血管紧张素Ⅱ受体拮抗剂对脂肪组织和脂肪细胞糖脂代谢及炎症因子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高血压、糖尿病、脂质代谢紊乱和肥胖常常簇集出现而形成代谢综合征,严重影响到公众的健康水平。脂肪细胞可以产生和分泌促炎因子如TNFα、IL-1β和IL-6,很多肥胖相关的疾病状态与这些促炎因子等的不适当分泌有关。
     高血压和肥胖患者患2型糖尿病的风险增加。近期临床试验表明,阻断肾素一血管紧张素系统(RAS)可能对这一高风险人群具有一定的保护作用。RAS系统组分存在于脂肪组织和脂肪细胞,因此脂肪组织和细胞可能成为血管紧张素受体拮抗剂(ARBs)的作用靶点。
     基于以上背景,本研究通过动物实验和细胞实验研究ARBs对于脂肪组织和细胞本身糖脂代谢以及分泌炎症因子的影响,并对作用机制进行了初步探讨。
     目的观察血管紧张素Ⅱ受体拮抗剂(AngiotensinⅡtype 1 receptorblockers,ARBs)对于脂肪组织和细胞糖脂代谢以及分泌炎症因子的影响以探讨ARBs改善胰岛素抵抗的机制。
     方法1.动物实验:以Wistar雄性大鼠为研究对象,应用坎地沙坦酯(Candesartan,8mg/kg·d)对高脂饲养的Wistar大鼠进行为期4周的干预,用正葡萄糖钳夹试验比较干预组(高脂+坎地沙坦组,HF+C组)和非干预组(单纯高脂,HF组)的胰岛素敏感性,同时留取血清检测各组动物血糖、血脂、胰岛素以及促炎因子IL-1β、IL-6和TNFα的水平,并对干预后各组体重、肾周和附睾脂肪组织含量进行检测;
     2.细胞实验:以3T3-L1细胞株为研究对象,1)MTT法检测不同浓度Telmi sartan对3T3-L1前脂肪细胞增殖的影响。2)应用替米沙坦(Telmisartan)以及联合PPARγ拮抗剂GW9662对3T3-L1细胞分化的早期(分化开始12h,24h)进行干预,倒置显微镜下以及油红0染色定量分析Telmisartan对于前脂肪细胞分化和分化过程中成脂作用的可能影响以及应用Q-PCR(Realtime QuantitativePCR)检测Telmisartan干预下3T3-L1分化过程中的PPARγmRNA表达情况;3)应用不同浓度Telmisartan(0.01-10 ug/ml)处理诱导成熟的3T3-L1脂肪细胞,通过检测脂肪细胞~(18)F-FDG摄取、培养液中游离脂肪酸(FFA)、IL-1β、IL-6和TNFα,观察Telmisartan对于成熟脂肪细胞糖脂代谢以及炎症因子分泌的影响;4)为进一步明确机制,利用高通量的基因表达谱芯片对替米沙坦引起的3T3-L1脂肪细胞差异基因表达进行筛选和分析,筛选的部分基因由Q-PCR进行验证。
     结果1.动物实验结果:1)Candesartan干预的高脂喂养大鼠(HF+C)组体重、肾周和附睾脂肪量均较HF组显著降低(体重478±35g vs 51 8±28g,P<0.01;肾周脂肪20±4g vs 26±4g,P<0.01;附睾脂肪9.6±1.8g vs 11.5±2.0g,P<0.05),空腹血糖差异无统计学意义(P>0.05);2)HF+C组血浆炎症因子IL-6、TNFα水平较HF组也显著降低(IL-6分别为54.03±13.32pg/ml和85.35±16.93pg/ml,P<0.05;TNFα分别为33.18±5.51pg/ml和48.2 0±7.87g/ml,P<0.05),IL-1β在HF组和HF+C组差异无显著意义(41.04±10.12pg/ml vs 29.72±7.66 pg/ml,P>0.05);3)正葡萄糖钳夹试验表明,两组的葡萄糖输注率(GIR)存在显著差异,HF+C组GIR显著高于HF组(22.4±5.12mg/kg·min vs 13.54±3.92 mg/kg·min,P<0.05);
     2.细胞实验结果表明:1)MTT法检测表明,浓度为0.01-1.0 ug/ml的Telmisartan对于3T3-L1前脂肪细胞的增殖无显著影响; 2)3T3-L1细胞的分化的早期(诱导起始12h和24h)应用Telmisartan(0.1ug/ml)干预可以促进细胞的分化以及分化过程中的脂质聚集,同时Realtime PCR显示Telmisartan可增加诱导过程中PPARγ基因的表达增高(在诱导的第3天和第6天分别增加2.51倍和1.46倍);3)对诱导成熟3T3-L1脂肪细胞进行干预,Telmisartan可以呈剂量依赖的降低细胞脂质含量,增加~(18)F-FDG摄取。同时,Telmisartan可以降低培养液中IL-6和TNFα的分泌,增加培养液中FFA的含量。基因芯片结果筛选157个差异表达基因或基因片段。这些基因涉及细胞内脂质代谢和转运、细胞的分化以及氧化应激和炎性途径,这些途径介导了Telmisartan发挥调节细胞脂质代谢和炎症因子分泌的作用。另外,Nos 3(内皮型-氧化氮合酶基因)和CPT1A(肉碱脂酰转移酶-1α基因)基因表达的改变可能介导了Telmisartan发挥调节细胞糖脂代谢的作用。
     结论1)Candesartan可以减少高脂喂养大鼠的体重和脂肪组织,降低血清炎症因子水平,改善大鼠糖、脂代谢;2)Telmisartan可以促进前脂肪细胞向脂肪细胞的转化,促进成熟脂肪细胞糖摄取,减少成熟脂肪细胞脂质含量,这种对于脂肪细胞的直接作用可能是由细胞炎性途径以及脂肪酸代谢途径所介导的。提示某些ARBs对动物机体以及脂肪组织和脂肪细胞本身的糖脂代谢有重要影响。
The cluster of hypertension, diabetes mellitus, dyslipidemia and body obesity, collectively referred to as the metabolic syndrome, is a common cause of atherosclerotic cardiovascular diseases and one of the most serious threats to public health. Adipose tissue produces and secretes some proinflammatory factors. Dysregulated production of proinflammatory factors, such as tumor necrosis factor-α(TNFα), interleukin-1β(IL-1β) and iterleukin-6 (IL-6), is associated with the pathophysiology of obesity-related disorders.
