急性毒性藻红外测试中抗生素的敏感藻确定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素作为环境污染物的一类,其生态毒理研究近几年不断加强,为了用藻红外分析抗生素的藻类急性毒性,需要确定用于毒性分析的敏感藻。
     敏感藻是指急性毒性藻红外测试中对毒害物质响应温差大、时间快、药品多、剂量低的特殊藻种。自然藻中是否存在抗生素的敏感藻,如何确定,是抗生素急性毒性藻红外测试法的技术关键。藻类细胞具有光合磷酸化和氧化磷酸化的能量代谢系统,当其受到毒物影响后,以红外辐射形式放出的能量变化易被红外测温仪测定。根据这个原理论文进行了藻红外测试中抗生素敏感藻的确定研究。
     本试验用羊角月牙藻、水花鱼腥藻、阿氏颤藻、沃切里脆杆藻、双尖菱板藻、莱茵衣藻、蛋白和小球藻、斜生栅藻等8种藻和青霉素、阿奇霉素、头孢哌酮、头孢替唑、头孢曲松、美洛西林、加替沙星、哌拉西林、阿莫西林、克林霉素等10种抗生素进行试验,用便携式红外测温仪测试供试藻种对抗生素的红外辐射响应变化,分析测试结果初步确定敏感藻,通过敏感藻对抗生素的灵敏度实验,最终确定敏感藻。得到以下结论:
     ①抗生素引起藻红外辐射变化可被便携式红外测温仪检测。
     ②藻种对抗生素的响应存在差异性,8种藻对抗生素药品响应的平均绝对响应温差在0.15℃~0.34℃之间,响应时间在3.6min~5.9min之间,药品响应率20%~70%之间。
     ③莱茵衣藻对抗生素药品的平均绝对响应温差为0.34℃,平均响应时间为5.6min,药品响应率70%。根据敏感藻定义的前三项,初步确定莱茵衣藻为敏感藻。
     ④藻红外测试抗生素敏感藻的最小剂量在0.00001mg/L~0.1mg/L之间,达到发光细菌法的灵敏度0.05mg/L~0.1mg/L,根据敏感藻的完整定义,最终确定莱茵衣藻作为藻红外测试抗生素急性毒性的敏感藻。
     ⑤与藻红外测试法应用于重金属、有机物、农药相比,藻红外测试抗生素表现出相对长的响应时间、较大响应温差、较低的药品响应率、较低的最小限量范围。
Antibiotics as a class of environmental contamination, research about its ecotoxicology which had been strengthened in recent years. In order to analysis acute toxicity of antibiotics used algae infrared radiation, it is necessary to determinate sensitive algae used in toxicity analysis.
     Sensitive algae had four characteristics of big temperature differences, quick response, many poisons, and low dose responding to acute toxicity when they were used as test materials in algae infrared radiation. Whether sensitive algae exist in natural algae, how to determine sensitive algae was the key of establishing method of algae infrared radiation. Algae have photophosphorylation and oxidative phosphorylation ,two kinds of energy metabolisms systems,when toxic substance invaded,energy emitted in the form of infrared radiation variation could be detected by infrared thermometer. According to this principle, the paper conducted study on the determination of sensitive algae which used in algae infrared radiation detecting antibiotics.
     Eight species of algae (Selenastrum capricornutum, Anabaena flos-aquae,Oscillatoria agardhii Gom , Fragilaria vaucheriae (Kütz.) Petersen , Nitzschia hantzschia amphioxys(Her.)Grun,Chlamydomonas reinhardtii,Chlorella pyrenoidosa Chick,Scenedesmus obliquus)and ten kinds of antibiotics (Benzylpenicillin,Azithromycin,Cefoperazone,Ceftezole,Ceftriaxone,Mezlocillin,Gatifloxacin,Piperacillin,Amoxicillin,Clindamycin)were used to test in this paper. Portable infrared thermometer was used to test the response of algae to antibiotics. Sensitive algae was initially confirmed by analyzing the test results. Then, it was finally confirmed according to sensitive algae’s sensitivity test.Mainly obtained following conclusion:
     Firstly, antibiotics can cause algae infrared radiation changes which can be detected by portable infrared thermometer.
