [6738 Suppl] :A23-31.
    [3] Noray JF,Provenzale JM.Alzheimer's disease:neuropathologic findings and recent advances in imaging.AIR,2003,182(1):3-13.
    [4] Braak H,Braak E.Frequency of stages of Alzheimer-related lesions in different age categories.Neuorbiol Aging, 1997,18(4):351-357.
    [5] Hyman BT,Ban Hoesen GW, Damasio AR.Memory-related neural system in Alzheimer's disease:an anatomic study.Neurology, 1990,40(11):1721-1730.
    [6] Peterson RC.Disorders of memory.In:Samuels MA,Feske S,eds.Office practice of neurology.New York,NY:Churchill livingstone,1996:728-736.
    [7] Bookstein FL."Voxel-based morphometry" should not be used with imperfectly registered images.Neuroimage,2001,14:1454-1462.
    [8] Good CD,Johnsrude I,Ashburner J,et al.Cerebral asymmetry and the effects of sex and handedness on brain structure:a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage, 2001, 14:685-700.
    [9] Good CD,Johnsrude IS,Ashburner J,et al.A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage,2001:14, 21-36.
    [10] Karas GB, Burton EJ, Rombouts SARB,et al.A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. NeuroImage,2003,18:895-907.
    [11] 董问天,刘琳,裴新龙等.基于象素形态测量法分析精神分裂症患者脑白质结构.中国组织工程研究与临床康复,2007,11(13):2454-58.
    [12] Ashburner J,Fris ton KJ.Unified segrnentation.Neuroimage,2005,26(3):839-851.
    [13] Ashburner J.A fast diffeomorphic image registration algorithm.Neuroimage,2007 July 3, 38:95-113.
    [14] Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 1991, 82: 239-259.
    [15] Jernigan TL, Salmon DP, Butters N, et al. Cerebral structure on MRI, Part Ⅱ: specific changes in Alzheimer's and Huntington' s diseases. Biol Psychiatry, 1991, 29:68-81.
    [16] Thompson PM, Mega MS, Woods RP, et al. Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb Cortex, 2001, 11: 1-6.
    [17] Smith AD.Imaging the progression of Alzheimer pathology through the brain. Proc. Natl Acad Sci USA,2002,99:4135-4137.
    [18] Rombouts SA,Barkhof F, Witter MP, et al.Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease. Neurosci Lett,2000,285:231-233.
    [19] Baron JC, Chetelat G, Desgranges B,et al.In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease.Neuroimage.2001,14:298-309.
    
    [20] Good CD,Scahill RI,Fox NC,et al.Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias.Neuroimage,2002,17:29-46.
    
    [21] Boxer AL,Rankin KP,Miller BL,et al.Cinguloparietal atrophy distinguishes Alzheimer disease from semantic dementia. Arch Neurol.2003,60:949-956.
    
    [22] Paola MD, Macaluso E, Carlesimo GA. Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy.A voxel-based morphometry study. Journal of Neurology, 2007 Jun, 254 (6): 774-81
    
    [23] Busatto GF, Garrido GE, Almeida OP,et al.A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer's disease.Neurobiol Aging.2003,24:221-231.
    
    [24] Zahn R, Buechert M, Overmans J, et al. Mapping of temporal and parietal cortex in progressive nonfluent aphasia and Alzheimer's disease using chemical shift imaging,voxel-based morphometry and positron emission tomography. Psychiatry Res,2005,140: 115-131.
    
    [25] Ishii K,Kawachi T,Sasaki H,et al.Voxel-based morphometric comparison between early-and late-onset mild Alzheimer's disease and assessment of diagnostic performance of z score images.AJNR Am J Neuroradiol.2005,26:333-340.
    
    [26] Grossman M, McMillan C, Moore P, et al. What's in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease,frontotemporal dementia and corticobasal degeneration. Brain.2004,127:628-649.
    
    [27] Chetelat G, Desgranges B, De La Sayette V, et al. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment.Neuroreport,2002,13:1939-1943.
    
