基于量子点的荧光免疫分析在几种农兽药残留检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(QDs)是近年发展起来的一种新型荧光纳米材料,与传统有机荧光染料相比,具有许多优良的荧光性能,在生物分析化学、荧光免疫学、基因组学、蛋白质组学和细胞生物学等领域显示出广阔的应用前景,已经引起人们的广泛关注。
     本论文在简要综述量子点技术发展的基础上,以量子点制备、纯化、性能表征及在农药和兽药残留检测中应用为主线,主要开展以下几个方面工作。
     一、基于量子点和羊抗小鼠二抗的偶联物,建立一种灵敏、快速检测饮用水中毒死蜱的荧光免疫分析法(cFLISA)。
     基于量子点和二抗偶联物的荧光免疫分析法(cFLISA)中的线性检测范围为15.2-205.5ng mL-1,灵敏度(IC50)为50.2ng mL-1,检出限(LOD)为8.2ng mL-1。
     荧光免疫分析法(cFLISA)与传统酶联免疫分析法(ELISA)相比,不仅灵敏度提高1.5倍,检测时间也缩短0.5h。
     在实际水样检测中,荧光免疫分析法(cFLISA)的检测结果与酶联免疫分析法(ELISA)、高效液相色谱方法(HPLC)的检测结果相符,表明该方法可用于环境和食品中农药残留的检测和大规模样品筛查。
     二、利用水相法合成碲化镉量子点,并制备相应量子点-链霉亲和素荧光探针(QDs-SA),建立基于QDs-SA偶联物的新型荧光免疫分析方法(QDs-SA-cFLISA)并应用于毒死蜱的检测。
     采用水相合成法,以巯基丙酸为稳定剂,制备表面带羧基的水溶性碲化镉量子点(CdTe QDs);其激发光谱宽且连续,发射光谱比较窄而对称,粒径比较均一荧光性质稳定,具有良好的光学性能。
     将表面带羧基的水溶性碲化镉量子点(CdTe QDs)和链霉亲和素(SA)偶联,制备量子点-链霉亲和素荧光探针(QDs-SA),作为信号系统和信号放大系统,建立新型的荧光免疫分析方法(QDs-SA-cFLISA)。
     荧光免疫分析方法(QDs-SA-cFLISA)与常规酶联免疫分析法(ELISA)相比,量子点-链霉亲和素荧光探针(QDs-SA)取代常规酶联免疫分析法(ELISA)中的酶标抗体,灵敏度提高5.5倍,检测时间缩短1h。
     在实际水样检测中,荧光免疫分析方法(QDs-SA-cFLISA)的检测结果与酶联免疫分析法(ELISA、高效液相色谱方法(HPLC)的检测结果相符,表明该方法可用于饮用水中毒死蜱残留的检测。
     三、小分子直接包被技术和量子点(QDs)纳米材料相结合,建立灵敏、快速的免疫分析方法并用于虾仁中氯霉素的检测。
     酶标板表面用戊二醛(GA)处理,引入醛基与氨基化氯霉素直接偶联,将氯霉素小分子直接包被在酶标板上,并结合生物素化一抗和量子点-链霉亲和素荧光探针(QDs-SA),建立基于小分子半抗原直接包被方式和量子点(QDs)荧光探针结合的新型荧光免疫分析方法(QDs-SA-direct Hap coated cFLISA)。
     荧光免疫分析方法(QDs-SA-direct Hap coated cFLISA)的直接包被模式与传统酶联免疫分析法(ELISA)的完全抗原包被模式相比,抗原-抗体结合效率高且稳定性强,不仅灵敏度提高5倍,检测时间也缩短1h。
     在实际样品虾仁检测中,荧光免疫分析方法(QDs-SA-direct Hap coated cFLISA)的检测结果与酶联免疫分析法(ELISA、高效液相色谱方法(HPLC)的检测结果相吻合,表明该方法可作为传统酶联免疫分析法(ELISA)重要的补充,也用于食品和环境中兽药残留的检测。
Quantum dots (QDs) are somewhat spherical nanocrystals in the size range of 1-10 nm diameter. These QDs are a brand new class of luminescent inorganic fluorophores, which have several important advantages over conventional fluorescent dyes. In recent years, QDs have gained increasing attention and played important roles in the fields of biochemistry, fluorescence immunoassay, genomics, proteome, cell biology and molecular biology, etc. Aiming at this important research direction, the development of QDs was summarized, and then the following several works have mainly performed by taking QDs preparation, QDs characterization and QDs applications in pesticide and veterinary drugs residue analysis as the line of this dissertation. 1. A rapid and sensitive indirect competitive fluorescence-linked immunosorbent assay (cFLISA) for the detection of chlorpyrifos in drinking water has been developed.
