往复挤压镁合金的组织结构与力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了往复挤压(CEC)大变形AZ31、AZ91和AZ31-1Si的组织结构和力学性能。采用金相显微分析(OM)、透射电子显微技术(TEM)和电子背散射技术(EBSD)研究了AZ31、AZ91镁合金在往复挤压过程中挤压道次和温度对晶粒大小、分布形貌和晶界结构等的影响规律,不同性质和含量的第二相对往复挤压镁合金组织结构的影响规律;分析了往复挤压过程中镁合金的织构演变规律;探讨了往复挤压镁合金的晶粒细化机制;考察了往复挤压镁合金的室温力学性能;采用场发射扫描电镜(SEM),原位EBSD拉伸技术分析了往复挤压镁合金的断裂机制和室温拉伸过程中的组织演变;最后分析讨论了往复挤压镁合金的强韧化机制,获得如下结果:
     往复挤压对镁合金具有强烈的细化能力。在300℃1-25道次往复挤压AZ31镁合金,发现初始道次的细化作用最强,然后随着道次的增加细化作用减小。存在一个临界道次(临界累积应变量,本研究中为7道次)使超过这个临界道次后的晶粒大小不再有明显变化。初始道次往复挤压镁合金试样的中部和边部组织差别较大,随着道次的增加差异性逐渐减小直到基本消失。
     随着道次的增加,往复挤压镁合金晶粒逐渐细化,组织均匀性增加,小角度晶界有减小的趋势,平均位向差有增加的趋势。AZ31镁合金300℃往复挤压7道次的平均晶粒尺寸为1.77μm,其中细晶粒分布范围为150±50nm,小角度晶界占7%,平均位向差为54.8。往复挤压镁合金组织中细晶粒趋向于聚集在一起形成链形网状结构,随着挤压道次的增加,细晶粒的数量明显增加,原有的链形网状结构被分割和重分使其分布更均匀。随着第二相的增加,细晶粒的聚集程度减小。
     在225℃-400℃3道次往复挤压AZ31镁合金,发现随着温度的降低,有利于小角度晶界含量和晶粒尺寸减小、平均位向差和晶界密度增加。晶粒大小与Z参数的自然对数满足线性关系,即,ln d = -0.076 ln z+2.571。
     比较225℃7道次往复挤压AZ31、AZ31-1Si和AZ91镁合金发现,往复挤压对数量少、细小的第二相粒子Mg17Al12具有细化和重新分布的作用,Mg17Al12粒子趋向于网络状分布。Mg17Al12能促进往复挤压镁合金晶粒间位向差的增加、大角度晶界的形成和粗晶粒的细化。往复挤压对大块状Mg2Si也有一定的细化效果而基本没有重新分布的作用。Mg2Si对往复挤压镁合金的晶粒大小、晶粒形貌和晶界结构影响很小。
     往复挤压镁合金织构组分受挤压道次、温度和第二相的综合影响,挤压道次对织构的影响最大。挤压道次和第二相数量增加,织构强度减小。温度升高,织构强度有增加的趋势。挤压态和往复挤压1道次,大多数晶粒处于硬取向位置,滑移不容易开动。往复挤压3、7道次,大多数晶粒处于滑移的有利位向,变形均匀性增加。
     研究发现,往复挤压镁合金,是以连续动态回复再结晶(CDRX)和旋转动态再结晶(RDRX)为主,非连续动态再结晶(DDRX)为辅的晶粒复合细化机制。
     研究了300℃往复挤压AZ31、AZ91和225℃往复挤压AZ31-1Si,发现随着挤压道次的增加,镁合金的延伸率逐渐增加,屈服强度在1道次明显增加,然后随着挤压道次的增加而降低,屈服强度与晶粒大小呈现反Hall-Petch关系。AZ31镁合金7道次延伸率达到35.52%,是挤压态延伸率的2.2倍。屈服强度在1道次比挤压态提高了20MPa,达209.69MPa,7道次降低到140.48MPa。
     研究了225℃-400℃温度范围3道次往复挤压AZ31、AZ31-1Si和AZ91镁合金,发现随着温度的升高,往复挤压镁合金屈服强度降低,延伸率有增加的趋势。225℃-400℃往复挤压3道次AZ31镁合金的晶粒尺寸与屈服强度满足Hall-Petch关系,即,往复挤压镁合金塑性的改善主要在于断裂方式的转变。研究往复挤压AZ31、AZ31-1Si和AZ91镁合金的室温拉伸断口发现,挤压态镁合金的断裂方式主要为穿晶剪切断裂。往复挤压细晶镁合金断口出现了大量的韧窝,断裂方式主要是沿晶界、基体和第二相界面断裂。细小Mg17Al12相和大块状Mg2Si相是主要的裂纹源。
     细晶AZ31镁合金室温拉伸过程中,发生了晶粒的旋转和新晶粒的形成。晶粒越小,演变可能性越大。随着拉伸应变的增加,织构强度逐渐降低,大角度晶界、晶粒数量、平均位向差和晶界密度逐渐增加。在拉伸过程中,{0001}晶面平行于拉伸方向的晶粒不容易旋转,其次是{2-1-10}晶面,其余晶面的晶粒,都有调整自己的位向,朝{0001}晶面或者{2-1-10}晶面旋转的趋势。
     研究了晶粒大小、位错密度、晶界结构、织构、第二相粒子的含量、性质和大小等对往复挤压镁合金强韧性的影响。发现位错密度和小角度晶界增加,细小第二相(≦ 1μm)数量和均匀性增加使往复挤压镁合金屈服强度提高。晶粒细化和高Schmid因子的织构优化使往复挤压镁合金的变形均匀性增加,延伸率明显提高。
The purpose of this paper is to study the microstructure and mechanical properties of AZ31, AZ91 and AZ31-1Si alloys after cyclic extrusion compression (CEC). The effects of CEC pass and CEC temperature on the grain size, grain boundaries structure and texture of AZ31 and AZ91 Mg alloys were investigated by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The effect of the second phase with different volume and properties on CEC microstructure and texture was studied. The grain refining mechanism for Mg alloys during CEC was discussed. The mechanical properties at room temperature of as-extruded and CECed AZ31, AZ31-1Si and AZ91 were measured. The fracture mechanism of as-extruded and CEC Mg alloys were investigated by SEM and in-situ EBSD tension. At last the strength and ductility of Mg alloys after CEC were discussed. The main results can be summarized as follows,
     The microstructure of AZ31 alloy after CEC passes of 1-25 at 300℃was studied. The results show that magnesium alloys can be refined effectively by CEC. The most effective CEC pass is the first pass and then decrease. There will be a critical CEC pass to obtain the final grain size. There is no difference in microstructure of middle area between cross section and longitudinal section. However, significant difference in microstructure between central and peripherial areas of longitudinal section can be obtained at initial strains, which decreases and almost disappearance with increasing strains.