     Secondly, there were obvious differerce between different algae.Eight species of algae responded to ten kinds of antibiotics. the average absolute temperature difference was between 0.15℃~0.34℃, the response time was between 3.6min ~ 5.9min, and the percent of responding was between 20%~70%.
     Thirdly, Chlamydomonas reinhardtii responding to antibiotics ,the average of absolute temperature differences was 0.34℃, the average response time was 5.6min, and the percent of the better responding to antibiotics was 70%. According to first three teams of definition of sensitive algae, Chlamydomonas reinhardtii was initially confirmed as sensitive algae.
     Fourthly,sensitivity test of Chlamydomonas reinhardtii. the minimal response dose of Chlamydomonas reinhardtii was between 0.00001mg/L~0.1mg/L, and it can attain sensitivity of luminescent bacteria to antibiotics 0.05mg/L~2.0mg/L.。According to complete definition of sensitive algae, Chlamydomonas reinhardtii was finally confirmed as sensitive algae
     Fifthly, compared with Algae Infrared Radiation used to detecting Heavy Metals, organic toxicities and pesticide ,Algae Infrared Radiation used to detecting antibiotics had relatively long response time, big response tempeture difference, low percent of the responding to antibiotics, and low minimal response dose.
引文
[1]顾觉奋.抗生素[M].上海:上海科学技术出版社,2001.9.
    [2]喹诺酮类抗生素医院用药市场研究报告,九州通达-数字医药,2006.
    [3] European Federation of Animal Health (FEDESA) . Antibiotic use in farm animals does not threaten human health ? FEDESA/FEFANA Press release. 13 July. Brussels,Belgium,2001. 167-169.
    [4] Union of Concerned Scientists. 70 percent of all antibiotics given to healthy livestock. Press release. 8 January. Cambridge,MA,USA,2001. 135-137.
    [5] Austin B,Austin D.Bacterial fish pathogens: Disease in farmed and wild fish[M].England: Ellis Horwood Ltd.1993.
    [6]马国军,曲秋芝,吴文化等.抗生素在水产养殖上的应用[J].水产学杂志,2001,14(2) : 73-76.
    [7]韩如政.鲤鱼种饲料中添加维吉尼亚霉素的效果[J].中国饲料,1999,12 (21) :21-29.
    [8]陈月英,叶金云,沈智华.一龄草鱼促长防病饲料添加剂VM-I号的正交试验[J].淡水渔业, 1993, 23 (3) : 12-16.
    [9]李子杰.抗生素在水产养殖中应用的利弊与对策[J].贵州畜牧兽医,2008,32(2):23-24.
    [10]邓玉英等.滥用饲用抗生素现状及对生态环境的影响[J].现代畜牧兽医.2009(10)35-36.
    [11] Hartmann A ,Alder A C,Koller T,et al. Identification of fluoroquinolone antibiotics as the main source of human genotoxicity in native hospital wastewater. Environmental Toxicology and Chemistry,1998,17:377-382.
    [12] Dvidson J . Genetic exchange between bacteria in the environment . Plasmid,1999,(42):73-91.
    [13]刘虹,张国平,刘丛强等.贵阳城市污水及南明河中氯霉素和四环素类抗生素的特征[J].环境科学,2009,30(3):687-692.
    [14] Hamscher G,Sczesny S,Abu-Qare A,et al. Substances with pharmacological effects including hormonally active substances in the environment identification of tetracyclines in soil fertilized withanimal slurry[J].Dtsch Tierarztl Wochenschr,2000,107(8):332-334.
    [15]任永红,王一渌,李国欣等.猪、牛肉中抗生素残留量的调查[J].职业与健康,2008,24(14):1382-1383.
    [16]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性[J].生态学报.2006,26(1): 265-270.
    [17] Beare M H ,Parmelee R W,Hendrix P F,et al. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems[J].Ecological Monographs ,1992,62(4) : 569-591.
    [18] Boleas S,Alonso C,Pro J,et al. Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS·3) and influence of manure co-addition[J]. Journal of Hazardous Materials, 2005,122:233-241.
    [19] Dijck P V ,Voorde H. Sensitivity of environmental microorganism to antimicrobial agents[J].Applied and Environmental Microbiology,1976,31:332-336.
    [20]张跃华,罗志文,赵永勋.阿维菌素对土壤微生物的活性影响[J].佳木斯大学学报(自然科学版),2002,20(1) :49-51.
