焊接工字形钢支撑及中心支撑钢框架抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中心支撑钢框架结构是目前多高层钢结构中常用的一种结构类型,国内外对其抗震性能已做了大量的研究工作。但由于其在罕遇地震下的响应非常复杂,仍有许多问题值得继续研究。本文通过试验和有限元分析相结合的方法,对焊接工字形钢支撑的低周疲劳性能、中心支撑钢框架结构的设计方法及抗震性能进行了分析研究,并得出了一些有意义的结论。
     在两端铰接ST12材质焊接工字形钢支撑等幅轴向循环位移荷载低周疲劳性能试验基础上,进行了Q235材质焊接工字形钢支撑低周疲劳性能试验。分析了2种材质的共47根支撑试件在试验载荷下的最大横向变形和最大抗压承载力特性,验证了本文推导公式及规范方法的可靠性。在假设加载幅值、试件几何特征以及钢材屈服强度对支撑低周疲劳寿命影响相互独立的基础上,提出了估算支撑低周疲劳寿命的经验公式。分析表明,翼缘宽厚比越小,长细比越大,加载幅值越小,屈服强度越低,支撑低周疲劳寿命越高。由于地震作用前支撑构件位移时程不可预知,设计支撑时除应严格限制翼缘板件宽厚比外,还应适当采用低屈服点钢材及适当放宽某些现行规范对长细比的限制,以避免支撑过早断裂。最后,根据支撑不同损伤阶段的累积耗能比,指出可偏于安全地采用阶段?的寿命估算公式来预估支撑的低周疲劳寿命。
     基于上述研究成果,对国内外有关中心支撑设计的屈曲后承载力、长细比及工字形钢支撑板件宽厚比的问题开展了分析讨论,并提出了一些具体建议。采用有限元程序ABAQUS对19根Q235材质焊接工字形钢支撑的滞回性能进行了模拟,有限元结果与试验结果基本吻合。结合FE-SAFE程序,通过主应变、最大剪应变、Brown-Miller组合应变三种多轴临界面损伤模型对支撑的低周疲劳性能进行了数值模拟研究。结果表明,残余应力对支撑低周疲劳寿命影响甚微;三种临界面损伤模型的预测寿命基本位于4倍分散带以内,偏于安全一侧。
     以位于抗震设防烈度8度区的某大型火电厂钢结构主厂房横向最不利一榀的煤仓间部分为原型,按1:12缩尺比例设计制作了铰接中心支撑钢框架结构试验模型,对其进行了24种地震工况下的模拟地震作用振动台试验和部分工况下的数值模拟研究。得到了模型结构的动力特性及其在8度多遇、偶遇、罕遇及8.5度罕遇地震下的加速度和位移响应等。结果表明,8度多遇地震作用前后,结构动力特性并未发生变化;8度罕遇地震作用后,个别支撑和节点板出现了微小的平面外变形。依据试验结果及试验原型的有限元分析结果,推算出试验原型结构在三种地震(EL Centro、Cholam Shandon、人工)的多遇烈度以及人工地震的罕遇烈度下,层间位移角包络值满足我国抗震规范GB50011的限值要求。该体系在高烈度区也可具有良好的抗震性能。
     采用有限元程序ABAQUS,对4、10层高烈度区(8度)的铰接中心支撑钢框架结构进行了地震响应分析,研究了设计地震作用、构件(支撑、被撑梁、支撑跨柱)设计方法对铰接中心支撑钢框架结构抗震性能的影响。结果表明,在对被撑梁及支撑跨柱进行一定补充设计的基础上,与按抗震规范GB50011设计的算例相比,按通则CECS160:2004设计的算例,在结构动力响应相当的情况下,减少了用钢量,获得了较优的综合抗震性能。说明抗震规范GB50011规定的地震作用偏大。建议继续开展深入的研究,扩大铰接中心支撑钢框架体系的应用范围。
     采用有限元程序ABAQUS,对8度抗震设防烈度区的梁柱刚接中心支撑钢框架结构进行了地震响应分析,重点研究了不同抗弯框架加强方法对钢框架-中心支撑双重体系抗震性能的影响。结果表明,罕遇地震下,若支撑没有因低周疲劳失效退出工作,钢框架-中心支撑双重体系(删掉支撑的抗弯框架按任一层能独立承担结构层剪力的25%或结构基底剪力的25%加强)并未体现出优于单体系的抗震性能;若假设支撑出现断裂且断裂时刻较早,删掉支撑的抗弯框架按任一层能独立承担25%结构基底剪力加强的双重体系算例明显体现出了较优的抗震性能。建议双重体系设计中抗弯框架的调整加强,宜按照删掉支撑后任一层能独立承担结构基底剪力的25%来进行。
     振动台试验及中心支撑钢框架结构的抗震性能分析结果均表明,抗震规范GB50011没有考虑不同结构体系、不同材料的抗震特性,过高估计了中心支撑钢框架结构(丙类建筑)的地震作用。
     本论文受到国家科技支撑计划(2006BAJ01B02-01-04)和校企合作项目“电厂主厂房钢结构抗震设计方法的研究与应用”的资助,深表谢意。
At present, the concentrically braced steel frame (CBF) is a commonly used structure system in multi-story and high-rise steel structures, and a lot of research about its aseismic performance has been conducted in China and abroad. However, there are still some key problems worth further studying due to its complex seismic response under severe earthquakes. In this paper, the low-cycle fatigue behavior of the welded I-section steel bracing members, the seismic design method and aseismic performance of the CBF are analyzed, and some useful conclusions are also suggested.