    [28] Bell-McGinty S,Lopez OL,Meltzer CC,et al.Differential cortical atrophy in subgroups of mild cognitive impairment.Arch Neurol,2005,62:1393-1397.
    
    [29] Pennanen C,Testa C,Laakso MP,et al.A voxel based morphometry study on mild cognitive impairment.J Neurol Neurosurg Psychiatry,2005,76:11-14.
    
    [30] Matsuda H,Kitayama N,Ohnishi T,et al.Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer's disease. J Nucl Med,2002,43:304-311.
    [31] Karas GB, Scheltens P, Rombouts SA,et al.Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease.Neuroimage,2004,23:708-716.
    [32] Hirata Y,Matsuda H,Nemoto K, et al.Voxel-based morphometry to discriminate early Alzheimer's disease from controls. Neurosci Lett,2005,382:269-274.
    [33] Kawachi T,Ishii K, Sakamoto S,et al.Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer's disease.Eur J Nucl Med Mol Imaging, 2006,33:801-809.
    [34] 松田博史.利用MRI的影像统计分析法诊断Alzheimer病.日本医学介绍,2007,28(11):481-484.
    [35] Karas G, Sluimer J,Goekoop R,et al.Amnestic Mild Cognitive Impairment: Structural MR Imaging Findings Predictive of Conversion to Alzheimer Disease. American Journal of Neuroradiology, May 2008,29:944-949.
    [36] Frisoni GB,Testa C,Zor-zan A,et al.Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry. J Neurol Neurosurg Psychiatry. 2002,73:657-664.
    [37] 谢海群,吕泽平,郑陈光等.轻度认知损害海马萎缩的磁共振研究.中风与神经疾病杂志,2003,20:305-307.
    [38] 王海燕,赵斌.DTI常用扫描序列原理及比较.医学影像学杂志,2006,16(4):402-404.
    [39] Shentott ME,Dickey CC,Frumin M, et al.A review of MRI findings in schizophrenia[J].Schizophr Res,2001,49:1-52.
    [40] Bouhuys AL, Geerts E, GordijnMCM. Depressed patients' perceptions of facial emotions in depressed and remitted states are associated with relapse: A longitudinal study. J Nerv Ment Dis, 1999, 187:595-602.
    [41] Skelly LR, Calhoun V, Meda SA, et al. Diffusion tensor imaging in schizophrenia: relationship to symptoms. Schizophr Res,2008,98:157-62
    [42] Delbeuck X, Van der Linden M, Collette F. Alzheimer's disease as a disconnection syndrome? Neuropsychol Rev,2003,13:79-92.
    [43] Fox NC,Scahill RI,Crum WR,Rossor MN.Correlation between rates of brain atrophy and cognitive decline in AD. Neurology, 1999,52:1687-1689.
    [44] Brun A, Englund E.1986. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol. 19:253-262
    
    [45] Scheltens P,Barkhof F,Leys D,et al.Histopathologic correlates of white matter changes on MRI in Alzheimer's disease and normal aging.Neurology,1995,45:883-888.
    
    [46] Smith CD,Snowdon DA,Wang H,et al.White matter volumes and periventricular white matter hyperintensities in aging and dementia.Neurology,2000,54:838-842.
    
    [47] Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol Aging,2004,25:5-18.
    
    [48] Kalaria RN.The role of cerebral ischemia in Alzheimer's disease.Neurobiol Aging,2000,21:321-30.
    
    [49] Kalaria RN.Small vessel disease and Alzheimer's dementia:Pathological considerations. Cerebrovasc Dis,2002;13(Suppl 2):48-52.
    
    [50] Hanyu H,Asano T,Sakurai H, et al.Diffusion-weighted and magnetization transfer imaging of the corpus callosum in Alzheimer's disease.J Neurol Sci 1999.167:37-44.
    
