CryIA(c)-2A-gna融合基因、CryIA(c)和CryIA(b)单价基因遗传转化甘蔗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗(Saccharum officinarum L.)是重要的糖料和能源作物,甘蔗生产中螟虫(鳞翅目)、甘蔗绵蚜(同翅目)以及蛴螬(鞘翅目)等害虫的危害已成为其持续、稳定和健康发展的严重障碍。为了使甘蔗抗虫转基因的研究工作更有针对性,我们对海南甘蔗虫害的种类及其危害做了全面的调查,其中红尾白螟、二点螟、条螟、粉蚧、绵蚜,蔗根象等危害最严重,而这些害虫主要集中于鳞翅目、同翅目两大类,该调查结果与全国甘蔗蔗区害虫的危害情况基本一致。
     在甘蔗抗虫基因工程中,通过将抗虫蛋白基因导入甘蔗来提高甘蔗对虫害的抵抗能力已成为一种直接而有效的方法。随着越来越多抗虫蛋白被发现,人们都试图采用多基因共表达的策略将多种抗虫蛋白基因转入植物,以提高植物的抗虫能力和扩大抗虫谱。但是,山于受到可选择的载体数目和载体容量的限制,该目的很难较好的实现。融合基因技术的发展成为解决这一难题的有效途径。通过构建融合基因,可以实现多个基因的同步、同水平表达。正是这些优点,融合基因技术越来越受到人们的关注。针对甘蔗生产中鳞翅目、同翅目两大类主要害虫,本研究选择Bt CryⅠA (c)和gna两个已经证明具有很强抗螟虫和蚜虫能力的抗虫蛋白,采用重叠延伸PCR技术(gene splicing by overlap extension PCR,简称SOE PCR),通过连接多肽FMDV2A序列将CryⅠA(c)和gna基因相融合,得到CryⅠA (c)-2A-gna抗虫融合基因,通过农杆菌介导转化甘蔗,实现两个蛋白在甘蔗体内的共表达,以求达到提高甘蔗对虫害的抵抗能力的目的。主要实验结果如下:
     (1)对海南甘蔗产区5个县(市)16个乡镇进行害虫调查,初步摸清了海南甘蔗害虫种类,共发现害虫9日35科58种,其中鳞翅目10科15种,半翅目4科5种,同翅目7科9种,鞘翅目7科12种,直翅目4科12种,蜚蠊目、等翅目、缨翅目和柄眼目各1科1种。分析了甘蔗生产的主要害虫分布、危害特点、发生规律。其中红尾白螟、二点螟、条螟、粉蚧、绵蚜,蔗根象等危害最严重;
     (2)将CryⅠA (c)和gna基因用一段具有自我剪切功能的FMDV2A序列连接子连接,成功了融合CryⅠA (c)-2A-gna基因;
     (3)构建了含有融合基因CryⅠA (c)-2A-gna的植物表达载体pNUBG.同时构建了CryⅠA (c)和CrylA (b)两个单独基因的植物表达载体pUBTC和pUBTB,获得的三个植物表达载体用“冻融法”将其导入根癌农杆菌EHA105中;
     (4)将三个表达载体分别通过农杆菌介导法对甘蔗进行遗传转化:获得转融合基因CryⅠA (c)-2A-gna抗性植株196株,转CryⅠA (c)基因86株,转CryⅠA (b)基因抗性植株78株。所得的抗性植株进行PCR检测,转C ryⅠA (c)-2A-gna融合基因抗性植株呈阳性的有135株,转CryⅠA (c)基因的57株,转CryⅠA(b)基因有52株,初步证明外源基因已整合到甘蔗的基因组中;
     (5)选取转融合基因CryⅠA (c)-2A-gna的6株PCR呈阳性的植株进行Southern blot检测,植株1,2,3,5,6有杂交信号,单拷贝,证明外源基因已整合到甘蔗的基因组中,只有植株4的无杂交信号;
     (6)选取转融合基因CryⅠA (c)-2A-gna的5株Southern blot呈阳性的植株进行RT-PCR检测,5株转基因甘蔗的外源基因CryⅠA (c)-2A-gna基因在转录水平上得到了表达;
     (7)选取转融合基因CryⅠA (c)-2A-gna的5株Southern blot检测呈阳性的植株提取植物粗蛋白,进行GNA凝血.实验,说明融合基因CryⅠA (c)-2A-gna中的gna基因在转基因甘蔗植株中有不同程度的表达;
     (8)选取转融合基因CryⅠA (c)-2A-gna的5株Southern blot检测呈阳性的植株提取植物粗蛋白,利用Bt-Cry1Ab/Ac免疫检测试纸条进行Bt杀虫蛋白检测,全部表现为阳性结果,有Bt-Cry1Ab/Ac免疫检测试纸条上出现了两条紫红色条带,一条质控线,一条检测线,说明融合基因CryⅠA (c)-2A-gna中的CryⅠA基因在转基因甘蔗植株中得到表达。
Sugarcane (Saccharum officinarum L.) is an important cash crop on producing sugar and energy. Pests, such as Sugarcane borer (Lepidopter)、Sugarcane cottony aphid (Homoptera)and Grubs (Coleoptera), have severely restricted the sustainable and stable development of sugarcane industry. For better doing research on anti-pests transgenic sugarcane, we investigated the pests kinds and hazard state occurring on sugarcane in Hainan province, the most harmful insects including Tryporyza intacta Snellen, Hieroglyphus tonkinensis I. Bolivar and Episomoides albinus Matsumura, belong to Lepidopter、Homoptera. Sugarcane pests occurring in Hainan province were identical with nationwide other regions planting sugarcane.