     Patients with essential hypertension and obesity are at the increased risk of type 2 diabetes. Several recent clinical trials have suggested that blockade of the rennin-angiotensin system (RAS) may protect against the development of de-novo diabetes in 'at risk' patients. Evidences show that the RAS may have a direct role in the pathogenesis of diabetes. RAS components exist in the adipocyte, which makes the adipose tissue is the potential target of angiotensinⅡreceptor blockers.
     In this context, the present study was designed to elucidate the effect of angiotensinⅡreceptor blockers on the adipocytes in vivo and in vitro.
     Objective: To investigate the effect of angiotensinⅡtype 1 receptor blockers on the proinflammatory factors' secretion and metabolisms of glucose and lipid of the the adipose tissue and adipocytes, and possible molecular mechanisms.
     Method: 1. in vivo study: 45 male Wistar rats were randomly divided into 3 groups: normal chow group (NC, n=15) fed with normal diet, high fat diet group (HF, n=15) fed with high fat diet, and high-fat diet with daily candesartan treatment group (HF+C, n=15) fed with high fat diet and given orally with candesartan 8 mg/kg per day. Body weight was measured weekly. Four weeks later, euglycemic-hyperinsulinemic clamp technique was performed to estimate the insulin sensitivity. After 12h fasting blood samples were collected from the abdominal aorta for measurement of the contents of blood glucose, and serum triglyceride (TG), total cholesterol (TC), LDL, HDL, and free fatty acid (FFA). Radioimmunoassay was used to detect the serum insulin. ELISA was used to mesure the level of the serum IL-1β, IL-6 and TNFα.
     2. in vitro study : 1) MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was processed to determine the effects of various concentrations of Telmisartan (0.01ug/ml, 0.1ug/ml and 1ug/ml) on the proliferation of 3T3-L1 preadipocytes. 2) Various concentrations of Telmisartan and GW9662 (PPARγantagonist) were applied to interfere the early phase (12h and 24h) in the process of the induction of 3T3-L1 preadipocytes and oil red O staining were processed to determine the effect of telmisartan on the differentiation of 3T3-L1 preadipocytes. The expression of PPARγmRNA were obtained with quantitative real-time PCR (Q-PCR). 3) Various concentrations (0.01, 0.1, 1 and 10 ug/ml) of telmisartan were applied to interfere with the mature 3T3-L1 adipocytes. Free fatty acids、IL-6 and TNFαof cultured medium were evaluated. Oil red O staining was processed to determine the effects of telmisartan on the adipogenesis of 3T3-L1 adipocytes. ~(18)F-FDG uptake levels were determined by cellular radioactivity measured after 25-min incubation. 4) The total RNA was isolated from the control group and the telmisartan group (0.1ug/mL) for hybridization experiment of the microarray. And the part of results was verified by Q-PCR.
     Results: 1. in vivo study: HF group was significantly higher than that of the HF+C goup (P<0.01). The epididymal and perirenal fat weights of the HF group were all significantly higher than those of the HF+C group and NC group (both P<0.01). The difference of the fasting blood glucose among the 3 groups was no significance (P>0.05). Serum levels of IL-6 and TNFαwere significantly decreased in the HF+C treated group, compared with the HF group [IL-6 54.03±13.32 pg/ml vs 85.35±16.93pg/ml (P <0.05); TNFα33.18±5.51 pg/ml vs 48.20±7.87 pg/ml (P<0.05)]. IL-1βlevel was no significantely different between the HF and HFD+C [41.04±10.12 pg/ml vs 29.72±7.66 pg/ml (P>0.05)]. The glucose infusion rate (GIR) of HF+C group was significantly higher than that of the HF group [22±5 mmol/L vs 14±4 mmol/L, (P<0.01)].
     2. in vitro study: 1) MMT showed that Telmisartan (0.01-1.0ug/ml) had no effect on the proliferations of 3T3-L1 preadipocytes; 2) In the process of induction of 3T3-L1 preadipocytes, Telmisartan (0.1ug/ml) promoted the differention of the cells, and increased adiposity during the process of differentiation. At the same time, the expression of PPARγdetected by Q-PCR was increased by telmisartan. 3) Various concentrations of telmisartan were applied to interfere with the mature 3T3-L1 adipocytes. Telmisartan reduced the lipid storage and increased the ~(18)F-FDG uptake of mature 3T3-L1 adipocytes in a dose-dependent manner. At the same time, Telmisartan reduced the levels of IL-6 and TNFαand increased that of FFAs in the cultural medium. One hundred and fifty seven genes differentially expressed between the groups were found by microarray. These were involved in lipid synthesis, eatabolism and transport in the adipocyte. Preliminary analyses of these gene functions and their relationship were performed. MAP kinas signaling pathway involving the secretion of proinflammatory factor and lipid metabolisms were affected by telmisartan. Up-regulation of Nos3 and CPT1A expression by telmisartan may also underlied the improvement in the lipid metabolisms.
     Conclusions: Candesartan might reduce the proinflammmatory factors, improve the lipid metabolisms and insulin resistance .And Telmisartan has important direct effects on the lipid metabolisms and the proinflammatory factors secretion of the adipocyte.These showed that some of the ARBs affected lipometabolisms and the proinflammatory factors secreted from adipocytes, and improve the insulin resistance.
引文
1.The world health report 2002: reducing risks, promoting healthy life. World Health Organization, Geneva, 2002.
    2.Rochini AP. Childhood obesity and a diabetes epidemic. N. Engl. J. Med. 2002, 346: 854-855.
    3.潘长玉.糖尿病经济负担.中华内科杂志.2001,81:1-2.
    4.中国卫生部,科技部,国家统计局.中国居民营养与健康现状.2004.