    [51] Yoshiura T,Mihara F,Ogomori K,et al.Diffusion tensor in posterior cingulate gyms: correlation with cognitive decline in Alzheimer's disease.Neuroreport,2002,13:2299-302.
    
    [52] Hanyu H,Sakurai H,Iwamoto T,et al.Diffusion weighted MR imaging of the hippocampus and temporal white matter in Alzheimer's disease. J Neurol Sci,1998,156:195-200.
    
    [53] Bozzali M, Falini A, Franceschi M, et al.White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging.J Neurol Neurosurg Psychiatr,2002,72:742-6.
    
    [54] Bozzao A, Floris R, Baviera ME,et al.Diffusion and perfusion MR imaging in cases of Alzheimer's diseasexorrelations with cortical atrophy and lesion load. Am J Neuroradiol,2001,22:1030-6.
    
    [55] Fellgiebel A, Wille P, Muller MJet al.Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study.Dement Geriatr Cogn Disord 2004; 18:101-8.
    
    [56] Head D, Buckner RL, Shimony JS,et al.Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type:evidence from diffusion tensor imaging.Cereb Cortex,2004,4:410-23.
    [57] Kantarci K,Jack CR,Xu YC,et al.Mild cognitive impairment and Alzheimer's disease: Regional diffusivity of water. Radiology,2001,219:101-7.
    
    [58] Rose SE,Chen F,Chalk JB,et al.Loss of connectivity in Alzheimer's disease:an evaluation of white matter tract integrity with color coded MR diffusion tensor imaging. J Neurol Neurosurg Psychiatr,2000,69:528-30.
    
    [59] Sandon TA,Felician O,Edelman RR,et al.Diffusion weighted magnetic resonance imaging in Alzheimer's disease.Dementia,1999,10:166-71.
    
    [60] Takahashi S, Yonezawa H, Takahashi J, Kudo M, Inoue T, Toghi H. Selective reduction of diffusion anisotropy in white matter of Alzheimer's disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci Lett,2002,332:45-8.
    
    [61] Pfefferbaum A, Sullivan EV, Hedehus M,et al.Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med,2000,44:259-268.
    
    [62] O`Sullivan M, Jones DK, Summers PE, et al.Evidence for cortical 'disconnection' as a mechanism of age-related cognitive decline. Neurology,2001,57:632-638.
    
    [63] Abe O,Aoki S,Hayashi N,et al.Normal aging in the central nervous system:quantitative MR diffusion-tensor analysis. Neurobiol Aging,2002,23:433-441.
    
    [64] Medina D,DeToledo-Morrell L,Urresta F,et al.White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study. Neurobiol Aging,2006,27:663-72.
    
    [65] Xie S,Xiao JX, Gong GL,et al. Voxel-based detection of white matter abnormalities in mild Alzheimer disease.NEUROLOGY,2006,66:1845-1849。
    
    [66] Reiman EM, Caselli RJ, Chen K,et al.Declining brain activity in cognitively normal apolipoprotein E _4heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. Proc Natl Acad Sci USA,2001,98:334-39.
    
    [67] Selden NR,Gitelman DR,Salamon-Murayama N,et al.Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain.Brain,1998,121:2249-57.
    