     With the development of insect-resistant gene engineering, transferring anti-pests genes into sugarcane genome has been a direct and effective pathway to pests'control. For more and more anti-pests proteins discovered, multi-tandem anti-pests genes could be transferred to plants for improving the insect resistance and expanding insect resistant spectrum.
     However, it is difficult to transfer multi-gene simultaneously because of the limitation on vectors number and capacity. Gene fusion is an efficient way to solve this problem. Constructing fusion genes can make multi-genes expressed simultaneously on the same level. Just because of these advantages, gene fusion technology has been applied widely. Towards the two main pests species Lepidopter、Homoptera on sugarcane, BtCrylA (c) and gna proved of great resistance were selected to construct fusion genes. BtCryⅠA (c) and gna were linked by connecting peptide FMDV2A forming CryⅠA (c)-2A-gna gene using gene splicing by overlap extension PCR. As a result, BtCrylA (c) and GNA can express together in sugarcane to increase sugarcane resistance to borer and aphid. The main results are as follows:
     (1) After investigation on sugarcane pests in 16 towns in 5 counties of Hainan Province, we basically clarified the pests'species occurring on sugarcane. A total of 58 pests species were identified belonging to 36 families in 9 orders:15 species in 10 families of Lepidoptera order,5 species in 4 families of Hemiptera order,9 species in 7 families of Homoptera order, 12 species in 11 families of Coleoptera order, One Blattodea species,1 Isoptera species,1 Thysanoptera species and 1 mollusk. Tryporyza intacta Snellen, Hieroglyphus tonkinensis I. Bolivar and Episomoides albinus Matsumura were the harmful sugarcane pests in Hainan but few reports in other provinces in sugarcane. The pests distribution, hazard Characterization and occurrence regularity were analyzed.
     (2) BtCryⅠA (c) and gna was connected by a self-slice sequence FMDV2A linker, constructed fusion gene CryⅠA (c)-2A-gna.
     (3) The plant expression vector containing the fusion gene was constructed,and named pNUBG respectively.In addition,another two vectors containing CryⅠA (c) and CryⅠA (b),respectively,were constructed as control.Then these expression vectors were introduced into Agrobacterium tumefaciens EHA105 by freezing-melting transformation method.