    5.Jia WP, Xiang KS, Chen L, et al. Epidemiological study on obesity and its commodities in urban Chinese older than 20 years of age in Shanghai, China. Obes Rev. 2002, 3: 157-165.
    6.Cockram CS. The epidemiology of diabetes mellitus in the Asia-pacific region. HKMJ, 2000. 6: 43-52.
    7.Wild SH, Forouhi NG. What is the scale of the future diabetes epidemic, and how certain are we about it? Diabetologia. 2007, 50: 903-905.
    8.王克安,李天麟,向红丁等.中国糖尿病流行特点研究.中华流行病学杂志.1998.19:282-285.
    9.向红丁,刘蓉.中国2型糖尿病危险因素分析.医师进修杂志.2001,24:21-23.
    10.International Diabetes Federation. Global Guideline for Type 2 Diabetes. International Diabetes Federation. 2005.
    11.Iamiond J. The double puzzle of diabetes. Nature. 2003,423: 599-602.
    12.Hirsch IB. The changing faces of diabetes. Prim Care. 2003, 30: 499-510.
    13.Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001,414:821-827.
    14.Quinn L. Type 2 diabetes: epidemiology, pathophysiology, and diagnosis. Nurs Clin North Am. 2001,36: 175-192.
    15.Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993, 259:87-91.
    16.Pickup JC, Crook MA. Is type Ⅱ diabetes mellitus a disease of the innate immune system? Diabetologia. 1998,41: 1241-1248.
    17.Schmidt MI,Duncan BB,Sharrett AR,et al.Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities Study):a cohort study.Lancet.1999,353:1649-1652.
    18.Freeman DJ,Norrie J,Caslake MJ,et al.C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study.Diabetes.2002,51:1596-1600.
    19.Vozarova B,Weyer C,Lindsay RS,et al.High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes.Diabetes.2002,51:455-61.
    20.Mohanty P,Hamouda W,Garg R,et al.Glucose challenge stimulates ROS generation by leukocytes.J Clin Endocrinol Metab.2004,85:2970-2973.
    21.Dhindsa S,Tripathy D,Mohanty P,et al.Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear NFkB in mononuclear cells.Metabolism.2004,53:300-334.
    22.Aljada A,Ghanim H,Mohanty P,et al Glucose intake induces an increase in AP-1 and Egr-1 binding activities and tissue factor and matrix metaltoprotenrase expression in mononuclear cells and plasma tissue factor and matrix metalloproteinase concentration.Am J Clin Nutr.2004,80:51-57.
    23.Mohanty P,Ghanim H,Hamouda W,et al.Both lipid and protein intakes stimulate increased generation of ROS bypolymorphonuclear leukocytes and mononuclear cells.Am J Clin Nutr.2002.75:767-772.
    24.Tripathy D,Priya M,Sandeep D,et al.Elevation of FFA induces inflammation and impaired vascular reactivity in healthy subjects.Diabetes.2003,52:2882-2887.
    25.Wellen KE,Hotamisligil GS.Inflammation,stress,and diabetes.J Clin Invest.2005,115:1111-1119.
    26.Xu H,Barnes GT,Yang Q,et al.Chronic Inflammation in fat plays a crucial role in the development of obesity related insulin resistance.J Clin Invest.2003,112:1821-1830.
    27.Rosen ED,Spiegelman BM.Adipocytes as regulators of energy balance and glucose homeostasis.Nature.2006,444:847-853.
    28.Hotamisligil GS,Shargill NS,Spiegelman BM,et al.Adipose expression of tumor necrosis factor alpha:direct role in obesity-linked insulin resistance.Science.1993, 259:87-91.
    29.Uysal KT,Wiesbrock SM,Marino MW,et al.Protection from obesity-induced insulin resistance in mice lacking TNF-alpha fuction.Nature.1997,389:610-614.
    30.Kern PA,Saghizadeh M,Ong JM,et al.The expression of tumor necrosis factor in human adipose tissue:regulation by obesity,weight loss,and relationship to lipoprotein lipase.J.Clin.Invest.1995,95:2111-9.
    31.Dandona P,Weinstock R,Thusu K,et al.Tumor necrosis factor-alpha in sera of obese patients:fall with weight loss.J.Clin.Endocrinol.Metab.1998,83:2907-10.
    32.Paz K,Hemi R,LeRoith D,et al.A molecular basis for insulin resistance:elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation.J.Biol.Chem.1997,272:29911-29918.
    33.Aguirre V,Uchida T,Yenush L,et al.The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307).J.Biol.Chem.2000,275:9047-54.
    34.Jager J,Gremeaux T,Cormont M,et al.Interleukin-1 beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression.Endocrinology.2007,148:241-251.
    35.Kopp HP,Kopp CW,Festa A,et al.Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidily obese patients.Arterioscler Thromb Vasc Biol.2003,23:1042-1047.
    36.Anan F,Takahashi N,Ooie T,et al.Candesartan,an angiotensin Ⅱ receptor blocker,improves left ventricular hypertrophy and insulin resistance.Metabolism.2004,53:777-781.
    37.Sola S,Mir MQ,Cheema FA,et al.Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome:results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study.Circulation.2005,111:343-348.
    38.Rosei EA,Rizzoni D,Muiesan ML,C et al.Effects of candesartan cilexetil and enalapril on inflammatory markers of atherosclerosis in hypertensive patients with non-insulindependent diabetes mellitus.J Hypertens.2005,23:435-444.
    39.Abuissa H,Jones PG,Marso SP,et al.Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention for type 2 diabetes.A meta-analysis of randomized clinical trials.J Am Coll Cardiol.2005,46:821-826.
    40.Clasen R,Schupp M,Foryst-Ludwig A,et al.PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin.Hypertension.2005,46:137-143.
    41.Michel MC,Bohner H,K(o|¨)ster J,et al..Safety of telmisartan in patients with arterial hypertension:an open-label observational study.Drug Saf.2004,27:335-344.
    1.Pinterova L, Krizanova O, Zorad S. Rat epididymal fat tissue express all components of rennin-angiotensin system. Gen Physiol Biophys. 2000 ,19: 329.
    2.Engeli S, Schling P, Gorzelniak K, et al. The adipose tissue rennin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol. 2003, 35: 807.