     The grain refines continuously and low angle grain boundaries (LAGBs) tend to decrease while the average misorientation tends to increase with the increase of CEC pass. The grain size of 25μm, LAGBs of 28.7% and average misorientation of 34.6 are obtained in as-extruded AZ31 alloy and the mean grain size of 1.77μm with fine grains of 150±50nm, LAGBs of 7% and average misorientation of 54.8 can be obtained in AZ31 alloy after CEC 7 passes and 300℃. The fine grains in CEC microstructure tend to form network structure. The original network structure is subdivided to more even network due to more fine grains formed with the increase of accumulated strains. The gather level of fine grains decreases with increasing second phase.
     The microstructure of AZ31 alloy after CEC 3 passes at temperature of 225℃-400℃was investigated. The results show that it is good for the decrease of grain size and LAGBs and the increase of average misorientation and grain boundary line length/ area as CEC temperature increase. The relationship between grain size and Z parameter can be described as ln d = -0.076 ln z+2.571
     The microstructure of AZ31, AZ31-1Si and AZ91 alloy after CEC 7 passes at 225℃was compared. The results show that the Mg17Al12 phase can be refined and redistributed by CEC and tends to present network distribution in microstructure. Fine Mg17Al12 phase can help the refinement of coarse grains, the increase of misorientation and the formation of high angle grain boundaries (HAGBs) but little affect on fine grains with the size less than Mg17Al12. The efficiency of Mg17Al12 to contribute grain refinement is better at lower CEC temperature. The coarse mass Mg2Si phase can also be refined but can not be redistributed by CEC. The grain size and grain boundary structure are little affected by Mg2Si.
     The texture components of Mg alloys are affected by CEC pass, CEC temperature and the second phase. Among them, CEC pass is the most important factor. The texture intensity decreases as CEC pass increases. The texture intensity tends to increase as CEC temperature increases. The texture intensity decreases as the second phase increases. Most grains are difficult to slip at as-extruded and CEC AZ31 1 pass while most grains with available misorientation to slip after CEC 3 and 7 passes.
     The grain refining mechanism of Mg alloys during CEC can be described as a compound grain refining mechanism, which combined both the Continuous Dynamic Recovery and Recrystallization (CDRR) and Rotation dynamic recrystallization (RDRX) assistanted by Discontinuous Dynamic Recrystallization (DDRX).
     The mechanical properties of AZ31 and AZ91 alloys after CEC at 300℃and AZ31-1Si alloy after CEC at 225℃were studied. The results show that the elongation of Mg alloys increases as CEC pass increases. The yield strength increases obviously at CEC 1 pass. However, which decreases sharply and presents inverse Hall-Petch relationship with increasing strains. The elongation of AZ31 after CEC 7 passes at 300℃reaches 35.52%, which is 2.2 times of as-extruded AZ31 alloy. The yield strength of AZ31 after CEC 1 pass increases 20MPa, up to 209.69MPa and next decreases to 140.48MPa after CEC 7 passes.