     Based on the low-cycle fatigue behavior tests of the welded I-section ST12 steel bracing members with pinned connections under constant amplitude reversed cyclic axial loading, the low-cycle fatigue behavior of the welded I-section Q235 steel bracing members with pinned connections was examined. The test results about the maximum lateral deformation and the maximum compressive strength of the forty-seven bracing members made of Q235 and ST12 were studied, and the reliability of the formula obtained in this paper and some codes for calculating these deformation and strength is verified. According to the assumption that the geometry properties, loading amplitude and steel yield strength are independent for estimating the low-cycle fatigue life, some empirical formulas were presented. It is found that the low-cycle fatigue life increases with the decrease in the width-thickness ratio of the flange, the increase in the brace slenderness ratio, and the decrease in the loading amplitude and yield strength of the bracing members. Because the displacement histories of the bracing members can not be predicted before a real earthquake, in order to avoid early fractures of the bracing members, besides limiting the width-thickness ratio of the flange, low yield strength steel should be adopted and the brace slenderness ratio limitation in some current codes should be enlarged. Finally, based on the energy index ratios for different damage stages, the suggestion that the low-cycle fatigue life of the bracing members can be safely predicted by the empirical formulas for stage I has been put forward.
     Based on the results mentioned above, several problems about the seismic design of the concentrically braces in China and abroad were analyzed and discussed, including the post-buckling resistance, limit values of slenderness and width-thickness ratios for I-section bracing members, and therefore some concrete suggestions were also put forward.
     A non-linear numerical analysis was carried out by the ABAQUS program to simulate the hysteretic behavior of the nineteen welded I-section Q235 steel bracing members, and in general the analysis results are in good agreement with the test ones. Numerical simulation of the low-cycle fatigue damage and crack initiation lives for the bracing members was also conducted by the FE-SAFE program based on the critical plane damage models, including the principal strain, maximum shear strain and Brown-Miller combined strain damage models. The results show that, the residual stress has no effect on the low-cycle fatigue lives of the bracing members, and the low-cycle fatigue lives predicted by the three damage models safely fall within a scatter band of four.
     Regarded a critical one-bay braced frame of the coal storage room selected from the main plant structure of a large thermal power plant as prototype structure, which plans to be built in the zone with the seismic design intensity of 8 degree, a 1:12 scale CBF model with pinned beam-to-column connections was made and tested on the shaking table under the action of twenty-four different earthquake ground motions. And the numerical analysis of the test model was also performed by the ABAQUS program. Dynamic properties, as well as responses of acceleration and displacement under different earthquakes, for the test and numerical models were studied. The results show that, before and after intensity 8 frequent earthquakes, the dynamic properties of the test model didn’t change; after intensity 8 rare earthquakes, only a few braces and gusset plates appeared small out-of-plane deformations. Based on the test results and analysis results of the prototype structure, the computative maximum story drifts of the prototype structure under intensity 8 frequent and rare earthquakes are all less than their limit values pursuant to the GB50011 code. On the whole, the structural system of CBF with pinned beam-to-column connections has a good aseismic performance in the severe seismic region.