    3.Boustany CM, Bharadwaj K, Daughterly A, et al. Activation of the systemic and adipose rennin-angiotensin system in rats with diet-induced obesity and hypertension. Am J Physiol Regl Intergr Comp Physio. 2004, 287: R943-949.
    4.Cheung A, Bryer-Ash M. Modified method for the performance of glucose insulin clamp studies in conscious rats. J Pharmacol Toxicol Methods. 1994, 31: 215-220.
    5.Rave K, Flesch S, Kuhn-Velten WN, et al. Enhancement of blood glucose lowering effect of a sulfonylurea when coadministered with an ACE inhibitor: results of a glucose-clamp study. Diabetes Metab Res Rev. 2005, 21: 459-464.
    6.Pinterova L, Zelezna B, Fickova M, et al. Elevated AT1 receptor protein but lower angiotensin Ⅱ-binding in adipose tissue of rats with monosodium glutamate-induced obesity. Horm Metab Res. 2001, 33: 1-5.
    7.Cheung A, Bryer-Ash M. Modified method for the performance of glucose insulin clamp studies in conscious rats. J Pharmacol Toxicol Methods, 1994, 31:215-220.
    8.罗四川,李启富,刘红梅.清醒状态下大鼠高胰岛素-正常血糖钳夹技术的建立及意义.重庆医科大学学报.2004,29:334-336.
    9.李玲.大鼠清醒和麻醉状态下胰岛素钳夹试验结果的比较.中国糖尿病杂志.2003,11:51-53.
    10. Sone H, Takahashi A, Lida K, et al. Disease model: hyperinsulinemia and insulin resistance Part B - polygenic and other animal models. TRENDS in Molecular Medicine. 2001, 7: 373-376.
    11.Tremblay F, Labigne C, Jacques H, et al. Dietary cod protein restores insulin-induced activation of phosphatidylinositol 3-kinase/Akt and GLUT 4 translocation to the T-tubules in skeletal muscle of high-fat-fed obese rats. Diabetes. 2003, 52: 29-37.
    12.Kim JK, Kim YJ, Fillmore JJ, et al. Preventiion of fat-induced insulin resistance by salicylate. J Clin Invest. 2001, 108: 437-446.
    13. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor a. Artheroscler Thromb Vasc Biol. 2005, 25: 2062-2068.
    14. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with mcrophage accumulation in adipose tissue. J Clim Invest. 2003, 112: 1796-1808.
    15. Bruun JM, Lihn AS, Pedersen SB, et al. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab. 2005, 90: 2282-2289.
    16. Tsutsumi C. Retinoids and retinoid-binding protein expression in rat adipocytes. J Biol Chem. 1992,267: 1805-1810.
    17. Herrmann SM, Ricard S, Nicaud V, et al. Polymorphisms of tumour necrosis factor-alpha gene, coronary heart disease obesity. Eur-J-Clin-Invest. 1998, 28: 59-66.
    18. Hotamisligil GS, Budavari A, Murray D, et al. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-a.J Clin Invest. 1994,94:1543-1549.
    19. Rotter V, Nagaev I, Smith U. Interleukin-6 induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and TNF-alpha overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003, 278: 45777- 45784.
    20. Senn JJ, Klover PJ, Nowak IA, et al. Interleukin-6 induces cellular insulin resistance in hepatocyte. Diabetes. 2002, 51: 3391-3399.
    21. Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biop Res Commun. 2003, 311: 372-379.
    22. Kim HJ, Higashimori T, Park SY, et al. Differential effects of interleukin-6 and -10 skeletal muscle and liver insulin action invivo. Diabetes. 2004, 53: 1060-1067
    23. FuruhashiM, Ura N, Takizawa H, et al. Blockade of the rennin-angiotensin system decreases adipocyte size with imp rovement in insulin sensitivity. J Hypertension. 2004,22: 1977-1982.
    24. 窦京涛,Steve Zorad,Juan MS.血管紧张素Ⅱ受体拮抗剂减低大鼠体内脂肪.军医进修学院学报.2006,27:4-6
    25. 闫文华,窦京涛,潘长玉等.坎地沙坦改善高脂饮食大鼠胰岛素抵抗的效应.中 华医学杂志,2008,88:2695-2699
    26.Ren D,Collingwood TN,Rebar EJ,et al.PPARy knock down by engineered transcription factors:exogenous PPARy 2 but not PPARy 1 reactivates adipogenesis.Genes Dev.2002,98:5306-5311.
    27.Fernyhough ME,Okine E,Hausman G,et al.PPARy and GLUT4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte.Domest Anim Endocrinol.2007,33:367-378.
    28.Gerstein HC,Yusuf S,Bosch J,et al.Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose:a randomized controlled trial.Lancet.2006,368:1096-1105.
    29.Kahn SE,Haffher SM,Heise MA,et al.Gycemic durability of rosiglitazone,metformin,or glyburide monotherapy.N Engl J Med.2006,355:2427-2443.
    30.Boustany CM,Bharadwaj K,Daughterty A,et al.Activation of the systemic and adipose rennin-angiotensin system in rats with diet-induced obesity and hypertension.Am J Physiol Regl Intergr Comp Physio.2004,287:R943-949.
    31.Jones BH,Standridge MK,Moustaid N.Angiotensin Ⅱ increases lipogenesis in 3T32L1 and human adipose cells.Endocrinology.1997,138:1512-1519.
    32.Prasad A,Quyyumi AA.Renin-angiotensin system and angiotensin receptor blockers in the metabolic syndrome.Circulation.2004,110:1507-1512.
    33.Jackson MB,Ahima RS.Neuroendocrine and metabolic effects of adipocyte-dirived hormones.Clin Sci (Lond).2006,110:143-152.
    34.Marrero MB,Schieffer B,Paxton WG,et al.Direct stimulation of Jak/STAT pathway by the angioteinsin Ⅱ AT1 receptor.Nature.1995,375:247-250.
    1.Yoshikazu,Jiro,Naonobu N,et al.Role of peroxisome proliferator-activated receptor-in maintenance of the characteristics of mature 3T3-L1 adipocytes.Diabetes.2002,51:2045-2055.