    [21] Halley B A , Jacob T A , Lu A Y H. The environmental impact of the use of ivemectine ,environmental effects and fate[J].Chemosphere ,1989,18 :1543-1563.
    [22] Migliore L,Brambilla G,Casoria P,et al . Effects of sulphadimethoxine on barley in Laboratory terrestrial models[J].Agriculture, Ecosystems and Environment ,1996,60 :121-128.
    [23] Rhodes G,Huys G,,Swings J,et al . Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments :Implications of Tn1721 in dissemination of the tetracycline resistance determinant Tet A[J].Applied and Environmental Microbiology,2000,66(9):3883-3890.
    [24]罗义,周启星.抗生素抗性基因(ARGs)——种新型环境污染物[J].环境科学学报,2008,28(8):1499-1505.
    [25] Park E1.,Lightner D.V,Milner N.et al. Exploratory bioavailability and pharmacokinetic studies of sulphadimethoxine andormetop rimin the penaeidshrimp,Penaeusvannamei,Aquaculture [M].1995,(130):113-1281.
    [26] 3种方法检测牛奶中抗生素残留[J].四川食品与发酵,2008,(01):27.
    [27]李卫东,吴银良,李艳华. GB/T 20444-2006,猪组织中四环素族抗生素残留量检测方法——微生物学检测方法[S].北京:中国标准出版社,2006,1.
    [28]徐宜为.免疫检测技术[M].北京:科学出版社,1991.
    [29]王玉枝.色谱分析[M].北京:中国纺织出版社,2008.6.
    [30]丁明洁.仪器分析[M].北京:化学工业出版社,2008.3.
    [31]国家药典委员会.中华人民共和国药典[M].北京:化学工业出版杜,2005.1.
    [32] Zhai Z C.Adsorption of phenylhydrazine hypercrosslinked polymeric derivatives on adsorbents[J].Reactive & Function—al Polymers,2003,57(2/3):93-102.
    [33]朱丽梅.生物检测方法在农药残留检测中的应用[J].南京农专学报,2003,19(3):42-46
    [34]韦东普,马义兵,陈世宝等.发光细菌法测定环境中金属毒性的研究进展[J].生态学杂志,2008,27 (8) : 1413- 1421.
    [35]方战强,陈中豪,胡勇有等.发光细菌法在水质监测中的应用[J].重庆环境科学,2003,25(2):56-58.
    [36] Thomtdka K W. Use of biolum inesecent baeterium photobacterium phosphoreum to detect potentially biohazardous materials inwater[J]. Bulletin of Environmental Contamination and Toxicology,1993,51 (4) :538.
    [37]凌云,赵渝,徐亚同等.发光细菌法在食品安全性检测中的应用[J].食品与生物技术学报,2005,24(6):106-110.
    [38]王亚群,王静雪,林洪等.发光细菌法检测水产品中氯霉素体系的建立[J].中国海洋大学学报,2009,39 (1) :66-70.
    [39]吴向华.发光细菌法测定有机污染土壤的生物毒性[J].江苏农业科学,2008,(5):285-287.
    [40]王兆群,王芹,丁长春.发光细菌法检测工业废水综合毒性[J].仪器仪表与分析监测,2002,(1):33-35.
    [41]董玉瑛,冯宵,王宗爽.发光细菌法测定有机工业废水综合毒性[J].化工环保,2005,25(1):65-67.
    [42]张秀君,韩桂春.发光细菌法监测废水综合毒性研究[J].中国环境监测,1999,15(4):39-41.
    [43]厉以强,常卫民,郭小颖等.发光菌毒性试验在项目竣工环保验收监测中的应用[J].中国环境监测,2005,21(2) :49- 51.
    [44]郑子伟.红外测温仪概述[J].计量与测试技术,2006,33(10):22-23.
    [45]刘占增,曾汉生,丁翠娇.红外辐射温度测量技术[J].武钢技术,2006,44(1):21-24.
    [46]张弓.红外测温基本原理及注意问题[J].企业标准化,2008(17):9-10.
    [47]胡运彪,陈鹏飞,陈明.便携式红外测温仪及其应用[J].工程机械与维修,2005,(23):136-137.