     Seismic response analysis of the four- and ten-story CBFs, located in the zone with the seismic design intensity of 8 degree, with pinned beam-to-column connections was carried out by the ABAQUS program, and the effect of the seismic design methods for the members (brace, braced beam and braced column) and the design seismic force on the aseismic performance of the structures was investigated. The results reveal that, based on some supplemental designs about the braced beams and braced columns, the dynamic responses of the structures designed by the CECS160:2004 code are similar to those designed by the GB50011 code, but the amount of steel used for the former is smaller than that for the latter, indicating that the comprehensive aseismic performance of the structures designed by the CECS160:2004 code is better and the GB50011 code overestimates the seismic force of the CBF with pinned beam-to-column connections. Finally, the suggestion for the further research to enlarge the application range of the CBF with pinned beam-to-column connections has been put forward.
     Seismic response analysis of the CBFs, located in the zone with the seismic design intensity of 8 degree, with rigid beam-to-column connections was also carried out by the ABAQUS program, and the effect of the seismic strengthened design methods for the moment frame on the aseismic performance of the dual system was mainly investigated. The results show that, if no brace occurs low-cycle fatigue fracture during the rare earthquakes, the aseismic performance of the dual system in which any story of the moment frame can independently resist 25 percent of the base or story shear force isn’t better than that of the single system. However, based on the assumption that the brace fractures early during an artificial earthquake, the aseismic performance of the dual system in which any story of the moment frame can independently resist 25 percent of the base shear force is evidently better than that of the others. Therefore, it is suggested that the seismic design for the dual system should be performed to ensure that any story of the moment frame can independently resist 25 percent of the base shear force.
     The results of the shaking table tests and the seismic response analysis for CBFs also indicate that, because the aseismic characteristics for different structural system and materials can not be considered by the GB50011 code, the seismic force of the CBF with a seismic category C is overestimated by the GB50011 code.
     The author wishes to acknowledge the financial support of this work from National Science & Technology Pillar Program with contract number 2006BAJ01B02-01-04 and Cooperation Project of School and Enterprise-“Research and Application on the seismic design method of main plant structure of a large thermal power plant”.
引文
1 JGJ99-98.高层民用建筑钢结构技术规程.中国建设工业出版社, 1998
    2 GB50011-2001.建筑抗震设计规范.中国建筑工业出版社, 2002
    3管克俭,王新武,彭少民.钢框架支撑体系的应用和分析方法.中国工程科学. 2003, 5(5): 80~83
    4黄怡,王元清,石永久.支撑布置方式对多高层钢结构抗震性能的影响分析.钢结构. 2005, 20(5): 41~44
    5 D. C. Rai, S. C. Goel. Seismic Evaluation and Upgrading of Chevron Braced Frames. Journal of Constructional Steel Research. 2003, 59(8): 971~994
    6黄南冀,张锡云,姜萝香.日本阪神大地震建筑震害分析与加固技术.地震出版社, 2000: 153~155