     (4) Three expression vectors were introduced into sugarcane by Agrobatorium-mediated transformation, and 135 PCR positive plants containing CryⅠA (c)-2A-gna constructs,57 PCR positive plants containing CryⅠA (c) and 52 PCR positive plants containing CryⅠA (b) were obtained. These results showed that there foreign genes had been probably integrated into sugarcane genome.
     (5) Six CryⅠA (c)-2A-gna PCR positive plants were selected to detect by Southern blot, The resoults of Southern blot were five transgenic lines all showed hybridization bands,One line showed no hybridization band.
     (6) Five CryⅠA (c)-2A-gna Southern blot positive plants were detected by RT-PCR, and each plant expressed CryⅠA (c)-2A-gna on transcription level.
     (7) Extracted raw proteins used to red blood cell agglutination bioassay from five Southern blot positive plants and, the results indicated that GNA were expressed in part transferred plants at different degree.
     (8) Extracted raw proteins from five Southern blot positive plants to detect Bt insecticidal protein by Bt immune detection strips and, the results indicated that all plants showed positive.
引文
1.安玉兴.甘蔗病虫及防治图谱[M].广州:暨南大学出版社.2009.
    2.陈道德,谭显平,吕达等.攀西蔗区甘蔗病虫害综合防治浅谈[J].甘蔗.2003.10(2):20-25.
    .3. 陈平华,林美娟,薛志平,等.GNA基因遗传转化甘蔗研究[J].江西农业大学学报,2004,26(5):741-748.
    4. 陈红英,崔保安,李新生,等.融合基因mChIL-18/mChIFN-α克隆及其原核表达载体的构建[J]农业生物技术学报2007,15(3):388-392
    5.崔洪志,郭三堆.双价杀虫基因植物表达载体的构建及其在烟草中的表达[J].农业生物技术学报,1998,6(1):7-14.
    6.崔洪志,郭三堆.双价杀虫基因植物表达载体的构建及其在烟草中的表达[J].农业生物技术学报,1998,6(1):7-13.
    7.戴顺洪,李良才,丁月云,等.水稻基因枪法多基因转化研究[J].遗传学报,1998,25(4):345-350.
    8. 范钦.植物表达载体pKC-3的构建及大分子DNA连接策略[J].生物技术2000,10(4):1-2.
    9.冯道荣,许新萍,邱国华.多个抗病抗虫基因在水稻中的遗传和表达[J].科学通报,2000,45(15):1 593-1 599.
    10.高泽发,陈绪清,杨凤萍,等.:人工合成gna基因在小麦中的表达及其抗蚜虫效果研究[J].农业生物技术学报2006.14(4):559-564
    11.关中秀.廉江市甘蔗条螟严重发生的原因及防治对策[J].甘蔗,2002,9(3):36-39.
    12.管楚雄.我国蔗螟性诱剂研究及其应用前景[J].甘蔗糖业,2001,6:8-12.
    13.广西日报.2008年3月22日,第二版.
    14.黄涛生.甘蔗二点螟发生规律、预测方法和防治技术[J].福建热作科技,2003,28(3):18-19.
    15.黄应昆,李文凤.甘蔗主要病虫草害原色图谱[M].昆明:云南科技出版社,2002.
    16.黄应昆,李文凤.云南“双高甘蔗”病虫害综合防治[J].云南农业科技,2004,4:16-18.
    17.黄应昆,李文风.云南省甘蔗主要虫害及其防治[J].云南农业科技,1996,(1):13-16.
    18.黎焕光,谭裕模,谭芳杨,荣仲 甘蔗生长中后期螟害对甘蔗品质的影响[J].广西蔗糖2007.48(3):11-16
    19.赖贵生.蔗螟的为害与防治[J].甘蔗,2001,8(2):38-39.
    20.李敏,杨谦.一种高效构建同源重组DNA片段的方法-融合PCR[J].中国生物工程杂志,2007,27(8):53-58.
    21.李旭刚,谢迎秋,朱祯.外源基因在转基因植物中的失活[J].生物技术通报,1998(3):
    1-3.