    2.Seleuk S,Sema U,Okcan B,et al.The effect of dual PPARα/g stimulation with combination of rosiglitazone and fenofibrate on metabolic parameters in type 2 diabetic patients.Diabetes Research and Clinical Practice.2006,71:52-58.
    3.Peter,Erik Q,Daniel,et al.Pipeleers Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase.Eropean Journal of Pharmacology.2005,518:90-95.
    4.Soares A,Guichardant M,Cozzone D,et al.Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes.Free Radical Biology and Medicine.2005,38:882-9.
    5.Lise M,Rasmus KP,Morten BS,et al.Adipoctye differentiation of 3T3-L1 preadipocytes is dependent on lipoxygenase activity during the initial stages of the differentiation process.Biochem.J.2003,375:539-549.
    6.Mori Y,Itoh Y,Tajima N.Angiotesin Ⅱ receptor blockers downsize adipocytes in spontaneously type 2 diabetic rats with visceral fat obesity.Am J Hyper tens.2007,20:431-436.
    7.Zanchi A,Dulloo AG,Perregaux C,et al.Telmisartan prevents the glitazone-induced weight gain without interfering with its insulin-sensitizing properties.Am J Physiol endocrinol Metab.2007,293:E91-95.
    8.Shimabukuro M,Tanaka H and Shmabukuro T.Effects of telmisartan on fat distribution in individuals with the metabolic syndrome.J Hypertens.2007,25:841-848.
    9.Crandall DL,Armellino DC,Busier,DE,et al.Angiotensin Ⅱ receptors in human preadipocytes:role in cell cycle regulation.Endocrinology.1999,140:154-158.
    10.Skurk T,Lee YM,Hauner H.Angiotensin Ⅱ and its metabolites stimulated PAI-Ⅰ protein release from human adipocytes in primary culture.Hypertension.2001,37:1336-1340.
    11.Mori Y,Itoh Y,Tajima N.Angiotesin Ⅱ receptor blockers downsize adipocytes in spontaneously type 2 diabetic rats with visceral fat obesity.Am J Hypertens.2007, 20:431-436.
    12.Shimabukuro M,Tanaka H and Shmabukuro T.Effects of telmisartan on fat distribution in individuals with the metabolic syndrome.J Hypertens.2007,25:841-848.
    13.Mansen A,Guardiola-Diaz H,Rafter J,et al.Exp ression of the peroxisome p roliferator-activated receptor (PPAR) in the mouse colonic mucosa.Biochem Biophys Res Commun.1996,222:844-851.
    14.Tontonoz P,Hu E,Spiegelman BM.Stimulation of adipogenesis in fibroblasts by PPAR gamma 2,a lipid-activated transcription factor.Cell.1994,79:1147-1156.
    15.Rosen ED,Sarraf P,TroyAE,et al.PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitr.Mol Cell.1999,4:611-617.
    16.Picard F,Auwerx J.PPAR (gamma) and glucose homeostasis.Annu Rev Nutr.2002,22:167-197.
    17.GurnellM,Savage DB,Chatterjee VK,et al.The metabolic syndrome:peroxisome p roliferator-activated receptor gamma and its therapeutic modulation.J Clin Endocrinol Metab.2003,88:2412-2421.
    18.Farmer SR.Regulation of PPARgamma activity during adipogenesis.Int J Obes (Lond).2005,29:S13-16.
    1.Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006, 444: 847-853.
    2.Wellen KE and Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005,115: 1111-1119.
    3.Gokhan SH. Inflammation and metabolic disorders. Nature. 2006, 444: 860-867.
    4.Beutler B. Innate immunity: an overview. Mol Immunol. 2004, 40: 845-859.
    5.Ghenim H, Aljada A, Hofmeyer D, et al. The Circulating mononuclear cells in the obese are in a pro-inflammatory state. Circulation. 2004, 110: 1564-1571.
    6.Yang YH, Sandrine D, Percy LS, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research. 2002, 30: el 5.
    7.窦京涛,Steve Zorad,Juan MS.血管紧张素Ⅱ受体拈抗剂减低大鼠体内脂肪.军医进修学院学报.2006,27:4-6
    8.Mori Y, Itoh Y, Tajima N. Angiotesin Ⅱ receptor blockers downsize adipocytes in spontaneously type 2 diabetic rats with visceral fat obesity. Am J Hypertens. 2007, 20:431-436.
    9.Shimabukuro M, Tanaka H, Shmabukuro T. Effects of telmisartan on fat distribution in individuals with the metabolic syndrome. J Hypertens. 2007, 25: 841-848.
    10.Moldes M, Zuo Y, Morrison RF, et al. Peroxisome proliferator-activated receptor gammar suppresses Wnt/beta-catenin signaling during adipogenesis. Biochem J. 2003, 376: 607-613.
    11.Nisoli E, Clementi E, Paolucci C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003, 299: 896-899.
    12.SegerR, Krebs EG The MAPK signaling cascade. FASEB J. 1995,9:726-735.
    13.Abuissa H, Jones PG, Marso SP, et al. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention for type 2 diabetes. A meta-analysis of randomized clinical trials. J Am Coll Cardiol. 2005, 46: 821-826.
    14.Rajala MW, Scherer PE. Minireview: the adipocyte - at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 2003, 144: 3765-3773.
    15.Trayhurn P,Wood IS.Adipokines:inflammation and the pleiotropic role of white adipose tissue.Br J Nutr.2004,92:347-355.
    16.Kern PA,Ranganathan S,Li C,et al.Adipose tissue tumor necrosis factor and IL-6 expression in human obesity and insulin resistance.Am J Physiol Edocrinol Metab.2001,280:E745-E751.
    17.Xu HY,Glenn TB,Yang Q,et al.Chronic Inflammation in fat plays a crucial role in the development of obesity related insulin resistance.J Clin Invest.2003,112:1821-1830.
    18.Koh KK,Ahn JY,Han SH,et al.Pleiotropic effects of angiotensin Ⅱ receptor blocker in hypertensive patients.J Am Coll Cardiol.2003,42:905-910.