    7 H. I. Kim, S. C. Goel. Upgrading of Braced Frames for Potential Local Failures. Journal of Structural Engineering. 1996, 122(5): 470~475
    8 B. Shaback, T. Brown. Behaviour of Square Hollow Structural Steel Braces with End Connections under Reversed Cyclic Axial Loading. Canadian Journal of Civil Engineering. 2003, 30: 745~753
    9 R. Tremblay, M. H. Archambault, A. Filiatrault. Seismic Response of Concentrically Braced Steel Frames Made with Rectangular Hollow Bracing Members. Journal of Structural Engineering. 2003, 129(12): 1626~1636
    10 B. M. Brodericka, J. M. Goggins, A. Y. Elghazouli. Cyclic Performance of Steel and Composite Bracing Members. Journal of Constructional Steel Research. 2005, 61(5): 493~514
    11 R. Tremblay. Inelastic Seismic Response of Steel Bracing Members. Journal of Constructional Steel Research. 2002, 58(5): 665~701
    12 A. M. Remennikov, W. R. Walpole. A Note on Compression Strength Reduction Factor for a Buckled Strut in Seismic-Resisting Braced System. Engineering Structures. 1998, 20(8): 779~782
    13 M. K. Boutros. Cyclic Behaviour of Partly Plastic Pinned Circular Tubes: I. Analytical Model. Thin-Walled Structures. 1999, 33(1): 49~67
    14 M. K. Boutros. Cyclic Behaviour of Partly Plastic Pinned Circular Tubes: II. Testing and Verification of the Model. Thin-Walled Structures. 1999, 33(1):69~82
    15 A. M. Remennikov, W. R. Walpole. Analytical Prediction of Seismic Behaviour for Concentrically-Braced Steel Systems. Earthquake Engineering & Structural Dynamics. 1997, 26(8): 859~874
    16 A. M. Remennikov, W. R. Walpole. Modeling the Inelastic Cyclic Behaviour of a Bracing Member for Work-Hardening Material. International Journal of Solids and Structures. 1997, 34(27): 3491~3515
    17申林,顾强,苏明周.高层结构钢支撑循环性能的研究和现状.西安建筑科技大学学报. 2000, 32(3): 213~219
    18苏明周,顾强,申林.钢构件在循环大应变作用下的有限元分析.工程力学. 2001, 18(4): 51~58
    19连尉安.焊接工字形钢支撑低周疲劳性能以及应用研究.哈尔滨工业大学博士学位论文. 2006: 1~174
    20张耀春,连尉安,张文元.焊接工字形截面钢支撑低周疲劳性能试验研究.建筑结构学报. 2005, 26 (6): 114~121
    21 Yaohun Zhang, Weian Lian, Wenyuan Zhang. Factors Affecting the Low Cyclic Fatigue Behavior Around the Weak Axis of Welded I-section Bracing Members. Proceedings of the International Conference on Fracture and Damage Mechanics V, Harbin, China, 2006: 959~962
    22 S. S. Walbridge, G. Y. Grondin, J. J. R. Cheng. Gusset Plate Connections under Monotonic and Cyclic Loading. Canadian Journal of Civil Engineering. 2005, 32: 981~995
    23 D. E. Lehman, C. W. Roeder, D. Herman, S. Johnson, B. Kotulka. Improved Seismic Performance of Gusset Plate Connections. Journal of Structural Engineering. 2008, 134(6): 890~901
    24 S. S. Walbridge. Gusset Plate Connections under Monotonic and Cyclic Loading. Journal of Civil Engineering. 2005: 1~15
    25 Jung-Han Yoo, D. E. Lehman, C. W. Roeder. Influence of Connection Design Parameters on the Seismic Performance of Braced Frames. Journal of Constructional Steel Research. 2008, 30(4): 607~623
    26 A. Astaneh-Asl. Seismic Behavior and Design of Gusset Plates for Braced Frames. Steel Tips. 1998: 1~34
    27刘维亚,练贤荣,费金祖.支撑节点板与钢梁柱连接的内力计算方法比较.建筑结构. 2003, 33(3): 43~49
    28黄明超.铰接刚架支撑连接节点性能及其设计方法研究.哈尔滨工业大学硕士学位论文. 2008: 1~182
    29 A. H. Remennikov, W. D. Walpole. Seismic Behavior and Deterministic Design Procedures for Steel V-Braced Frames. Earthquake Spectra. 1998, 14: 335~355