    [68] Chen SQ, Kang Z, Hu XQ,et al.Diffusion tensor imaging of the brain in patients with Alzheimer's disease and cerebrovascular lesions. Journal of Zhejiang University SCIENCE B, 2007 8(4):242-247.
    [69] Mesulam M-M.The cholinergic innervation of the human cerebral cortex. Prog Brain Res,2004,145:67-78.
    [70] Swartz RH,Sahlas DJ,Black SE.Strategic involvement of cholinergic pathways and executive dysfunction:Does location of white matter signal hyperintensities matter? J Stroke Cerebrovasc Dis,2003,12:29-36.
    [71] Nikos M, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans:a quantitative, in vivo,DT-MRI study. Cereb Cortex,2005,15:854-869.
    [72] Satoshi T, Hisashi Y, Junko T, et al.Selective.reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci Lett.2002.332:45-48.
    [73] de Lacoste MC, Kirkpatrick JB, Ross ED. 1985. Topography of the human corpus callosum. J Neuropathol Exp Neurol. 44:578-591.
    [74] 金海,汪华侨,陈少琼.阿尔茨海默病患者脑白质损害与认知功能的关系.中华神经科杂志,2006,39(2):76-79
    [75] Choi SJ,Lim KO,Monteiro I,et al.Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer's disease: a preliminary study.J Geriatr Psychiatry Neurol,2005,18: 12-19.
    [76] Hampel H,Teipel SJ,Alexander GE,et al.In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer's disease-Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET.JOURNAL OF NEURAL TRANSMISSION,2002,109(5-6 ,Special Issue: SI): 837-855.
    [77] Mazoyer B,Zago L,Mellet E,et al.Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull, 2001,54:287-98.
    [78] Binder JR, Frost JA,Hammeke TA,et al.Conceptual processing during the conscious resting state:a functional MRI study[J].J Cogn Neurosci, 1999,11(1):80-95.
    [79] Mazoyer B,Zago L, Mellet E,et al.Cortical network for working memory and executive function sustain the conscious resting state in man brain[J].Res Bull,2001,54(3):287- 298.
    [80] McKiernan KA,Kaufan JN,Kucera-Thompson J,et al.Parametric manipulation of factors affecting task-induced deactivaton in functional neuroimaging[J].J Cogn Neurosci,2003,15(3):394- 408.
    
    [81] Raichle ME,MacLeod AM,Snyder AZ,et al.A default mode of brain function.Proc Natl Acad Sci USA, 2001, 98:676-682.
    
    [82] Biswal B,Yet kin FZ,Haughton VM,et al.Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.Magn Reson Med,1995,34(4):537-541.
    
    [83] Greicius MD,Krasnow B,Reiss AL,et al.Functional connectivity in t he resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA ,2003,100(1):253-258.
    
    [84] Cordes D,Haughton VM,Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging.Am J Neuroradiol,2000,21(9): 1636-1644.
    
    [85] Hampson M,Peterson BS,Skudlarski P,et al.Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp,2002,15(4) :247-262.
    
    [86] De Luca M,Beckmann CF,De Stefano N,et al.fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage,2006 ,29(4) :1359-1367.
    
    [87] Fox MD,Corbetta M,Snyder AZ,et al.Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems.Proc Natl Acad Sci USA,2006,103(26): 10046-10051.
    
    [88] Stein T,Moritz C,Quigley M,et al.Functional connectivity in the thalamus and hippocampus studied with functional MR imaging.Am J Neuroradiol,2000,21(8):1397-1401.
    
    [89] Damoiseaux JS,Rombouts SA,Barkhof F,et al.Consistent resting-state networks across healthy subjects Proc Natl Acad Sci USA 2006,103:13848-13853.
    
    [90] Beckmann CF, Smith SM.Tensorial extensions of independent component analysis for multisubject FMRI analysis.NeuroImage,2005,25:294-311.
    
    [91] Alescio-Lautier B,Michel BF,Herrera C,et al. Visual and visuospatial short-term memory in mild cognitive impairment and Alzheimer disease: Role of attention ,Neuropsychologia,2007,45:1948-1960.
    
    [92] Gusnard DA, RaichleME. Searching for a baseline: functional imagng and the resting human brain[J]. Nature ReviewNeurosci,2001,2(10):685- 694.
    
    [93] Maddock RJ.The retrosplenial cortex and emotion:new insights from functional neuroimaging of the human brain. Trends Neurosci,1999,22(7):310- 316.
    
    [94] Cavanna AE,TrimbleMR,The precuneus:a reviewof its functional an atomy and behavioural correlates. Brain,2006,129(Pt 3):564- 583.
    
    [95] Laureys S,Goldman S,Phillips C,et al.Impaired effective cortical connectivity in vegetative state[J]. Neuroimage,1999,9(4):377- 382.
    