    19.Anan F,Takahashi N,Ooie T,Hara M,et al.Candesartan,an angiotensin Ⅱ receptor blocker,improves left ventricular hypertrophy and insulin resistance.Metabolism.2004,53:777-781.
    20.Koh KK,Ahn JY,Han SH,et al.Pleiotropic effects of angiotensin Ⅱ receptor blocker in hypertensive patients.J Am Coll Cardiol.2003,42:905-910.
    21.Dandona P,Kumar V,Aljada A,et al.Angiotensin Ⅱ receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes,nuclear factor-kappa B,in mononuclear cells of normal subjects:evidence of an antiinflammatory action.J Clin Endocrinol Metab.2003,88:4496-4501.
    22.Sola S,Mir MQ,Cheema FA,et al.Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome:results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study.Circulation.2005,111:343-348.
    23.Rosei EA,Rizzoni D,Muiesan ML,et al.Effects of candesartan cilexetil and enalapril on inflammatory markers of atherosclerosis in hypertensive patients with non-insulin dependent diabetes mellitus.J Hypertens.2005,23:435-444.
    24.Christian W.Mitogen-activated protein kinase:Conservation of a three-kinase module from yeast to human.Physiological Reviews.1999,79:143-180.
    25.Ono K & Han J.The p38 signal transduction pathway:activation and function.Cell Signal.2000,12:1-13.
    26.Kumar S,Boehm J,Lee JC.p38 MAP kinase:key signaling molecules as therapeutic targets for inflammatory diseases.Nat Rev Drug Discov.2003,2: 717-726.
    27.Alessandra M,lacopo B,Tania G,et al.Hyperglycemia activates JAK2 signaling pathway in human failing myocytes via Angiotensin Ⅱ-Mediated Oxidative Stress.Diabetes.2005,54:394-401.
    28.Zahradka P,Werner JP,Buhay S,et al.NF-kappaB activation is essential for angiotensin Ⅱ-dependent proliferation and migration of vascular smooth muscle cells.J Mol Cell Cardiol.2002,34:1609-1621.
    29.Ruiz-Ortega M,Ruperez M,Lorenzo O,et al.Angiotensin Ⅱ regulates the synthesis of proinflammatory cytokines and chemokines in the kidney.Kidney Int.2002,62(Suppl 82):S12-S22.
    30.Brynn HJ,Melissa KS,Naima M.Angiotensin Ⅱ increases lipogenesis in 3T3-L1 and human adipose cells.Endocrinology.1997,138:1512-1519.
    31.Muneya F,Hiroaki M,Tomohiro T,et al.An angiotensin Ⅱ AT1 receptor antagonist,telmisartan augments glucose uptake and GLUT4 protein expression in 3T3-L1 adipocytes.FEBS Letters.2004,576:492-497.
    32.de Souza CJ,Eckhardt M,Gagen K,et al.Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance.Diabetes.2001,50:1863-1871.
    33.Larsen PJ,Jensen PB,Sorensen RV,et al.Differential influences of peroxisome proliferator-activated receptors y and-a on food intake and energy homeostasis.Diabetes.2003,52:2249-2259.
    34.Kana A,Takayuki M,Isao K,et al.Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet-induced obese Mice.Hypertension.2006,48:51-57.
    35.Zanchi A,Dulloo AG,Perregaux C,et al.Telmisartan prevents the glitazone-induced weight gain without interfering with its insulin-sensitizing properties.Am J Physiol endocrinol Metab.2007,293:E91-95.
    36.Shimabukuro M,Tanaka H and Shmabukuro T.Effects of telmisartan on fat distribution in individuals with the metabolic syndrome.J Hypertens.2007,25:841-848.
    37.Jorg-Peter V,Peter B,Heidrun F.Hypophagic effect of angiotensin AT1 receptor antagonist irbesartan in rats.European Journal of Pharmacology.2007,564: 131-137.
    38.Hagiwara Y,Kubo T.Anterior hypothalamic neurons respond to blood pressure changes via gamma-aminobutyric acid and angiotensin Ⅱ rats.Neurosci Lett.2005,384:250-253.
    39.Hagiwara Y,Kubo T.y-Aminobutyric acid in the lateral septal area is involved in mediation of the inhibition of hypothalamic angiotensin Ⅱ-sensitive neurons induced by blood pressure increases in rats.Neurosci Lett.2007,419:242-246.
    40.Kana A,Takayuki M,Isao K,et al.Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet induced obese mice.Hypertension.2006,48:51-57.
    1.Mario BM,David F,David S,et al.Angiotensin Ⅱ-induced insulin resistance and protein tyrosine phosphatases.Arterioscler Thromb Vasc Biol.2004,24:2009-2013.
    2.Ken S,Nathan RQ,Ludmila K,et al.Telmisartan but not valsartan increases caloric expenditure and protects against weight gain and hepatic steatosis.Hypertension.2006,47:1003-1009.
    3.Anne Z,Abdul GD,Christine P,et al.Telmisartan prevents the glitazone-induced weight gain without interfering with its insulin-sensitizing properties.Am J Physiol Endocrinol Metab.2007,56:E91-E95.
    4.Tuck ML.Angiotensin-receptor blocking agents and the peroxisome proliferator-activated receptor-gamma system.Curr Hypertens Rep.2005,7:240-243.
    5.Clasen R,Schupp M,Foryst-Ludwig A,et al.PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin.Hypertension.2005,46:137-143.
    6.Schuppet M,Janke J,Clasen R,et al.Angiotensin type 1 receptor blockers induce peroxisome proliferators-activated receptor-gamma activity.Circulation.2004,109:2054-2057.
    7.Inoue T,Morooka T,Moroe K,et al.Effect of telmisartan on cholesterol levels in patients with hypertension:Saga Telmisartan Aggressive Research (STAR).Hormone and Metabolic Research.2007,39:372-376.
    8.Derosa G,Ragonesi PD,Mugellini A,et al.Effects of telmisartan compared with eprosartan on blood pressure control,glucose metabolism and lipid profile in hypertensive,type 2 diabetic patients:a randomized,double-blind,placebo-controlled 12-month study.Hypertension Reasearch.2004,27:457-464.