    30 R. Tremblay, N. Robert. Seismic Performance of Low- and Medium-Rise Chevron Braced Steel Frames. Canadian Journal of Civil Engineering. 2001, 28: 699~714
    31 H. Moghaddam, I. Hajirasouliha. A. Doostan. Optimum Seismic Design of Concentrically Braced Steel Frames: Concepts and Design Procedures. Journal of Constructional Steel Research. 2005, 61(2): 151~166
    32 E. M. Marino, M. Nakashima. Seismic Performance and New Design Procedure for Chevron-Braced Frames. Earthquake Engineering & Structural Dynamics. 2006, 35(4): 433~452
    33 M. Dicleli, A. Mehta. Seismic Performance of Chevron Braced Steel Frames with and without Viscous Fluid Dampers as a Function of Ground Motion and Damper Characteristics. Journal of Constructional Steel Research. 2007, 63(8): 1102~1115
    34孙跃洲.框架-人字形中心支撑双重抗侧力体系的静力和动力分析.哈尔滨工业大学硕士论文. 2006: 1~72
    35梁守科.钢框架-跨层X形中心支撑体系动力及低周疲劳性能分析.哈尔滨工业大学硕士论文. 2007: 1~106
    36米旭峰.支撑框架与竖缝剪力墙抗震设计研究.浙江大学博士学位论文. 2007: 1~94
    37童根树,米旭峰.钢支撑设计方法对多层框架实际抗震性能的影响.工程力学. 2008, 25(6): 107~115
    38叶列平,欧阳彦峰.双重抗震结构及其设计参数的分析研究.工程力学. 2000, 17(2): 23~29
    39经杰,叶列平,钱稼茹.双重抗震结构体系在高层建筑中的运用.建筑科学. 2001, 17(1): 42~46
    40 A. K. Jain, S. C. Goel, R. D. Hanson. Hysteretic Cycles of Axially Loaded Steel Members. Journal of Structural Dividion. 1980, 106(8):1777~1795
    41邵永松.焊接T形截面单斜支撑杆件滞回性能的试验研究.哈尔滨建筑大学硕士学位论文. 1990: 1~105
    42 E. P. Popov, V. A. Zayas, S. A. Mahin. Cyclic Inelastic Buckling of Thin Tubular Columns. Journal of Structural Division. 1979, 105(11): 2261~2271
    43 A. Astaneh Asl, S. C. Goel, R. D. Hanson. Cyclic Out-of-Plane Buckling of Double-angle Bracing. Journal of Structural Division. 1985, 111(5): 1135~1153
    44 B. F. Maison, E. P. Popov. Cyclic Response Prediction for Braced Steel Frames. Journal of Structural Division. 1980, 106(7): 1401~1416
    45 A. B. Higginbotham, H. R. Dan. Axial Hysteretic Behavior of Steel Members. Journal of Structural Division. 1976, 102: 1365~1381
    46 D. Prathuangsit, S. C. Goel, R. D. Hanson. Axial Hysteretic Behavior with End Restraints. Journal of Structural Division. 1978, 104(6): 883~895
    47 S. Toma, W. F. Chen. Inelastic Cyclic Analysis of Pinned-Ended Tubes. Journal of Structural Division. 1982, 108(10): 2279~2294
    48 K. Ikeda. Cyclic Response of Steel Braces. Journal of Structural Engineering. 1986, 112(2): 342~361
    49 M. S. Alawa, P. Soroushian. Efficient Formulation of Physical Theory Brace Models. Journal of Structural Engineering. 1988, 114(11): 2457~2473
    50 G. Ballio, F. Perotti. Cyclic Behavior of Axially Loaded Members: Numerical Simulation and Experimental Verification. Journal of Constructional Steel Research. 1987, 7(1): 3~41
    51 P. Soroushian, M. S. Alawa. Hysteretic Modeling of Steel Struts: Refined Physical Theory Approach. Journal of Structural Engineering. 1990, 116(11): 2903~2916
    52秦权.支撑结构系统的抗震性能和设计.冶金工业部建筑研究总院. 1986: 1~10
    53段炼.支撑框架动力反应分析.第11届全国高层建筑结构学术交流会论文集,丹东, 1990: 1~10
    54沈祖炎,王革,李国强.交叉钢支撑滞回特性分析.上海力学. 1992, 13(3): 1~8
    55 M. K. Boutros. Nonlinear SDOF Element for Hysteretic Analysis of Pinned Braces. Journal of Engineering Mechanics. 1991, 117(5): 941~953
    56 F. Perotti, A. D. Amici, P. Venturini. Numerical Analysis and Design Implications of the Seismic Behavior of One-Story Steel Bracing System. Engineering Structure. 1996, 18 (2): 162~178