    [48]周庆福,杨永军,吕国义.红外辐射测温仪及校准方法探讨[J].计测技术,2008,28(增刊):33-35.
    [49]郭蔚华,丁燕燕,张智等.急性毒性藻红外测试中敏感藻的确定方法[J].生态毒理学报,2008,3(6):577-583.
    [50]郭蔚华,丁燕燕,张智等.有机毒害物急性毒性与藻红外辐射变化研究[J].环境科学与技术,2009,32(7):35-37.
    [51]郭蔚华,王翔,张智等.藻红外辐射测试环境农药残留急性毒性研究[J].农业环境科学学报,天津.27(5):2039-2042.
    [52]郭蔚华,苏海燕,张智等.藻红外辐射测试环境重金属急性毒性[J].生态环境,2008,17(2):520-523.
    [53]曲彩红,谢虹虹,张平等. 2002年~2005年广东地区部分医院用药动态分析[J].中国药房,2006,17(14):1072-1074.
    [54]金蜀蓉,邢根生,贺光国等. 2000年~2002年重庆市14家医院用药回顾与分析[J].中国药房,2004,15(2):97-101.
    [55] MATTEO B,ANTONIO D B,BARBARA R,et al. The effect of formulary restriction in the use of antibiotics in an Italian hospital[J]. European Journal of Clinical Pharmacology,2001,57:529-534
    [56] REBE M,JIRI V,MIROSLAVA P,et al. Impact of a multidisciplinary approach on antibiotic consumption,cost and microbial resistance in a Czech hospital[J]. Pharmacy World & Science,2007,(29):565–572.
    [57] LIU Zhengtao, WANG Liansheng, Ni Hong,et al. QSAR for biotoxication of aromatic compounds[J].Chinese Science Bulletin, 1997, 42(5):380-384.
    [58]刘英,李雪山,孙冰妹等.常用抗生素在输注液体中稳定性的分析[J].黑龙江医学,1999(4):9-10.
    [59]胡鸿钧,魏印心.中国淡水藻类-系统、分类及生态[M].北京:科学出版社, 2006.
    [60]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004.
    [61]党亚爱,王国栋,辛保平等.几种染料抑制斜生栅藻的毒性效应[J].西北植物学报, 2003, 23(2):332-335.
    [62]唐涛,蔡庆华,刘健康.河流生态系统健康记起评价[J].应用生态学报2002, 13(9):1191-1194.
    [63]张丽琴,杜秀琦.淡水藻类应用研究进展[J].河南教育学院学报(自然科学版), 1998, 7(4): 73-77.
    [64]黄国兰.有机污染物对藻类毒性的测定[J ].环境化学,1994, 13(3):259-262.
    [65] OECD. 1981. Test Guideline 201. Paris: Desition ofthe Council C.
    [66]朗波,赵晓雷,灭藻剂评价的研究[J].工业水处理, 2001, 21 (4) : 27-29.
    [67]周永欣,章宗涉,水生生物毒理试验方法[M].北京:农业出版社,1989 :179.
    [68] STEIN J R. Dryweight, volume and optical density. In: Stein J R. Handbook of Physiological Methods: Culture Methods and Growth Measurements[M].New York:1973: 21.
    [69]沈萍萍,王朝晖,齐雨藻等.光密度法测定微藻生物量[J].暨南大学学报(自然科学版),2001,22(3):115-119.
    [70] Zablotowics R M. Algae Transformation of Fluometuron and Atrazine by N-Dealkylation [J].Environmental Science and Health,1998,B33(5): 511-528.
    [71] Rangsayatorn N,.Upatham E S,et al. Phytoremediation potential of Spirulina (Arthrospira) platensis:biosorption and toxicity studies of cadmium[J]. Environmental Pollution,,2002,119:45-53.
    [72]赖特,韦尔伯恩.环境毒理学[M].北京:高等教育出版社,2007.1.
    [73]吴自荣.发光细菌法[J].上海环境科学,1987,(4):41-42.
    [74]丁燕燕.有机毒物藻红外检测中敏感藻确定方法研究[D].重庆大学,2008.
    [75]王翔.藻红外测试中敏感藻确定方法研究[D].重庆大学,2008.
    [76]苏海燕.重金属急性毒性的藻红外测试中敏感藻确定方法研究[D].重庆大学,2008.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.