     Based on QDs as the fluorescence label coupled with secondary antibody (Ab2), the cFLISA allowed for chlorpyrifos determination in a liner working range of 15.2-205.5ng-mL-1. The 50% inhibition value (IC50) and the limit of detection (LOD) of the cFLISA were 50.2ng mL-1 and 8.4ng mL-1 respectively. In water sample analysis, the results of cFLISA were similar to those obtained from cELISA and HPLC, while the detection time by cFLISA was reduced 0.5h compared with ELISA. It showed that cFLISA could be used as a new screening method for the detection of pesticide residue in food and envirement.
     2. Water-soluble CdTe QDs were synthesized directly and coupled with streptavidin (SA) as the fluorescent probe. Based on QDs-SA conjugate and ELISA, a novel fluoroimmunoassay (QDs-SA-cFLISA) has been developed for the detection of chlorpyrifos in drinking water.
     Water-soluble CdTe QDs were prepared in aqueous solution by using 3-mercaptopropyl acid as the stabilizer and then characterized by fluorescence spectroscopy and TEM, respectively. The results show that these QDs have good optical properties, such as narrow spectral line widths and continuous absorption profiles, which provide a powerful foundation for further applications. A rapid and sensitive competitive fluorescence-linked immunosorbent assay (QDs-SA-cFLISA) based on QDs-SA conjugate has been developed for the detection of chlorpyrifos in drinking water. The sensitivity of QDs-SA-cFLISA increased by 5.5 folds and the detection time reduced 1h compared to conventional ELISA. In real sample analysis, the results of QDs-SA-cFLISA were similar to those obtained from a ELISA and a HPLC. This study showed that QDs-SA-cFLISA was more rapid and sensitive than conventional ELISA. Therefore, it can be used as a novel screening method for the detection of pesticide residue.
     3. Based on direct coating of small molecular hapten (Hap) on the surface of microtiter plates and QDs-SA fluorescent probe, a new fluoroimmunoassay (QDs-SA-direct Hap coated cFLISA) has been developed for the detection of chloramphenicol (CAP).
     In this Hap directly coated assay, the surface of microtiter plates was treated with a glutaraldehyde (GA) polymer network to introduce aldehyde groups for crosslinking of CAP with amino groups. Compared with the plates coated with Hap-carrier protein conjugate, the modified plates presented significantly high antibody and antigen (Ab-Ag) affinity and showed excellent stability. And then the biotinylated monoclonal antibody (mAb) and QDs-SA conjugate were employed in this assay for amplification of signals. The sensitivity of QDs-SA-direct Hap coated cFLISA increased by approximate 5 folds and the stability improved greatly. In sample analysis, the results of CAP detected by this assay were in accordance with which obtained by conventional ELISA and HPLC. Therefore, it is an attractive alternative compared to conventional immunoassays in routine supervision for residue detection in food and environment.
引文
1.陈启凡,王文星,葛影新等.水热法合成CdTe量子点及其与蛋白质连接作为生物荧光探针的研究.分析试验室,2007,26(3):1-5.
    2.陈启凡,王文星,葛颖新等.半胱胺包被的碲化镉量子点的直接水相制备及其与DNA链接.分析化学,2007,35(1):135-138.
    3.韩丽君,钱传范,李文明等.酶联免疫吸附分析法测定水中毒死蜱.环境科学与技术,2006,29:35-37.
    4.郝俊虎,王仙琴,闫永利等.氯霉素残留对出口畜产品的危害.饲料研究,2005,(5): 8-10.
    5.黄雅丽,程敬丽,桂文君等.氯霉素多克隆抗体的制备及免疫活性研究.浙江大学学报(农业与生命科学版),2006,32(2):180-185.
    6.金仁耀,桂文君,吴建祥等.抗毒死蜱单克隆抗体的研制.浙江大学学报(农业与生命科学版),2006,32:591-597.
    7.李俊锁,邱月明,王超.兽药残留分析.上海:上海科学技术出版社,2002,20-20.
    8.李梦莹,周华荫,董再蒸等.半胱氨酸包覆的CdTe量子点作为荧光离子探针测定痕量汞(Ⅱ).冶金分析,2008,28(12):7-11.