    57 E. Mizuno, Q. Y. Liu. A Two-Surface Model in Force Space for Steel Members. Journal of Constructional Steel Research. 1998, 48(2-3): 107~122
    58 B. V. Fell, A. M. Kanvinde, G. G. Deierlein, A. T. Myers. Experimental Investigation of Inelastic Cyclic Buckling and Fracture of Steel Braces. Journal of Structural Engineering. 2009, 135(1): 19~32
    59 S. Lee. Seismic Behaviour of Hollow and Concrete-Filled Square Tubular Bracing Member. PH.D. thesis, University of Michigan, at Ann Arbor, Mich. 1987: 1~204
    60 Z. Liu, S. C. Goel. Investigation of Concrete-Filled Steel Tubular Cyclic Bending Buckling Members. Report NO UMCE 87-3, Department of Civil Engineering, The University of Michgan Engineers. 1987
    61 X. Tang, S. C. Goel. Braced Fractures and Analysis of Phase I Structures. Journal of Structural Engineering. 1989, 115(8): 1960~1976
    62 M. H. Archambault.étude du comportement séismique des contreventements ductiles en X avec profiles tubulaires en acier. Report EPM/GCS-1995-09, Department of Civil Engineering,école Polytechnique, Montréal, Que. 1995
    63 CAN/CSA-S16.1-94. Limit States Design of Steel Structures. Technical Committee on Steel Structures for Buildings, 1994
    64 Hibbitt, Karlsson & Sorensen, Inc. ABAQUS Standard User’s Manual, Version 6.5. 2005
    65 K. Kanazawa, K. J. Miller, M. W. Brown. Low Cycle Fatigue under Out-of- Phase Loading Condition. Journal of Engineering Materials and Technology. 1977, 99(3): 222~228
    66 Y. S. Garud. Multiaxial fatigue: A Survey of the State of the Art. Journal of Testing and Evaluation. 1981, 9(3): 165~178
    67 G. E. Leese. Engineering Significance of Recent Multiaxial Research. In: Solomon HD, editor. Low Cycle Fatigue ASTM STP942. Philadelphia (PA): American Society for Testing and Materials. 1988: 861~873
    68 G. Socie, G. Ohgi. Fatigue Criterion under Combined Stresses or Strains. Journal of Engineering Materials and Technology. Transactions of theASME. 1981, 103(1): 82~90
    69 J. M. H. Andrews, E. G. Ellison. A Testing Rig for Cycling at High Biaxial Strains. Journal of Strain Analysis for Engineering Design. 1973, 9(8): 168~175
    70 G. Z. Libertiny. Short Life Fatigue under Combined Stress. Journal of Strain Analysis for Engineering Design. 1981, 17(2): 91~95
    71 K. J. Pascoe, J. W. R. Devilliers. Low Cycle Fatigue of Steels under Biaxial Straining. Journal of Strain Analysis for Engineering Design. 1967, 3(2): 117~126
    72 F. Ellyin, K. Goles. Multiaxial Fatigue Damage Criterion. Journal of Engineering Materials and Technology. 1988, 110(1): 63~68
    73 C. T. Lachowicz. Calculation of the Elastic-Plastic Strain Energy Density under Cyclic and Random Loading. International Journal of Fatigue. 2001, 23(7): 643~652
    74 X. Chen, Q. Gao, A. Abel, S. WU. Evaluation of Low Cycle Fatigue under Non-Proportional Loading. Fatigue & Fracture of Engineering Materials & Structures. 1996, 19(10): 1161~1168
    75刘红顺,何庆复,郝海龙.多轴低周寿命预测方法研究.铁道机车车辆. 2004, 24(3): 30~32
    76 W. N. Findely. A Theory for the Effect of Mean Stress on Fatigue of Metals under Combined Torsional and Axial Load or Bending. Journal of Engineering for Industry. 1959, 81: 301~306
    77 D. L. Mcdiarmid. A General Criterion of Fatigue under Multiaxial Stress. 2nd International Conference on Pressure Vessel Technology II, 1973, 61: 851~862