     The mechanical properties of AZ31, AZ31-1Si and AZ91 alloy after CEC 3 passes at 225℃-400℃were investigated. The results show that the yield strength of Mg alloys after CEC decreases and the elongation tends to increase as CEC temperature increases. When CEC temperature increases from 225℃to 400℃, the yield strength of AZ31 alloy continuously decreases from 166.61 MPa to 103.89 MPa. The elongation is always above 30%. The grain size a1nd yield strength is consistent with Hall-Petch relationship, that is,σs = 48.88 + 280.48d?2
     The improvement of ductility for Mg alloys after CEC depends on the change of fracture mode. AZ31 alloy with coarse grains is intracrystalline and shear fracture. The fine grained AZ31 alloy fractures along grain boundaries and the boundaries between matrix and the second phase. The Mg17Al12 and Mg2Si phases are the main crack source during deformation.
     Grain rotation and the formation of new fine grains appear during tensile deformation of fine grained AZ31 Mg alloy. HAGBs, grain number and the average misorientation increases but the texture intensity decreases during tension. The grains having {0001}or {2-1-10} plane being parallel to tensile direction tend to be stable, while grains having other planes are unstable and tend to rotate to {0001} and {2-1-10} during tension.
     The effects of dislocation intensity, grain boundary structure, texture, grain size and the second phase et, al on the strength and ductility of Mg alloys after CEC were studied. The results show that the yield strength improves as the increase of dislocation intensity, LAGBs and the fine second phase (≦ 1μm). The improvement of ductility depends on grain refinement and texture optimization with high value of Schmid factor.
引文
1.陈勇军,王渠东,翟春泉等,大塑性变形制备高强镁合金的研究与展望,机械工程材料,2006,3, 1-3
    2. R F Decker, The renaissance in magnesium, Advanced Mater & Proc , 1998, 9, 31-35.
    3. F H Froes, D Eliezer, E Aghion, The science technology and applications of magnesium, JOM, 1998, 9, 30-33
    4. R S Busk, Magnesium Products Design, New York, Marcel Dekker INC, 1987, 248-448
    5. Asm International , Magnesium And Magnesium Alloy, OH, Metal Park , 1999, 1
    6.王渠东,丁文江.镁合金及其成形技术的最新发展,21世纪材料成形加工技术与科学,柳百成编,机械工业出版社,2004,3:56-73
    7.陈振华,变形镁合金,北京,化学工业出版社,2005:48-235
    8. J B COLLEEN, A G MARK., Current wrought magnesium alloys: Strengths and Weaknesses, JOM, 2005, 57 (5), 46-49
    9. E Aghion, B Bronfin, Magnesium alloys development towards the 21st century.Mater Sci Forum,2000,350~351:19~29
    10. O Johne,φBanger, H Gjestland, etc, SAE international Congress and Exposition, 1990, 163
    11. S K Das, C F Chang, Magnesium Alloys and their Applications, Oberursel, FRG. DGM Information sgesellschaft, 1992, 487
    12. H Haferkamp, M Niemeyer, R Boehm, Development processing and application range of Mg-Li alloy, Mater Sci Forum, 2000, 350-351: 31-42.
    13. R Ferro, A Saccone, G Borzone, Rare earth in Al and Mg, J Rare Earth, 1997, 15(1), 45-53
    14. R Schmid-Fetzer, Thermodynamic database for Mg-alloys: Progress and application to Mg-Al-Ca-Si Alloys development, Magnesium and their applications, Proceedings of the 6th international conference, edited by Kainer K. U. 2004, 12-17
    15.余琨,黎文献,王日初等,变形镁合金的研究、开发及应用,中国有色金属学报,2003,2,277-288
    16. H Hosokawa,Y Chino, K Shimojima, etc, Mechanical properties and blow forming of rolled AZ31 Mg alloy sheet, Materials Transactions, 2003, 44 (4), 484-489
    17. H Watanabe, T Mukai, K Ishikawa, Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties, Journal of Materials Science, 2004, 39, 1477-1480
    18. M.T. Pérez-Prado, J.A. del Valle, J.M. Contreras,etc, Microstructural evolution during large strain hot rolling of an AM60 Mg alloy, Scripta Materialia, 2004, 50, 661-665
    19. Margam Chandrasekaran, Yong Ming Shyan John, Effect of materials and temperature on the forward extrusion of magnesium alloys, Materials Science and Engineering A, 2004, 381, 308-319
    20.林金保,王渠东,陈勇军,镁合金塑性成形技术研究进展,轻合金,2006, 10, 76-80
    21. Chen Yongjun, Wang Qudong, Peng Jianguo,etc, Improving the mechanical properties of AZ31 Mg alloy by high ratio extrusion, Material Science Forum, 2006, 503-504, 865-870
    22. Chen Yongjun, Wang Qudong, Peng Jianguo, etc, Effect of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. Journal of materials processing technology, 2007,182,281-285
    23. H K Lin, J C Huang, Fabrication of low temperature superplastic AZ91 Mg alloys using simple high-ratio extrusion method, Key Engineering Materials, 2002,233-236, 875-880
    24. H K Lin, S F Su, J C Huang, Superplasticity and welding Behavior in four Mg-Al-Zn base alloys, 4th Pacific Rim International Conference on Advanced Materials and Processing (PRICM4), HONOLULU, HAWAII. 2001,11
    25. N Ogawa, M Shiomi, K Osakada, Forming limit of magnesium alloy at elevated temperature for precision forging, Machine Tools and Manufacture, 2002,42, 607-614.