    22.廖海洪,卢明,卜礼园,等.北海甘蔗蔗根锯天牛发生为害严重[J].广西植保.2006.19(3):22-24.
    23.李艳萍,郎志宏,李敏等.融合基因在转基因植物中的应用[J].中国生物工程杂志,2007,27(5):137-141.
    24.梁辉,朱银峰,朱祯等.雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究[J].遗传学报,2004,31(2):189-194.
    25.林俊芳.甘蔗钙调蛋白的基因克隆及遗传转化方法的研究.福建农业大学博士学位论文,1996.
    26.林俊芳等.基因枪法转化甘蔗胚性愈伤组织获得转基因甘蔗白花苗[J].福建农业大学学报,1997,26(1):18-23.
    27.林明江,欧伟兴,陈火君,等粤西蔗区甘蔗条螟成虫近年发生动态[J]广东农业科学2007,7:69-70
    28.林明江.浅谈甘蔗螟虫天敌与性诱剂的研究与应用[J].甘蔗糖业,2007,4:19-24.
    29.刘必胜,刘新垣,钱程.构建多顺反子表达载体的有效工具——FMDV2A[J].生物工程学报,2007,23(5):765-769.
    30.刘冬梅,张卓远,王妍.分泌型rhGM-CSF/IL-2融合蛋白表达载体的构建[J].中国生物制品学杂志,2002,15(4):197-200.
    31.刘海清.我国甘蔗产业现状及发展趋势[J].中国热带农业,2009(1):8-9.
    32.刘康成,袁生贵,肖筱成等.甘蔗粉红粉蚧空间分布及取样技术[J].江西植保,2002,25(2):50-61.
    33.罗梅浩,刘建兵,付贵成,等.转Bt基因玉米对亚洲玉米螟的抗性研究[J].河南农业大学学报.2007.41(1):77-80
    34.卢晓风,夏玉先,裴炎.植物蛋白酶抑制剂在植物抗虫与抗病中的作用[J].生物化学与生物物理进展,1998,25(4):328-332.
    35.马玉珍,石玉涛,白雁,等,EGFP和ALR融合基因表达载体构建及其在HeLa细胞中的表达[J].内蒙古师范大学学报.2006 Vol.35 No.3:340-343
    36.卿玉玲,赵嘉将,任红.乙型肝炎HBsAg和GM-CSF融合表达质粒的构建及表达[J].免疫学杂志,2003,19(3):201-207.
    37.权瑞党,尚梅,王兆玉等.农杆菌介导的雪花莲凝集素基因转入玉米骨干自交系[J].西北植物学报,2004,24(5):761-767.
    38.施丁寿,严方明,覃建中.广西甘蔗绵蚜的发生与防治[J].广西热带农业,2007,110(3):8.
    39.孙强明,戴长柏,李洪钊等.huIL-6-GM-CSF(9-127)融合蛋白的表达及活性测定[J]. 2002,18(4):253-257.
    40.王建林,马慧,张海泉,等.转基因作物及其安全性评价[J].沈阳农业大学学报,2004,35(1):63-67.
    41.王关林,方宏筠.2002.植物基因工程原理与技术[M].北京:科学出版杜.
    42.王洪利,楼程福.半光氨酸蛋白酶抑制剂基因及其在桑树害虫防治上的应用前景[J].蚕业科学,2000,26(增刊):15-19.
    43.王三红,杨梦悦,顾敏等.农杆菌介导三价融合基因Rirol转化八棱海棠的研究[J].果树学报,2007,24(6):731-736.
    44.王振招,冯奕玺.无公害甘蔗病虫综合防治[J].广西蔗糖,2006,44(3):22-24.
    45.王志斌,郭三堆.表达cryⅠA/gna双价抗虫基因烟草兼抗棉铃虫和蚜虫[J].科学通报,1999,44(19):2068-2075.
    46.王助引,周至宏,贤小勇等.广西甘蔗病虫草鼠害及其天敌调查[J].广西农业科学,1995(2):75-78.