    9.Manuel G,Jesse LV,Jin F,et al.Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferators-activated receptor-alpha.The Journal of Biological Chemistry.2004,279:27849-27854.
    10.Markus C,Nikolaj F,Michael S,et al.Liver-specific PPARα-target gene regulation by the angiotensin type 1 receptor blocker Telmisartan.Diabetes.2008,57:1405-1413
    1.Gokhan SH. Inflammation and metabolic disorders. Nature. 2006, 444: 860-867.
    2.Petrie MC, Padmanabhan N, McDonald JE, et al. Angiotensin converting enzyme (ACE) and non-ACE dependent angiotensin Ⅱ generation in resistance arteries from patients with heart failure and coronary heart disease. J Am Coll Cardiol. 2001, 37: 1056-1061.
    3.Vincent MA, Barrett EJ, Lindner JR, et al. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab, 2003, 285: E123-E129.
    4.ichell RN and Cotran RS. Acute and chronic inflammation. In: R. S. Cotran, V. Kumar, & T. Collins (Eds.), Pathologic basis of disease (6th ed.). Philadelphia: WB Saunders. 1999,50-112.
    5.Yusuke S, Marta RO, Oscar L, et al. Inflammation and Angiotensin Ⅱ. Int J Biochem Cell Biol. 2003, 35: 881-900.
    6.Zahradka P, Werner JP, Buhay S, et al. NF-kappaB activation is essential for angiotensin Ⅱ-dependent proliferation and migration of vascular smooth muscle cells. J Mol Cell Cardiol. 2002, 34: 1609-1621.
    7.Li JM and Shah AM.Endothelial cell superoxide generation:regulation and relevance for cardiovascular pathophysiology.Am J Physiol.2004,287:R1014-R1030.
    8.Wei Y,Whaley-Connell AT,Chen K,et al.NADPH oxidase contributes to vascular inflammation,insulin resistance,and remodeling in the transgenic (mRen2) rat.Hypertension.2007,50:384-391.
    9.Ebrahimian T,He Y,Schiffrin EL and Touyz RM.Differential regulation of thioredoxin and NAD(P)H oxidase by angiotensin Ⅱ in male and female mice.J Hypertens.2007,25:1263-1271.
    10.Strawn WB and Ferrario CM.Mechanisms linking angiotensin Ⅱ and atherogenesis.Curr Opin Lipidol.2002,13:505-512.
    11.El bekay R,Alvarez M,Monteseirin J,et al.Oxidative stress is a critical mediator of the angiotensin Ⅱ signal in human neutrophils:involvement of mitogen-activated protein kinase,calcineurin,and the transcription factor NF-kappaB.Blood.2003,102:662.
    12.Ruiz-Ortega M,Ruperez M,Lorenzo O,et al.Angiotensin Ⅱ regulates the synthesis of proinflammatory cytokines and chemokines in the kidney.Kidney Int.2002,62(Suppl 82):S12-S22.
    13.McAllister-Lucas LM,Ruland J,Siu K,et al.CARMA3/Bcll0/MALT1-dependent NF-kappaB activation mediates angiotensin Ⅱ-responsive inflammatory signaling in nonimmune cells.P Natl Acad SCI USA.2007,104:139-144.
    14.Dzau VJ.Theodore Cooper Lecture:tissue angiotensin and pathobiology of vascular disease:a unifying hypothesis.Hypertension.2001,37:1047-1052.
    15.Dandona P,Kumar V,Aljada A,et al.Angiotensin Ⅱ receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes,nuclear factor-kappa B,in mononuclear cells of normal subjects:evidence of an antiinflammatory action.J Clin Endocrinol Metab.2003,88:4496-450.
    16.Ridker PM,Danielson E,Rifai N,et al.Valsartan,blood pressure reduction,and C-reactive protein:primary report of the Val-MAEC trial.Hypertension.2006,48:73-79.
    17.Pepys MB and Hirschfield GM.C-reactive protein:a critical update.J Clin Invest.2003,111:1805-1812.
    18. Dandona P, Aljada A and Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia. 2002, 45: 924-930.
    19. Skurk T, van Harmelen V and Hauner H. Angiotensin Ⅱ stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB. Arterioscler Thromb Vase Biol. 2004, 24: 1199-1203.
    20. Skurk T, Lee YM and Hauner H. Angiotensin Ⅱ and its metabolites stimulate PAI-1 protein release from Cultured Human Adipocytes by Activation of NF-kB. Arterioscler Thromb Vase Biol. 2004, 24: 1199-1203.
    21. Wellen KE and Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005,115: 1111-1119
    22. Beutler B. Innate immunity: an overview. Mol Immunol. 2004, 40: 845-859.
    23. Dionne M., Pham, LN and Shirasu HM. Akt and foxo dysregulation contribute to infection-induced wasting in Drosophila. Curr Biol. 2006, 16: 1977-1985.
    24. Ghenim H, Aljada A, Hofmeyer D, et al. The Circulating mononuclear cells in the obese are in a pro-inflammatory state. Circulation. 2004, 110: 1564-1571.
    25. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003, 112: 1821-1830.
    26. Cinti, S. Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005,46: 2347-2355.
    27. Boustany CM, Bharadwaj K, Daughterly A, et al. Activation of the systemic and adipose rennin-angiotensin system in rats with diet-induced obesity and hypertension. Am J Physiol Regl Intergr Comp Physio. 2004, 287: R943-949.
    28. Jones BH, Standridge MK and Moustaid N. Angiotensin Ⅱ increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology. 1997, 138: 1512-1519.
    29. 窦京涛,Steve Zorad,Juan MS.血管紧张素Ⅱ受体拮抗剂减低大鼠体内脂肪. 军医进修学院学报.2006,27:4-6
    30. Mori Y, Itoh Y and Tajima N. Angiotesin Ⅱ receptor blockers downsize adipocytes in spontaneously type 2 diabetic rats with visceral fat obesity. Am J Hypertens. 2007, 20:431-436.
    31.Zanchi A,Dulloo AG,Perregaux C,et al.Telmisartan prevents the glitazone-induced weight gain without interfering with its insulin-sensitizing properties.Am J Physiol endocrinol Metab.2007,293:E91-95.