    26.余永宁,金属学原理,北京:冶金工业出版社,2000, 98
    27.哈宽富,金属力学性能,北京:科学出版社,1983, 69
    28.小池淳一,宫村剛夫.多结晶マヮネツゥム合金板にぉけゐ塑性变形的微視的機構.輕金屬, 2004, 54(11), 460
    29.余琨,黎文献,王日初,镁合金塑性变形机制,中国有色金属学报,2005,15(7),1081-1086
    30. Robert E Brown, Magnesium wrought and fabricated products yesterday, today and tomorrow. Magn Techn, 2002, 155
    31. F H Froes, D Eliezer, E Aghion, Proceedings of the second Israeli international conference on magnesium science& technology, Dead Sea, Israel: 2000: 43
    32.吕炎,镁合金上机闸等温精锻工艺的研究,哈尔滨工业大学学报,2000,32 (4):127-129
    33.刘兵,加强技术创新,为经济结构调整提高强大动力-论实施“镁合金开发应用及产业化”重大专项的战略意义,材料热处理学报,2001,22,1
    34. S.Schumann, The paths and strategies for increased magnesium applications in vehicles, Material Science Forum 2005, 488-489, 1-8
    35. Cao Jianyong, Zhang Zonghe, Xiang Dongxia, etc, Magnesium Motorcycle Application, Material Science Forum 2005, 488-489, 915-918
    36. Naiyi Li, Magnesium advances and application in north America automotive industry, Material Science Forum 2005, 488-489,931-935
    37. Yu Qi, Huang Shaodong, Tang Quanbo, et al, Research and application of magnesium alloys in special components, Material Science Forum 2005, 488-489, 919-922
    38.谢春晓,陈丙璇,刘凯, AZ31变形镁合金的研究与开发,金属世界, 2006, 2,22-26
    39. R Z Valiev .Nanomaterial advantage, Nature,2002,419, 887-888
    40. V S Zhernakov,V V Latysh, The developing of nanostructured SPD Ti for structural use, Scripta mater.,2001,44, 1772-1774
    41. R Z Valiev, R K IsIamgaliev. Bulk nanostructureal materials from severe plastic deformation. Prog. Mater. Sci., 2000, 45, 103-189
    42. R Z Valiev. Recent Progress in Developing Bulk Nanostructured SPD Materials with Unique Properties. Solid State Phenomena., 2005, 101-102,3-12
    43.许晓嫦,刘志义,党朋等,强塑性变形(SPD)制备超细晶材料的研究现状与发展趋势,材料导报,2005, 19(1),1-5
    44.陈勇军,王渠东,李德江等,往复挤压工艺制备超细晶材料的研究与发展,材料科学与工程学报.2006, 1,152-155
    45. Y.Iwahashi, J.Wang, Z. Horita, M.Nemoto, and T.G.Langdon, Scripta Mater.,1996, 35,141-148
    46. R.Z. Valiev, A.V.Korznikov, R.R. Mulyukov, Structure and Properties of Ultrafine Grained Materials by Severe Plastic Deformation, Mater. Sci. Eng. A1993, 186, 141-148
    47. R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Plastic Deformation of Alloys with Submicron Grained Structure, Mater. Sci. Eng A 1991,137,35-40
    48. P.Berbon, M.Furukawa, Z.Horita, M.Nemoto, and T.G. Langdon, Mater, Sci.Forum, 1996,1013, 217-222
    49. Koji Neishi, Zenji Horita, T.G.Langdon, Achieving superlasticity in a Cu-40%Zn alloy through severe plastic deformation, Scripta Materialia 2001 45, 965-970
    50. Z.HORITA, M.FURUKAWA, M. NEMOTO, SUPERPLASTIC FORMING AT HIGH STRAIN RATES AFTER SEVERE PLASTIC FEDORMATION, Acta Mater. 2000,48,3633-3640
    51. M Mabuchi, H Iwasaki, K Yanase etc, Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Mater,1997, 36,681-686
    52. Akihiro Yamashita, Zenji Horita, T G. Langdon., Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Materials Science and Engineering 2001, A300,142-147
    53. Ruslan Z.Valiev, Igor V.Alxandrov, Development of severe plastic deformation techneques for the fabricationo bulk nanostructured materials, Ann.Chim.Sci.Mat, 2002,27(3), 3-14
    54. R Z Valiev,R K Islamgaliev, I V Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 2000, 45(2), 103-189
    55. R.Wadsack, R.Pippan, B.Schedler, Structural refinement of chromium by severe plastic deformation, Fusion Engineering and Design 2003,66-68,265-269