    47.王忠华,吴刚,崔海瑞,等.Bt水稻中 cry1Ab基因的遗传分析[J].遗传学报,2001,289:846-851.
    48.卫剑文,许新萍,陈金婷等.应用Bt和SBTi基因提高水稻抗虫性的研究[J].生物工程学报,2000,16(5):603-608.
    49.文庆儒.当前甘蔗主要病虫害发生趋势和防治对策[J].中国作物学会甘蔗专业委员会第十二次学术讨论会论文集:88-95.
    50.武东亮,崔洪志,郭三堆.融合杀虫基因植物表达载体的构建及转基因烟草的获得[J].中国农业科学,2001,34(5):491-495.
    51.夏启中,张明菊.抗植物虫害基因及其应用[J].鄂州大学学报,2005,12(3):55-60.
    52.夏荣,林来兴妹,周宏伟等.hIL-2/mGM-CSF融合蛋白的构建及表达[J].中国免疫学杂志,2001,17(10):534-537.
    53.徐志德,刘岗山,黄河清等.湖南省甘蔗病虫草害调查报告[J].湖南农业科学,2000(1):26-27.
    54.杨友军 甘蔗螟虫为害加深原因及防治对策[J]甘蔗.,2003,10(2):36-38.
    55.阳明剑.甘蔗病虫鼠草防治彩色图志[M].南宁:广西科学技术出版社.1998.
    56.易代勇,李向勇.贵州蔗区金龟子虫害盛发原因分析及防治[J].贵州农业科学2006,34(6):91-92
    57.俞超,张吉,叶生,等.Bt转基因水稻生理生化特性研究初报[J].江苏农业科学.2008.4:31-33
    58.于永浩,曾涛,韦德卫等.近年蔗根土天牛严重为害广西甘蔗[J].植物保护,2007,33(2):136-137.
    59.于兰,秦新民,黄德青.农杆菌介导的BT基因导入甘蔗的研究[J].广西农学报,2007,22(6):l-4.
    60.岳同卿.转BtCry1Ah基因抗虫玉米的研究.博士论文.2009.
    61.赵荣敏,范云六,石西平,王京红,纵微星.获得高抗虫转双基因烟草[J].生物工程学报,1995,11(1):1-5.
    62.曾万秋.红尾白螟卵和枯梢分布型调查及取样方法比较[J].甘蔗糖业,1987(5):43-46.
    63.周增辉,陈晓龙,胡庆松,等.兰溪市甘蔗二点螟发生特点与防治措施[J]中国植保导刊2007,27(4):33-34
    64.周普国.中国蔗糖业生产与发展策略.中国糖网,2005.
    65.张少春.甘蔗的害虫防治[J].广西农学报,2001,4:60-62.
    66.长孙东亭,罗素兰,陈如凯,等.基因枪法介导GNA基因遗传转化甘蔗的研究[J].生物技术,2006,16(3):51-56.
    67.张天真,唐灿明.转Bt基因抗虫棉品种的推广利用与棉铃虫抗性的治理[J].科学通报,2000,45(2):119-127.
    68.张日火,周行飞,黄其军,等.柳城蔗区防治甘蔗螟虫的研究与应用[J]广西蔗糖2002.26(1):8-10
    69.张亦诚,易代勇,雷朝云,等.甘蔗螟虫的形态特征、习性及防治技术[J].贵州农业科学.2008,36(1):95-96
    70.郑立恒,许松梅何波,等.EGFP-IgG4融合基因真核表达载体的构建及其表达[J].四川大学学报2007.44(3):711-714
    71. Amrani AE, Barakate A, Askari BM. Coordinate expression and independen subcellular targeting of multiple proteins from a single transgene[J]. Plant physiol,2004,135:16-24.
    72. Arencibia, Roberto V, Dmitri P, Elva RC, Pilar T. Transgenic sugarcane(Saccharum officinarum L)plants are tolerant to stemborer (Diatraea saccharal-is F.) attack despite the low expression levels of cryⅠA(b) gene from B.thuringiensis var. kurstaki HD-1. Biotecnologia Aplicada,1996:1-3.