    32.Shimabukuro M,Tanaka H and Shmabukuro T.Effects of telmisartan on fat distribution in individuals with the metabolic syndrome.J Hypertens.2007,25:841-848.
    33.Raasch W,Markert A,Johren O,et al.Reduction of bodyweight and food intake after AT1-blockade is associated with a downregulation of orexigenic peptides in the hypothalamus.Dtsch med Wochenschr.2006,131:1430-1435.
    34.Voigt JP,Bramlage P,Fink H.Hypophagic effect of the angiotensin AT(1) receptor antagonist irbesartan in rats.Eur J Pharmacol.2007,564(1-3):131-137.
    35.Hagiwara Y and Kubo T.Gamma-Aminobutyric acid in the lateral septal area is involved in mediation of the inhibition of hypothalamic angiotensin Ⅱ-sensitive neurons induced by blood pressure increases in rats.Neurosci Lett.2007,419:242-246.
    36.Caisson PO,Berne C,and Jansson L.Angiotensin Ⅱ and the endocrine pancreas:effects on islet blood flow and insulin secretion in rats.Diabetologia.1998,41:127-133.
    37.Gletsu N,Doan TN,Cole J,et al.Angiotensin Ⅱ-induced hypertension in mice caused an increase in insulin secretion.Vascul Pharmacol.2005,42:83-92.
    38.Lau T,Carlsson PO,and Leung PS.Evidence for a local angiotensin system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin Ⅱ in isolated pancreatic islets.Diabetologia.2004,.47:240-248.
    39.Lupi R,Guerra S,and Bugliani M.The direct effects of the angiotensin-converting enzyme inhibitors,zofenoprilat and enalaprilat,on isolated human pancreatic islets.Eur J Endocrinol.2006,154:355-361.
    40.Morgan D,Oliveira-Emilio HR,Keane D,et al.Glucose,palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal β cell line.Diabetologia.2007,50:359-369.
    41.Chipitsyna G,Gong Q,Gray CF,et al.Induction of monocyte chemoattractant protein-1 expression by angiotensin Ⅱ in the pancreatic islets and beta-cells. Endocrinology.2007,148:2198-2208.
    42.Chu KY,Lau T,Carlsson P,and Leung PS.Angiotensin Ⅱ type 1 receptor blockade improves β-cell function and glucose tolerance in a mouse model of type 2 diabetes.Diabetes.2006,55:367-374.
    43.Tikellis C,Wookey PJ,Candio R,et al.Improved islet morphology after blockade of the rennin-angiotensin system in the ZDF rat.Diabetes.2004,53:989-997.
    44.Hong OK,Lee SH,Rhee M,et al.Hyperglycemia and hyperinsulinemia have additive effects on activation and proliferation of pancreatic stellate cells:Possible explanation of islet-specific fibrosis in type 2 diabetes mellitus.J Cell Biochem.2007,101:665-675.
    45.Ko SH,Hong OK,Kim JW,et al.High glucose increases extracellular matrix production in pancreatic stellate cells by activating the renin-angiotensin system.J Cell Biochem.2006,98:343-355.
    46.Shao JQ,Iwashita N,Du H,et al.Angiotensin Ⅱ receptor blocker provides pancreatic P-cell protection independent of blood pressure lowering in diabetic db/db mice.Acta Pharmacol Sin.2007,28:246-257.
    47.Koh KK,Ahn JY,Han SH,et al.Pleiotropic effects of angiotensin Ⅱ receptor blocker in hypertensive patients.J Am Coll Cardiol.2003,42:905-910.
    48.Anan F,Takahashi N,Ooie T,et al.Candesartan,an angiotensin Ⅱ receptor blocker,improves left ventricular hypertrophy and insulin resistance.Metabolism.2004,53:777-781.
    49.Sola S,Mir MQ,Cheema FA,Khan-Merchant N,et al.Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome:results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study.Circulation.2005,111:343-348.
    50.Rosei EA,Rizzoni D,Muiesan ML,C et al.Effects of candesartan cilexetil and enalapril on inflammatory markers of atherosclerosis in hypertensive patients with non-insulindependent diabetes mellitus.J Hyper tens.2005,23:435-444.
    51.Abuissa H,Jones PG,Marso SP,et al.Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention for type 2 diabetes.A meta-analysis of randomized clinical trials.J Am Coll Cardiol.2005,46:821-826.
    52.The DREAM Trial Investigators.Effect of Ramipril on the Incidence of Diabetes.N Engl J Med.2006,355:1551-1562.
    53.Tuck ML.Angiotensin-receptor blocking agents and the peroxisome proliferator-activated receptor-gamma system.Curr Hypertens Rep.2005,7:240-243.
    54.Clasen R,Schupp M,Foryst-Ludwig A,et al.PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin.Hypertension.2005,46:137-143.
    55.Schuppet M,Janke J,Clasen R,et al.Angiotensin type 1 receptor blockers induce peroxisome proliferators-activated receptor-gamma activity.Circulation.2004,109:2054-2057.
    56.Gonzalez-Gay MA,de Matias JM,Gonzalez-Juanatey C,et al.Anti-tumor necrosis factor-α blockade improves insulin resistance in patients with rheumatoid arthritis.Clin Exp Rheumatol.2006,24:83-86.
    57.Kiortsis,DN,Mavridis AK,Vasakos S,et al.Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis.Ann Rheum Dis.2005,64:765-766.
    58.Yazhani-Biuki B,Stelzl H,Brezinschek P,et al.Improvement of insulin sensitivity in insulin resistant subjects during prolonged treatment with the anti-TNF-α antibody infliximab.Eur J Clin Invest.2004,34:641-642.
    59.Yazhani-Biuki B,Mueller T,Brezinschek P,et al.Relapse of diabetes after interruption of chronic administration of anti-tumor necrosis factor-a antibody Infliximab.Diabetes Care.2006,29:1712-1713.
    60.Kopp E and Ghosh S.Inhibition of NF-kappa B by sodium salicylate and aspirin.Science.1994,265:956-959.
    61.Yin MJ,Yamamoto Y and Gaynor RB.The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β.Nature.1998,396:77-80.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.