    56. R.K. IsIamgliev, N.F. Yunusova, I.N. Sabirov, A.V. Sergueeva, Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation, Materials Science and Engineering A 2001, 319-321, 877-881
    57. M T Pérez-Prado, J A del Valle, O A Ruano, Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding, Scripta Materialia, 2004,51, 1093-1097
    58. R. Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement,Prog. Mater. Sci,2006, 51, 881-981
    59. Z.Y. Liu, G.X. Liang, E.D. Wang etc, The affection of cumulative large plastic strain on the structure and properties of a Cu-Zn alloy, Material Science and Engineering A, 1998,242 ,137-140
    60.王渠东,陈勇军,翟春泉等,制备超细晶材料的S形等通道转角往复挤压模具,中国,实用新型专利,ZL 200420114965.5
    61. Y Nishida, H Arima, J C Kim etc, Rotary-die equal-channel angular pressing of an Al-7mass%Mg alloy, Scripta Mater,2001,45,261-266
    62. A Azushima, K Aoki, Properties of Ultrafine-grained Steel by Repeated Shear Deformation of SideExtrusion Process. Mater. Sci. Eng. A,2002, 337 (1-2),45-49
    63. K. Nakashima, Z. Horita, M. Nemoto etc, Development of a multi-pass facility for equal-channel angular pressing to high total strains, Mater Sci Eng A, 2000,281,(1–2),82–87
    64.陈勇军,王渠东,彭建国等,大塑性变形技术制备超细晶材料的开发、发展与展望,材料导报,2005,4 ,77-80
    65. J C Lee, J Y Suh, J P Ahn, Metall Mater Trans,2003,34,625-632
    66. H Utsunomiya, K Hatsuda, T Sakai etc, Continuous grain refinement of aluminum strip by conshearing, Mater Sci Eng A, 2004, A372,199-206
    67. G J Raab, R Z Valiev, T C Lowe etc, Mater Sci Eng A ,2004,382, 30-34
    68.叶均蔚,往复挤压成型方法及其加工装置,中国,发明专利,ZL 01104059.9,2002.9.25.
    69.王渠东,陈勇军,螺旋式挤压成型加工装置,中国,发明专利,ZL 200510026809.2
    70.陈勇军,王渠东,折线式挤压成型装置,中国,发明专利,ZL 200510026808.8
    71. J.Richert, M Richert, kraków, A New Method for Unlimited Deformation of Metals and Alloys, Aluminum,1986,(8) ,604-607
    72. Shihwei Lee, Jienwei Yeh,Yongshun Liao, Premium 7075 Aluminium Alloys Produced by Reciprocating extrusion, Advanced Engineering Materials,2004,(6),936-943
    73. J. W. Yeh, S. Y. Yuan, C. H. Peng, A Reciprocating Extrusion Process for Producing Hypereutectic Al-20wt% Si Wrought Alloys, Materials Science and Engineering A,1998,252,212-221.
    74. M. Richert, Q. Liu,N.Hansen, Microstructural Evolution Over A Large Strain Range in Aluminium Deformed by Cyclic Extrusion Compression, Materials Science Engineering A,1999,260,275 -283.
    75. J Richert, M Richert, J A Zasadzinski, Korbel, Patent , No.123026, 1979
    76.陆文林,王勇,冯泽舟,沙漏挤压镦粗复合加工技术,塑性工程学报,2000,7(4),1-4.
    77. J.W.Yeh, Shiying Yuan, Chaohuang Peng, Microstructure and Tensile Properties of an Al-12Wt Pct Si Alloy Produced by Reciprocating Extrusion, Metallurgical and Materials Transactions,1999, 30A,2503-2512.
    78. M.Richert, H.P.stuwe, M.J.Zehetbauer, Working Hardening and Microstructure of AlMg5 After Severe Plastic Deformation by Cyclic Extrusion and Compression, Materials Science and Engineering A, 2003,355,180-185
    79. M. Richert, J.Richert, J.Zasadzinski, Effect of Large Deformation on The Microstructrue of Aluminium Alloys, Materials Chemistry and Physics,2003,81,528-530.
    80. S.Y. Yuan, C.H. Peng, J.W. Yeh, Synthesis of Fine Pb-50vol.-%Sn Alloys by A New Process of Reciprocating Extrusion, Material Science and Technology,1999,15(6),683-688
    81. Shiying Yuan, J.W Yeh, Chunhuei Tsau, Improved Microstructure and Mechanical Properties of2024 Aluminum Alloy Produced by a Reciprocating Ectrusion Method, Materials Transactions,1999,40,33-241.