    73. Arencibia A, Vazquez RI, Prieto D, Te llez P, Carmona ER, Coego A, Herna ndez L, DelaRiva GA, Selman-Housein G. Transgenic sugarcane plants resistant to stem borer attack[J]. Molecular Breeding,1997,3(4):247-255.
    74. Arencibia AD, Carmona ER, Comide MT. Somaclonal variation in insect-resistant transgenic sugarcane plants produced by cell electroportion[J]. Transgenic Research, 1999,8:349-360.
    75. Barton KA, Whitely HR, Yang NS. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects[J]. Plant Physiol,1987,85:1103-1109.
    76. Beck V, Bodman S. Expression of multiple eukaryotic genes from a single promoter in Nicotiana[J]. BioTechnology,1995,13:587-591.
    77. Birch RG, R Bowe, A Elliott. Regulation of transgene expression:progress towards practical development insugarcane, and implications for other plant species[J]. Developments in plant genetics and breeding,2000,5:118-125.
    78. Bosch D, Schipper B, Vander KH, Maagd RA, Stiekema WJ. Recombinant Bacillus thuringiensis crystal proteins with new properties:possibilities for resistance management[J]. Biotechnology,1994,12(9):915-918.
    79. Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA.1990. Additive protective effects of different plantderived insect resistantce genes in transgenic tobacco plants. Crop Prot,9:351-354.
    80. Braga PDV, Arrigoni EDB, Burnquist WL. A new approach for control of Diatrea saccha-ralis(Lepidoptera:Crambidae)through the expression of an insecticidal CryⅠa(b)protein in transgenic sugarcane. International Society of Sugarcane Technologists Proceedings. 2001:331-336.
    81. Claire Halpin,Susan E.Cooke,Abdellah Barakate,et al.Self-processing 2A-polyproteins-a system for co-ordinate expression of multiple proteins in transgenic plants[J].The Plant Journal.(1999)17(4):453-459
    82. Claire Halpin.Gene stacking in transgenic plants C the challenge for 21st century plant biotechnology[J] Plant Biotechnology Journal 2005.3:141-155
    83. Chen L, et al. Expression and inheritance of multiple transgenes in rice plant Natue Biotechnology,1998,16:1060-1064.
    84. Chrispeels MJ, Raikhe NV. Lectins, lectin genes and their role in plant defense[J]. The plant cell,1991,3:1-9.
    85. Christon P, Swain WF. Co-transformation frequencise of foreign genes in soybean cell culture[J]. Theor Appl Genet,1990,79:337-341.
    86. Chonglie M, Amitava M. Expressing multiple genes in a single open reading frame with the 2A region of foot-and-mouth disease virus as a linker[J]. Molecular Breeding,2002, 9:191-199.
    87. Clark AM. Plant epidermic-specific promoter:potential for altering plant insect interaction[J]. Plant Physiol,1994,105(1)(Suppl):160.
    88. Crickmore N, Zeigler DR, Feitelson J, et al. Revision of the nomenclature for the
    Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiol Mol Biol Rev,1998,62(3): 807-813.
    89. Daniella PV, Paul BL. Transgenic sugarcane plants for RoundupTM obtained through microprojectile bombardment. Town & Country Hote. San Diego. CA.2000.1:9-12.
    90. Douin V, Bornes S, CreancierL, et al. Use and comparison of different internal ribosomal entry sites IRES in tricistronic retroviral vectors[J]. BMC Biotechnol,2004,4:16.
    91. Falco MC, Silva MC. Expression of soybean proteinase inhibitors in transgenic sugarcane plants:effects on natural defense against Diatraea saccharalis[J]. Plant Physiology and Biochemistry,2003,41(8):761-766.
    92. Felipe DP, Hughes LE, Ryan MD, Brown JD. Co-translational,Intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide[J]. J Biol Chem,2003, 278:11441-11448.