    9.欧阳立群,吴富忠.水产品中氯霉素残留量的高效液相色谱测定方法.中国卫生检验杂志,2005,15(2):178.
    10.王桂枝,石德时,毕丁仁.氯霉素在动物性食品中残留的危害.中国畜产与食品,1999,6(3):132-137.
    11.王柯敏,王益林,李朝辉等.CdTe量子点荧光猝灭法测定铜离子的研究.湖南大学学报(自然科学版),2005,32(3):1-5.
    12.徐靖,赵应声,吴新国等.水溶性CdTe/CdS量子点荧光探针同步荧光法测定DNA.武汉大学学报,2006,S2(2):129-132.
    13.严拯宇,庞代文,邵秀芬等.量子点荧光猝灭法测定中药饮片中的微量铜.中国药科大学学报,2005,36(3):230-233.
    14.赵静,李刚,王保民等.氯霉素酶联免疫检测方法的研究.生物技术,2005, 15(1):56-59.
    15.钟萍,俞英,陈波等.水溶性CdSe/CdS合成条件优化的研究.化学研究与应用,2006,18:225-229.
    16. Akhtar R S, Latham C B, Siniscalco D, et al. Immunohistochemical detection with quantum dots. Methods Mol Bio,2007,374:11-28.
    17. Aldana J, Wang Y A, Peng X G. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. Journal of the American Chemistry Society,2001,123(36): 8844-8850.
    18. Bailey E R, Smith A M, Nie S. Quantum dots in biology and medicine. Physica E, 2004,25:1-12.
    19. Bailey R E, Smith A M, Nie S M. Quantum dots in biology and medicine. J Phys E, 2004,25:1-12.
    20. Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science.1998,281:2013-2016.
    21. Chan W C W, Nie S M. Quantum dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science,1998,281(5385):2016-2018.
    22. Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281:2016-2018.
    23. Chen J X, Xia F, Jiang H Y, et al. A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue. Food Chemistry, 2009,113:1197-1202.
    24. Chen Y F, Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes. Anal Chem,2002,74(19):5132-5138.
    25. Chen Y, Shang Y, Wu X, et al. Development of an enzyme-linked immunoassay for the detection of gentamicin in swine tissues. Food Chem,2008,108:304-309.
    26. Correa-Duarate M A, Giersig M, Liz-Marzan L M. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem. Phys lett,1998,286(5):497-501.
    27. Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al.(CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J Phys Chem B,1997,101:9463-9475.
    28. Daniele G, Shimon W, Alivisatos A P, et al. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. Journal of Physical Chemistry B,2001,105(37):8861-8871.
    29. Ding S Y, Jun X C, Hai Y J, et al. Application of Quantum Dot-Antibody Conjugates for Detection of Sulfamethazine Residue in Chicken Muscle Tissue. J Agric Food Chem, 2006,54:6139-6142.
    30. Dubertret B, Skourides P, Albert L, et al. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science,2002,298(5599):1759-1762.
    31. Feng Y, Ning B A, Pu S, Wang H Y, Wang C H, Chen F S, Gao Z X. An immunoassay for bisphenol A based on direct hapten conjugation to the polystyrene surface of microtiter plates. Talanta,2009,80:803-808.
    32. Gao M, Rogach A L, Kornowski A, et al. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. Journal of Physical Chemistry B,1998, 102(43):8360-8363.
    33. Goldman E R, Clapp A R, George P, et al. Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Anal Chem,2004,76:684-688.
    34. Goldman E R, Mattoussi H, Anderson G P, et al. Avidin:A Natural Bridge for Quantum Dot-Antibody Conjugates. Journal of the American Chemical Society,2002, 124(22):6378-6382.
    35. Goldman E R, Clapp A R, Anderson G P, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem,2004,76:684-688.
    36. Guardino X, Obiols J, Rosell M G, et al. Determination of chlorpyrifos in air, leaves and soil from a greenhouse by gas-chromatography with nitrogen-phosphorus detection, high-performance liquid chromatography and capillary electrophoresis. J Chromtogr A, 1998,823:91-96. 37. Han M Y, Gao X H, Su J Z, et al. Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nature Biotechnology,2001,19(7):631-635. 38. Huet A C, Charlier C, Tittlemier S A, et al. Simultaneous determination of (fluoro) quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA). J Agric Food Chem,2006,54:2822-2827. 39. Kaur J, Singh K V, Raje Varshney G C, Suri C R. Strategies for direct attachment of hapten to a polystyrene support for applications in enzyme-linked immunosorbent assay.Anal Chim Acta,2004,506:133-135.40. Levy M, Cater S F, Ellington A D. Quantum-Dot Aptamer Beacons for the Detection of Proteins. Chem Bio Chem,2005,6(1):1-4.