    82.陆文林,王勇,冯泽舟等,采用沙漏挤压工艺制备超超细晶材料,热加工工艺,2001,(2),10-12
    83. H.J.Zughaer, J.Nutting, Deformation of Sintered Copper and 50Cu-50Fe Mixture to Large Strains by Cyclic Extrusion and Compression, Materials Science and Technology,1992, (8) ,1104-1107
    84. Hsushen Chu,Kuoshung Liu, Jienwei Yeh. An in Situ Composite of Al (graphite, Al4C3) Produced by Reciprocating Extrusion, Materials Science and Engineering A,2000,277,25-32.
    85. Hsushen Chu,Kuoshung Liu,and Jienwei Yeh, Aging Behavior and Tensile Properties of 6061Al-0.3μm Al2O3p Particle Composites Produced by Reciprocating Extrusion, Scripta Materialia,2001, 45,541-546.
    86. Hsushen Chu, Kuoshung Liu, Jienwei Yeh, Study of 6061-Al2O3 Composites Produced by Reciprocating Extrusion, Metallurgical and Materials Transactions,2000,31A,2587-2596
    87.陈勇军,王渠东,制备超细晶材料的U形等通道反复挤压装置,中国,发明专利, ZL 200510026810.5
    88.陈勇军,王渠东,翟春泉等,制备超细晶材料的S形转角往复挤压模具,中国,发明专利, ZL 200420114968.9
    89.陈勇军,王渠东,翟春泉等,制备超细晶材料的转角往复挤压模具,中国,发明专利,ZL 200420114967.4
    90.陈勇军,王渠东,翟春泉等,制备超细晶材料的反复镦粗挤压模具,中国,发明专利,ZL 200420114969.3
    91.王渠东,陈勇军,翟春泉等,制备超细晶材料的C形等通道往复挤压模具,中国,发明专利,ZL 200420114966.X
    92. Q.D. Wang, Y.J. Chen, J.B. Lin etc, Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method, Material Letters,2007,61,4599-4602
    93. Yongjun CHEN, Qudong. WANG, Jinbao LIN, Fabrication of bulk UFG magnesium alloys by cyclic extrusion compression. Journal of Materials Science, 2007,42,7601-7603
    94. Zhang Lujun, Wang Qudong, Chen Yongjun.Microstructure evolution and mechanical properties of an AZ61 Mg alloy through cyclic extrusion compression, Materials Science Forum. 2007,546-549,253-256
    95. Lin Jinbao, Wang Qudong, Chen Yongjun etc, Effect of large deformation on the microstructure of ZK60 alloy, Transactions of Nonferrous Metals Socity of China (Accepted)
    96. M. Richert, H. J. Mcqueen, J.Richert, Microband Formation In Cyclic Extrusion Compression of Aluminum, Canadian Metallurgical Quarterly,1998,37,449-457.
    97. A.Korbel, M.Richert, Formation Of Shear Bands During Cyclic Deformation Of Aluminum, Acta Metal,1985,33,1971-1978.
    98. M. Richert, Andrzej Korbel, The Effect of Strain Localization on Mechanical Properties of Al99.992 in the Range of Large Deformations, Journal of Materials Processing Technology,1995, 53,331-340.
    99. M Richert, H P Stuwe, J Richert, Characteristic Features of Microstructure of ALMg5 Deformed to Large Plastic Strains , Materials Science and Engineering A,2001,301,237-243.
    100. G. Y. Yuan, Z. L. Liu, Q. D. Wang etc, Microstructure Refinement of Mg-Al-Zn-Si Alloys, Mater. Lett., 2002, 56 (1-2),53-58
    101. O D Sherby, J Wadsworth, Superplasticityrecent advances and future directions, Prog. Mater.Sci.,1989,33,169
    102. R Z. Valiev, M J. Zehetbauer, Y Estrin, etc, The Innovation Potential of Bulk Nanostructnred Materials, Advanced Engineering Materials (Accepted)
    103. K. Kubota, M. Mabuchi, K. Higashi, Review: Processing and mechanical properties of fine-grained magnesium alloys, J. Mater. Sci., 1999, 34(10),2255-2262
    104. W.J. Kim, S.I. Hong, Y.S. Kim, etc, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia, 2003, 51,3293–3307
    1. ASM Handbook Committee, Alloy Phase Diagrams, ASM International, Ohio, USA, 1992, 248
    2.刘满平,Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究, [博士论文],上海,上海交通大学,2003
    3. J F Nie, B C Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy,Acta mater., 2000,48, 1691-1703
    4. S Celotto, TEM study of continuous precipitation in Mg-9wt%-1wtZn alloy, Acta mater., 2000, 48, 1775-1787
    5.电子背散射分析方法通则,GB/T19501-2004
    6.廖乾初,吴自勤,电子背散射花样分析及其应用,物理, 1997,(3), 167-172
    7.陈绍楷,李晴宇,苗壮等,电子背散射衍射(EBSD)及其在材料研究中的应用,稀有金属材料与工程,2006,(3),500-504
    8. Y N Wang, J C Huang, Texture analysis in hexagonal materials, Materials Chemistry and Physics , 2003,81,11-26