    93. Felipe PD, Luke GA, HughesL E, et al. Eunum pluribus:multiple proteins from a self-processing polyprotein[J]. Trends in Biotechnol,2006,24 (2):68-75.
    94. Fischhoff DA, Bowdish KS, Perlak FJ, et al. Insect tolerant transgenic tomato plants[J]. Biotechnology,1987,5:807-813.
    95. Francois IE, Dwyer GI, Bolle MF, et al. Processing in transgenic Arabidopsis thaliana plants of polyproteinswith linker peptide variants derived from the Impatiens balsamina lantimicrobial polyprotein precursor[J]. Plant Physiol and Biochem,2002,40:871-879.
    96. Francois IE, Dwyer GI, Bolle MF, et al. Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins[J]. Plant Science,2004,166:113-121.
    97. Gazit E, Rocca PL, Sansom MSP, et al. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis8-endotoxin are consistent with an"umbrella-like"structure of the pore[J]. Proc Natl Acad Sci U S A,1998,95(21):12289-12294.
    98. Gunter S. A fusion protein designed for noncovalent immobilization stability enzymatic activity and use in an enzyme reactor[J]. Nature Biotechnology,1996,14:481-484.
    99. Halpin C, Cooke SE, Baralate A, et al. Self-processing 2A polyproteins-a system for co-ordinate expression of multiple proteins in transgenic plants[J]. Plant J,1999,17(4): 453-459.
    100.Herrera G, Snyman SJ, Thomson JA. Construction of a bioinsecticidal strain of Pseudomonas fluorescens active against the sugarcane borer, Eldana saccharina[J]. Applied and Environmenta Microbiology,1994,60 (2):682-690.
    101.Heckel GD. The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Sci Techn[J],1994, (4)4:405-417.
    102.Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D. A novel mechanismof insect resistance engineered into tobacco[J]. Nature,1987,300:160-163.
    103.Hofte H,Whitetey HR. Insecticidai crystal proteins of Bacillus thuringiensis[J]. Microbiol Rev,1989,53(2):242-255.
    104.Honee G, et al A translation fusion product of two different insecticidal crystal protein genes of Bacillus thuringiensis exhibits an enlarged insecticidal spectrum[J]. Appl Envirorn Microbiol,1990,56:823-825.
    105.IsabelleB.J.A.,Francois,WillemF.Broekaert, et al.Different approaches for multi-transgene-stacking in plants[J].Plant Science 163.(2002):281-295
    106.Irvine JE, Mirkov TE. The development of genetic transgenic transformation of sugarcane in Texas [J]. Sugar Journal,1997,60:25-29.
    107.Jennifer Randall,Dennis Sutton,Soumitra Ghoshroy, Co-ordinate expression of-and-zeins in transgenic tobacco[J]. Plant Science.167. (2004):367-372
    108.Knowles BH. Mechanism of action of Bacillus thuringiensis insecticidal proteins[J]. Adv Insect Physiol,1994,24:275-308.
    109.Knowles BH, Ellar DJ. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensisδ-endotoxins with different insect specificity [J]. Biochimica et Biophysica Acta,1987,924(3):509-518.
    110.Murry EE, Rochleau TR, Eberle M, Stock C, Sekar V, Adang MJ. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts[J]. Plant Mol Biol,1991,16:1035-1060.
    111.Nutt KA, Allsopp P G, McGH IE T K. Transgenic sugarcane with increased resistance to canegrubs[A].see:Proceedings of the 1999 conference of the Australian Society of Sugarcane Technologists [C]. Townsville, Bresbane,1999.
    112.Peferoen M. Progress and prospects for field use of Bt genes in crops[J]. Trends Biotechnol,1997,15:173-177.
    113.Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischoff DA. Insect resistant cotton plants[J]. Biotechnology,1990,8:939-943.
    114.Perlak FJ, Fuchs RL, Dean DA, Mcpherson SL, Fischhoff DA. Modification of the coding sequence enhances plant expressing of insect control protein genes[J]. Proc Natl Acad Sci USA,1991,88:3324-3328.