    78 M. W. Brown, K. J. Miller. A Theory for Fatigue Under Multiaxial Stress-Strain Conditions. Proceeding of Institute of Mechanical Engineers, 1973: 745~755
    79 D. F. Socie. Multiaxial Fatigue Damage Models. Journal of Engineering Materials and Technology. 1987, 109: 293~298
    80 F. A. Kandil. Biaxial Low Cycle Fatigue Fracture of 316 Stainless Steel at Elevated Temperatures. The Metals Society. 1982: 1~10
    81 S. S. Manson. Fatigue: A Complex Subject-Some Simple Approximations.Experimental Mechanics. 1965, 5(7): 193~226
    82 S. S. Manson, M. H. Hirschberg. Fatigue Behavior in Strain Cycling in the Low and Inter-Mediate Cycle Range. In Book: Fatigue - A Interdisciplinary Approach. Syracuse University Press, 1964: 133~178
    83 C. Boller, T. Seeger. Materials Data for Cyclic Loading. Elsevier Science Publishers BV, 1987: 1~70
    84姚卫星.结构疲劳寿命分析.国防工业出版社, 2004: 1~260
    85秦琴,王梅英,张远,陈军. 30CrlMolv转子钢低循环疲劳寿命估算.汽轮机技术. 2000, 42(1): 54~55
    86张卫正,魏春源,苏志国,刘剑,向建华.内燃机铝合金活塞疲劳寿命预测研究.中国机械工程. 2003, 14(10): 864~867
    87周传月,郑红霞,罗慧强. MSC.Fatigue疲劳分析应用与实例.科学出版社, 2005: 1~395
    88 M. Miner. Cumulative Damage in Fatigue. Journal of Applied Mechanics. 1945, 12(3): 159~164
    89谢济洲.低循环疲劳.能源出版社, 1986: 33~49
    90黄明志.金属力学性能.西安交通大学出版社, 1986: 21~79
    91王仁智.疲劳失效分析.机械工业出版社, 1987: 17~103
    92倪侃.随机疲劳累积损伤理论研究进展.力学进展. 1999, 29(1): 43~65
    93王坤,黄树红,陈小东,陆继东.基于非线性累积准则的汽轮机转子可靠性定寿.华中科技大学学报(自然科学版). 2002, 30(5): 59~61
    94朱顺鹏,黄洪钟,谢里阳.基于二元疲劳失效判据的非线性疲劳损伤累积模型及其强度退化研究.中国机械工程. 2008, 19 (22): 2753~2757
    95 A. Buch. Fatigue Strength Calculation. Trans Tech Publications, Switzerland, 1988: 1~367
    96 S. D. Downing, F. D. Socie. Simple Rainflow Counting Algorithms. International Journal of Fatigue. 1982, 4(1): 31~40
    97 M. Matsuishi, T. Endo. Fatigue of Metals Subjected to Varying Stress. Japan Society of Mechanical Engineers. 1968, 24: 101~122
    98董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现.航空计测技术. 2004: 38~40
    99金德新.改进的雨流计数法应用于随机载荷下的寿命预测.鞍钢技术. 2000: 55~57
    100程建刚,黄振生.峰值法载荷谱编制与计算机程序.西北农业大学学报. 1987, 15(4): 29~36
    101阎楚良,王公权.峰值计数法疲劳载荷谱的编制与统计处理程序.农业机械学报. 1984, 1: 52~57
    102沈先钊,吴艳,陈德容,王青成. 5种疲劳计数方法对疲劳寿命预估的影响.湖北工学院学报. 2004, 19(5): 57~59
    103 FE-SAFE软件使用指南.英国FE-SAFE公司驻北京办事处, 2003
    104 EC8. Design of Structures for Earthquake Resistance - Part1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization, 2003
    105 ASCE7-05. Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers, 2006
    106 CECS160:2004.建筑工程抗震性态设计通则(试用).中国计划出版社, 2004
    107 TJ11-78.工业与民用建筑抗震设计规范.中国建筑工业出版社, 1979
    108何若全,顾强,孙国华.关于钢结构抗震设计中结构影响系数的讨论.苏州科技学院学报(工程技术版). 2004, 17(4): 29~32
    109 GBJ11-89.建筑抗震设计规范.中国建筑工业出版社, 1989
    110童根树.与抗震设计有关的结构和构件的分类及结构影响系数.建筑科学与工程学报. 2007, 24(3): 65~75
    111 S. C. Goel. Earthquake Resistant Design of Ductile Braced Steel Structures. Stability and Ductility of Steel Structures under Cyclic Loading. 1992: 297~308
    112 AISC 341-05. Seismic Provisions of Structural Steel Buildings. American Institute of Steel Construction, 2005
    113 T. Fukuta, I. Nishiyama. Seismic Performance of Steel Frames with Inverted V Braced. Journal of Structural Engineering. 1989, 115(8): 2016~2028
    114 I. F. Khatib, S. A. Mahin, K. S. Pister. Seismic Behavior of Concentrically Braced Steel Frames. Report UCB/EERC-88/01, Earthquake Engineering Research Center, University of California, Berkeley, California. 1988