    9. Jun-Hyun Han, Kwang-Koo Jee, Kyu Hwan Oh, Orientation rotation behavior during in situ tensile deformation of polycrystalline 1050 aluminum alloy International Journal of Mechanical Sciences, 2003,45,1613-1623
    10. P Balke, J Th M De Hosson, Orientation imaging microscopic observations of in situ deformed ultralow carbon steel, Scripta mater., 2001, 44,461-466
    11. G.G.E. Seward, S. Celotto, D.J. Prior etc, In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium, Acta Materialia, 2004,52 ,821-832
    1. J.C. Tan, M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet, Mater. Sci. Eng. A , 2003,339,124-132
    2. R.Z. Valiev, N.A.Krasilnikov, N.K.Tsenev, Plasitic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A ,1991,137,35-40
    3. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrow, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Sciences, 2000,45,103-189
    4. Yinmin Wang, Mingwei Chen, Fenghua Zhou etc, High tensile ductility in a nanostructured metal, Nature, 2002,419,912-914
    5. R.B Figueiredo, T.G Langdon., The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processecd by ECAP, Mater. Sci. Eng. A, 2006,430,151-156
    6. W.J.Kim, S.I. Hong, Y.S.Kim etc, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia 2003,51,3293-3307
    7. R. Lapovok, P.F. Homson, R. Cottam etc, Processing routes leading to superplastic behaviour of magnesium alloy ZK60, Mater. Sci. Eng. A, 2005,410-411,390-393
    8. Chen Yongjun, Wang Qudong, Peng Jianguo etc, Effect of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy, Journal of materials processing technology, 2007,182, 281-285
    9. P.J. Apps, J.R. Bowen, P.B. Prangnell, The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing, Acta Material, 2003,51,2811-2822
    1. W J Kim, S I Hong, Y S Kim, etc, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia, 2003,51,3293-3307
    2. S.R. Agnew, P.Mehrotra, T.M. Lillo, etc, Crystallographic texture evolution of three wrought magnesium alloys during equal channel angular extrusion, Materials Science and Enginrring A, 2005,408,72-78
    3. Toshiji Mukaia, Masashi Yamanoi, Hiroyuki Watanabe, Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure, Scripta Materialia, 2001,45,89-94
    4. T Mukai, H Watanabe, K Ishikawa etc, Materi. Sci. Forum, 2003,419-422,171
    5. H.L.Ding,L.F.Liu, S. Kamado etc, Mater. Sci. Eng. A, 2006,doi:10.1016/j.msea.2006.10.091
    6.陈振华,夏伟军,程永奇,镁合金织构与各向异性,中国有色金属学报,2005,(1), 1-11
    7. Reed-Hill, R. E., Robertson etc, Acta Merall ,1957,5, 728.
    8. Y.N. Wang, J.C. Huang, Texture analysis in hexagonal materials, Materials Chemistry and Physics, 2003 ,81,11-26
    9.毛卫民,张新明,晶体织构定量分析,北京,冶金工业出版社,1993
    10.陈振华,变形镁合金,北京,化学工业出版社,2005
    1. Shihwei Lee, Jienwei Yeh, Yongshun Liao. Premium 7075 Aluminium Alloys Produced by Reciprocating extrusion, Advanced Engineering Materials, 2004,(6),936-943.
    2. J.W. Yeh, Shiying Yuan, Chaohuang Peng, Microstructure and Tensile Properties of an Al-12Wt Pct Si Alloy Produced by Reciprocating Extrusion, Metallurgical and Materials Transactions,1999, 30A,2503-2512.
    3. M. Richert, Q. Liu, N.Hansen. Microstructural Evolution Over A Large Strain Range in Aluminium Deformed by Cyclic Extrusion Compression, Materials Science Engineering A,1999,260, 275 -283.
    4. M. Richert, H.J. Mcqueen, J.Richert. Microband Formation In Cyclic Extrusion Compression Of Aluminum, Canadian Metallurgical Quarterly,1998,37,449-457.
    5. Shih-Wei Lee, Hsiao Yun Wang, Yu Liang Chen etc, An Mg-Al-Zn Alloy with very high specific strength and superior high strain rate superplasticity processed by reciprocating extrusion, Advanced Engineering Materials, 2004,6, 948-952
    6. A. Mwembela, E. Konopleva, H.J. McQueen, Microstructural development in Mg alloy AZ31 during hot working, Scripta Mater, 1997,37,1789-1795
    7.周海涛,Mg-6Al-1Zn合金高温塑性变形行为及管材热挤压研究,[博士论文],上海,上海交通大学,2004
    8. S.E. Ion, F.J. Humphreys S.H. White, Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium, Acta Metall, 1982,30,1909-1919.