    115.Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, Mcpherson SA, Wyman J, Love S, Reed G, Biever D, Fischhoff DA. Genetically improved potatoes:protection from damage by Colorado potato beetles[J]. Plant Mol Biol,1993,22:313-321.
    116.Peumans WJ, Van DEJM. Lectins as plant defence proteins[J]. Plant Physioll,1995,109: 347-352.
    117.Rao KV, Rathore KS, Hodges TK, et al. Expression of snowdrop lectin (GNA) in transgenic rice Plants confers resistance to rice brown Plant hopper[J]. The Plant Journal, 1998,15(4):469-477.
    118.Robert M, Henry D, Steff ANN, et al. Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension[J]. Gene,1989,77:61-68.
    119.Ryan MD, Drew J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein[J]. EMBO J,1994,13:928-933.
    120.Sanhong Wang QuanhongYao JianminTao.Co-ordinate expression of glycine betaine synthesis genes linked by the FMDV2A region in a single open reading frame in Pichia pastoris [J] Appl Microbiol Biotechnol. (2007) 77:891-899
    121.Schwartz JL, Juteau M, Grochulski P, et al. Restriction of intramolecular movements within the CrylAa toxin molecule of Bacillus thuringiensis through disulfide bond engineering[J]. FEBS LETT,1997,410(2-3):397-402.
    122.Schuler TH, Poppy GM, Kerry BR, et al. Insect-resistant transgenic plants[J]. Trends Biotechnol,1998,16:168-175.
    123.Setamou M, Bernal JS, Legasp IJC, et al. Evaluation of lectin expressing transgenic sugarcane against stalk borers (Lepidoptera:Pyralidae):effects on life history parameters[J]. Journal of Economic Entomology,2002,95(2):469-477.
    124.Shi Y, Wang MB. Use of the rieesu-crosesynthase-I promoter to direct pholem-spificic expression of 8-giucuronidase and snowdrop lectin genes intransgenic tobaccoplants[J]. J Experim Botany,1994,274:623-631.
    125.Tabashnik BE, Liu YB, Finson N, et al. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins[J]. Proc Natl Acad SciUSA,1997,94: 1640-1644.
    126.Vachon V, Paradis MJ, Marsolais M, et al. Endogenous K+/H+exchange activity in the Sf9 insect cell line[J]. Biochemistry,1995,34(46):15157-15164.
    127.Vaeck M, Reynaerts A, Hofte H, Jansens S, De Beuckeler M, Dean C, Zabeau M, Van Montagu M, Leemans J. Transgenic plants protected from insect attack[J]. Nature,1987, 328:33-37.
    128.Vander ST, et al. Insect resistance of transgenic plants that exT press modified Bacillus thuringiensis cryⅠA (b) and cryⅠC genes:a resistance management strategy [J]. Plant Mol Biol,1994,26:51-59.
    129. Von Bodman SB, Domier LL, Farrand SK. Expression of multiple eukaryotic genes from a single promoter in Nicotiana[J]. BioTechnology,1995,13:587-591.
    130.Weng LX, Dend H, Xu JL, Li Q, Wang LH, Jiang Z, Zhang HB, Li Q, Zhang LH. Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance[J]. Pest Management Science,2006,62(2):178-187.
    131.Wong ET, Ngoi SM, Lee CGL. Improved co2expression of multtiplegenes in vectors containing internal ribosome entru sites IRESes from huamn genes[J]. Gene Ther,2002, 9:337-344.
    132.Zhang L, Xu J, Birch RG. Engineered detoxification confers resistance against a pathogenic bacterium(see comments)[J].Nature biotechnology,1999,17(10):1021-1024.
    133.Zhang SZ, Yang BP, Feng CL, et al. Expression of the Trehalose Synthase Gene Enhances the Drought-tolerance in Sugarcane[J].Journal of Integrative Plant Biology (Formerly Acta Botanica Sinica),2006,48(4):1-5.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.