    115 A. M. Remennikov, W. R. Walpole. Seismic Behavior and Deterministic Design Procedures for Steel V-Braced Frames. Earthquake Spectra. 1998, 14(2): 335~355
    116 AISC 341-02. Seismic Provisions of Structural Steel Buildings. American Institute of Steel Construction, 2002
    117 N. Robert, R. Tremblay. Seismic Design and Behaviour of Chevron Steel Braced Frames. 12th World Conference on Earthquake Engineering, Auckland, 2000: p2413
    118 O. Hassan, S. C. Goel. Seismic Behavior and Design of Concentrically Braced Steel Structures. Report UMCE91-1, University of Michigan, Department of Civil and Environmental Engineering, Ann Arbor, MI
    119 P. W. Richards. Seismic Column Demands in Ductile Braced Frames. Journal of Structural Engineering. 2009, 135(1): 33~41
    120黄奎生.大型火电厂主厂房钢支撑-框架结构抗震性能分析及试验研究.同济大学博士学位论文. 2005:1~132
    121 A. K. Jain, R. G. Redwood, F. Lu. Seismic Response of Concentrically Braced Dual Steel Frames. Canadian Journal of Civil Engineering. 1993, 20: 672~687
    122蔡益燕.《高层民用建筑钢结构技术规程》修订雏议.建筑钢结构进展. 2003, 5(4): 1~4
    123蔡益燕.双重体系中框架的剪力分担率.建筑钢结构进展. 2004, 17(2): 60~61
    124 Building Seismic Safety Council. NEHRP Recommended Provisions: Design Examples (FEMA 451). Washington, D.C. 2006
    125王亚勇,戴国莹.建筑抗震设计规范算例.中国建筑工业出版社, 2006
    126 JGJ3-2002.高层建筑混凝土技术规程.中国建筑工业出版社, 2002
    127 M. Elchalakana, X. L. Zhao, R. Grzebieta. Test of Cold-Formed Circular Braces under Cyclic Axial Loading. Journal of Structural Engineering. 2003, 129(4): 507~514
    128 X. L. Zhao, R. Grzebieta, C. Lee. Void-Filled Cold-Formed Rectangular Hollow Section Braces Subjected to Large Deformation Cyclic Axial Loading. Journal of Structural Engineering. 2002, 128(6): 746~753
    129方开泰.均匀设计与均匀设计表.科学出版社, 1994: 1~160
    130 EC3. Design of Steel Structures-Part1-1: General Rules and Rules for Buildings. European Committee for Standardization, 2003
    131 GB/T228-2002.金属材料-室温拉伸试验方法.中国标准出版社, 2002
    132 GB50017-2003.钢结构设计规范.中国计划出版社, 2003
    133 AISC360-05. Specification for Structural Steel Buildings. American Institute of Steel Construction, 2005
    134 CAN/CSA-S16-01. Limit States Design of Steel Structures. Technical Committee on Steel Structures for Buildings, 2005
    135 AIJ.钢構造限界状態設計指針.同解説.日本建筑学会, 1998
    136日本建筑中心.高层建筑抗震计算指针.徐建年译.地震出版社, 1989: 29~30
    137 M. M. K. Lee. Strength, Stress and Fracture Analyses of Offshore Tubular Joints Using Finite Elements. Journal of Constructional Steel Research. 1999, 51(3): 265~286
    138张以增,李国琛,徐明英,杜明亮,樊卫东.低碳钢的大应变低周疲劳.机械强度. 1995, 17(4): 49~53
    139刘启柏,温卫宁,刘勇.大型火电厂主厂房结构特点及其施工技术改进.电力建设. 2003, 24(10): 6~9
    140 FEMA450. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Federal Emergency Management Agency, 2003
    141黄维平,邬瑞峰,张前国.配重不足时的动力试验模型与原型相似关系问题的探讨.地震工程与工程震动. 1994, 14 (4): 64~71
    142杨俊杰.相似理论与结构模型试验.武汉理工大学出版社, 2006
    143 J. Li, H. M. Chen, J. B. Chen. Studies on Seismic Performances of the Prestressed Egg-Shaped Digester with Shaking Table Test. Engineering Structure. 2007, 29(4): 552~566
    144北京金土木软件技术有限公司. ETABS中文版使用指南.中国建筑工业出版社, 2004
    145高小旺,龚思礼.建筑抗震设计规范理解与应用.中国建筑工业出版社, 2002: 245~247
    146李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用.科学出版社, 2004: 299~301
    147何若全,屠永清.中心支撑高层框架的性能.哈尔滨建筑工程学院学报. 1990, 23(2): 137~146
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.