    9. H. Takuda, H. Fujimoto, N. Hatta, Modelling on flow stress of Mg-Al-Zn alloys at evevated temperatures, Journal of Materials Processing Technology, 1998,80-81,513-516
    10. H.K. Kim, Activation energies for the grain growth of an AZ31 Mg alloy after equal channel angular pressing, Journal of Materials Science, 2004,39,7107-7109
    11. J.C. Tan, M.J. Tan, Dynamic continous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet, Materials Science and Engineering A, 2003,339 ,124-132
    12.陈振华,变形镁合金,北京:化学工业出版社,2005
    13. S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization, Acta Materialia ,2003,51,2685-2699
    14. R.Z. Valiev, Y.V Ivanisenko, E.F. Rauch etc, Structure and deformation behavior of. armco iron subjected to severe plastic deformation, Acta Mater. ,1997, 44, 4705
    15. J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano, Texture evolution during large-strain hot rolling of the Mg AZ61 alloy, Materials Science and Engineering A, 2003,355, 68-78
    16.刘楚明,刘子娟,朱秀荣等,镁及镁合金动态再结晶研究进展,中国有色金属学报, 2006,16(1),1-12
    17. S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization, Acta Materialia,2003 ,51, 2685-2699
    18. A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of pastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001,49,1199~1210
    19.张陆军,往复挤压制备超细晶AZ61镁合金的研究,[硕士论文],上海,上海交通大学,2007
    20. P.J. Apps, J.R. Bowen, P.B. Prangnell, The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing, Acta Material, 2003, 51 ,2811-2822
    21. J.C. Tan, M.J. Tan, Dynamic continous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet, Materials Science and Engineering A,339 (2003) 124-132
    22. S. Sangl, K. Tangri, Metal. Trans. A, 1989, 20 ,479
    23. T Mukai, H Watanabe, K Ishikawa etc, Materi. Sci. Forum, 2003,419-422,171
    24. H.L. Ding, L.F. Liu, S. Kamado etc, Mater. Sci. Eng. A, 2006, doi:10.1016/j.msea.2006.10.091
    25. L. Jiang, J.J. Jonas, A.A.Luo etc, Mater. Sci. Eng. A , 2006, doi:10.1016/j.msea.2006.09.069
    26. S. B. Yi, C.H.J. Davies, H.G. Brokmeier etc, Acta Mater., 2006,54,549
    1.许晓嫦,刘志义,党朋等,强塑性变形(SPD)制备超细晶粒材料的研究现状与发展趋势,材料导报,2005,(1),1-5
    2. E. Ma, Instablities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Materialia, 2003,49, 663-668
    3. L. Jin, D.L. Lin, D.L.Mao etc, Mechanical properties and Microstructure of AZ31 Mg alloy processed by two-step Equal Channel Angular Extrusion, Materials Letters, 2005,59,2267-2270
    4. J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano, Texture evolution during large-strain hot rolling of the Mg AZ61 alloy, Materials Science and Engineering A, 2003,355,68-78
    5.杨觉先,金属塑性变形物理基础,北京,冶金工业出版社,1988
    6.余永宁,金属学原理,北京,冶金工业出版社, 2001
    7.金属机械性能编写组,金属机械性能,北京,机械工业出版社,1978
    8.余琨,黎文献,王日初,镁合金塑性变形机制,中国有色金属学报, 2005,(7), 1081-1086
    1. W J Kim, S I Hong, Y S Kim, etc, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia, 2003,51,3293–3307
    2.靳丽,等通道挤压(ECAE)变形镁合金微观组织与力学性能研究,[博士论文],上海交通大学,2006
    3. G. Y. Yuan, Z. L. Liu, Q. D. Wang etc. Microstructure Refinement of Mg-Al-Zn-Si Alloys. Mater. Lett., 2002, 56 (1-2):53-58
    4. K. Kubota, M. Mabuchi, K. Higashi. Review: Processing and mechanical properties of fine-grained magnesium alloys. J. Mater. Sci., 1999, 34(10):2255-2262
    5.余永宁.金属学原理.北京:冶金工业出版社, 2001
    6.小池淳一,宫村剛夫.多结晶マヮネツゥム合金板にぉけゐ塑性变形的微視的機構.輕金屬, 2004, 54(11):460
    7.杨觉先,金属塑性变形物理基础,冶金工业出版社,1988
    8. P.J. Apps, J.R. Bowen, P.B. Prangnell, The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing, Acta Material, 2003,51,2811-2822
    9. J.S. Hayes, R. Keyte, P.B. Prangnell, Mater. Sci and Tech 2000,16,1259
    10. T. Mukai, M Kawazoe, K Higashi, Nanostructured Materials 1998,10,755
    11. Z C Wang, P B Prangnell, Microstructure refinement and mechanical properties of severely deformed Al-Mg-Li alloys, Mater Sci Eng A,2002,328, 87-97
    12.上海交通大学冷挤压技术编写组,冷挤压技术,上海人民出版社,1976
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.