    41. Liu N, Su P, Gao Z X, et al. Simultaneous detection for three kinds of veterinary drugs:chloramphenicol, clenbuterol and 17-beta-estradiol by high-throughput suspension array technology. Analytica Chimica Acta,2009,632:128-134.
    42. Mason J N, Farmer H, Tomlinson I D, et al.A Novel fluorescence-based approaches for the study of biogenic amine transporter localization, activity and regulation. J Neurosci Methods,2005,143:3-25.
    43. Mitchell G P, Mirkin C A, Letsinger R L. Programmed Assembly of DNA Functionalized Quantum Dots. Journal of the American Chemical Society,1999,121(35): 8122-8123.
    44. Muldoon M T, Nelson J O. Evaluation of the effects of selected agricultural materials on an ELISA for s-triazines. Food Agric Immunol,1994,6:357-370.
    45. Murray C B, Norris D J, Bawendi M G. Synthesis and Characterization of Nearly Monodisperse CdE (E=sulfur, selenium, tellurium) Semiconductor Nanocrystallites. Journal of the American Chemistry Society,1993,115(19):8706-8715.
    46. Parak W J, Gerion D, Zanchet D, et al. Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater,2002,14:2113-2119.
    47. Parnell J S, Hall J C. Development of an enzyme-linked immunosorbent assay for the detection of metosulam. J Agric Food Chem,1998,461:52-156.
    48. Peng X G, Manna L, Yang W D, et al. Shape Control of CdSe Nanocrystals. Nature, 2000,404(6773):59-61.
    49. Peng Z A, Peng X G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. Journal of the American Chemistry Society,2001,123(1): 183-184.
    50. Rogach A L, Katsikas L, Kornowski A, et al. Synthesis and Characterization of Thiol-Stabilized CdTe Nanocrystals. Berichte der Bunsen-Gesellschaft Physical Chemistry,1996,100(11):1772-1778.
    51.Rosenthal S J. Bar-coding biomolecules with fluorescent nanocrystals. Nature Biotechnology,2001,19(1):621-622.
    52. Sander F W, Floris V D, Stephen G H, et al. Highly Luminescent Water-Soluble CdTe Quantum Dots. Nano Letters,2003,3(4):503-507.
    53. Schardein J L, Scialli A R. The legislation of toxicologic safety factors:the food quality protection act with chlorpyrifos as a test case. Reprod Toxicol,1999,13:1-14.
    54. Seydack M. Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron,2005,20:2454-2469.
    55. Shen H Y, Jiang H L. Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC-UVD, GC-ECD, GC-MS-EI-SIM and GCMS-NCI-SIM methods. Anal Chim Acta,2005,535:33-41.
    56. Shen J Z, Xu F, Jiang H Y, et al. Characterization and application of quantum dot nanocrystal-monoclonal antibody conjugates for the determination of sulfamethazine in milk by fluoroimmunoassay. Anal Bioanal Chem,2007,389:2243-2250.
    57. Vossmeyer T, Katsikas L, Weller H. CdS Nanoclusters:Synthesis Characterization Size Dependent Oscillator Strength Temperature Shift of the Excitonic Transition Energy and Reversible Absorbance Shift. Journal of Physical Chemistry,1994,98(31): 7665-7673.
    58. Wang H F, He Y, Ji T R, et al. Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Anal Chem,2009,81(4):1615-1621.
    59. Wang Z H, Zhu Y, Ding S Y, et al. Development of a monoclonal antibody-based broad-specificity ELISA for fluoroquinolone antibiotics in foods and molecular modeling studies of cross-reactive compounds. Anal Chem,2007,79:4471-4483.
    60. Wu J, Chang C, Ding W P, et al. Determination of Florfenicol Amine Residues in Animal Edible Tissues by an Indirect Competitive ELISA. J Agric Food Chem,2008,56: 8261-8267.
    61. Zhang B B, Liang X F, Hao L J, et al. Quantum dots/particle-based immunofluorescence assay:synthesis, characterization and application. J Photochem Photobiol B.2009,94:45-50.
    62. Zhong X, Feng Y, Han M, et al. Alloyed ZnxCdl-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. J Am Chem Soc,2003,125:13559-13563.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.