    [96] Fransson P,Marrelec G.The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network:Evidence from a partial correlation network analysis.Neurolmage,2008,42:1178 - 1184.
    
    [97] Stark CE,Squire LR.When zero is not zero: the problem of ambiguous baseline conditions in fMRI.PNAS,2001,98(22):12760- 12766.
    
    [98] Castelli F,Happe F,Firth U,et al.Movement and mind:a functional imaging study of perception and interpretation of complex intentional movement patterns.Neuroimage,2000,12(3):314- 325.
    
    [99] Shulamn G, Fiez JA, Corbetta M, et al. Common blood flowchanges across visula tasks II. Decrease in cerebral cortex [J]. J Cogn Neurosci,1997,9(3):648- 663.
    
    [100] Gochin PM,Miller EK,Gross CG,et al.Functional interactions among neurons in inferior temporal cortex of the awake macaque. Experimental Brain Research, 1991 ,84(3):505-516.
    
    [101] Friston KJ,Frith CD,Liddle PF,et al.Functional connectivity :the principal-component analysis of large ( PET) data sets. J Cereb Blood Flow Metab ,1993 ,13(1):5-14.
    
    [102] Friston KJ,Frith CD,Frackowiak RSJ.Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp ,1993 ,1 (1) :69-79.
    
    [103] Lowe MJ,Mock BJ,Sorenson JA.Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations.Neuroimage, 1998,7 (2) :119-132.
    
    [104] McKeown MJ,Makeig S,Brown GG,et al.Analysis of fMRI data by blind separation into independent spatial components.Hum Brain Mapp, 1998,6 (3): 160-188.
    
    [105] Zang Y,Jiang T,Lu Y,et al.Regional homogeneity approach to fMRI data analysis. Neuroimage,2004,22, 394-400.
    
    [106] He Y,Zang YF,Jiang TZ,et al.Detection of Functional Networks in the Resting Brain.2nd IEEE International Symposium on Biomedical Imaging:From Nano to Macro (ISBI'04), April 15-18, 2004, Arlington, USA.
    [107] Zang YF,He Y, Zhu CZ,Cet al.Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI.Brain Dev,2007,29:83-91.
    [108] Yang H,Long XY,Yang Y,et al.Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage,2007,36:144-152.
    [109] de Leon MJ, Convit A, Wolf OT, et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci USA,2001, 98:10966-10971.
    [110] Li SJ,Li Z,Wu G, et al.Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology,2002,225:253-259.
    [111] Wang L,Zang Y,He Y,et al.Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage,2006,31:496-504.
    [112] Sorg C,Riedl V,Muhlau M, et al.Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci USA,2007,104:18760-18765.
    [113] Greicius MD,Srivastava G,Reiss AL,et al.Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci USA, 2004,101:4637-4642.
    [114] Wang K, Liang M, Wang L,et al. Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study.Hum Brain Mapp,2007,28:967-978.
    [115] Damoiseaux JS, Beckmann CF, Ariqita EJ, et al. Reduced resting state activity in the ' default network' in normal aging. Cereb Cortex,2008 [in press].
    [116] 汤妮,王志群,邬霞等.基于独立成分分析和相关分析的fMRI功能连接方法.北京师范大学学报(自然科学版),2008 02,44(1):54-7.
    [117] Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005; 102:9673-9678.
    [118] Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis.Hum Brain Mapp 2005; 26:15-29.
    [119] Celone KA,Calhoun VD,Dickerson BC,et al. Alterations in Memory Networks in Mild Cognitive Impairment and Alzheimer's Disease:An Independent Component Analysis. The Journal of Neuroscience,2006,26(40):10222-10231.
    [120] Bai F, Zhang ZJ, Yu H,et al. Default-mode network activity distinguishes amnestic type mild cognitive impainnent from healthy aging: A combined structural and resting-state functional MRI study. Neuroscience Letters, 2008, 438: 111-115.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.