糖尿病肾病细胞外基质代谢失衡机制及药物干预的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:糖尿病肾病(diabetic nephropathy,DN)是糖尿病(diabetes mellitus,DM)最常见而严重的并发症,是终末期肾病的主要原因之一。糖尿病肾病的病变特征为肾小球系膜基质积聚和基底膜增厚。细胞外基质(extracellular matrix,ECM)的成分与含量取决于基质合成与降解两者之间的动态平衡。近年来的研究显示ECM降解能力下降在DN的发生、发展中起着重要的作用。基质金属蛋白酶(metalloproteinases,MMPs)是负责ECM降解的主要酶系,其中MMP-2(又称明胶酶A)主要参与IV型胶原的降解,而后者是DN中肾小球基底膜增厚和系膜基质堆积的主要成分,因此与DN的关系最为密切。关于MMP-2及其组织抑制物(tissue inhibitor of metalloproteinase-2, TIMP-2)在DN中的作用存有较多争议,而且关于MMP-2酶原的特异膜型激活因子—膜型基质金属蛋白酶-1(membrane type 1-matrix metalloproteinase,MT1-MMP)在DN中的表达及作用鲜见研究。
     结缔组织生长因子(connective tissue growth factor ,CTGF)是转化生长因子(transforming growth factor-β1, TGF-β1)下游重要效应分子,因其较强的致纤维化作用,且生物效应较单一成为DN研究的热点。目前有关CTGF在糖尿病肾病ECM代谢障碍中的作用机制鲜有深入研究报道。
     肾素-血管紧张素系统(renin-angiotensin system,RAS)的激活,血管紧张素Ⅱ(angiotensin II,AngII)的增加是DN发病机制中的关键环节,抑制AngII的产生并干扰其作用是DN治疗的关键。厄贝沙坦是血管紧张素Ⅱ1型受体拮抗剂(angiotensin II receptor I antagonist, AT1Ra),其肾脏保护作用是否涉及细胞外基质代谢紊乱尚未见报道。
     TGF-β1诱导ECM代谢失衡在组织纤维化进程中具有关键作用。TGF-β1的各种生物效应是依靠其信号转导网络来实现的,其中最重要的是Smads(Sma and Mad protein)蛋白转导途径。由于Smad2及Smad3具有较高同源性,在以往的研究中很难区分。RNA干扰(RNA interference, RNAi)是近年发展起来的一种新型基因静默技术,该技术具有高度的序列专一性,能简单、高效地阻抑特定基因的表达。
     本研究以糖尿病大鼠模型和体外培养的大鼠肾小球系膜细胞(glomerular mesangial cell, GMCs)为对象,从整体、细胞和分子水平,系统观察CTGF、MMP-2、TIMP-2和MT1-MMP表达的变化,并通过RNAi分别敲低系膜细胞Smad2和Smad3蛋白表达,以探讨TGF-β1/Smad信号通路在糖尿病性ECM代谢失衡中的作用。通过厄贝沙坦对动物及细胞的干预实验探讨AT1Ra对肾脏保护作用的机制。
     方法:
     1.糖尿病动物模型制备及相关指标观察
     雄性Wistar大鼠42只,戊巴比妥钠腹腔麻醉(40mg/kg)后行右肾切除术。2周后将大鼠随机分为三组:右肾切除对照组(n=18),糖尿病组(DM, n=18)和厄贝沙坦干预组(DM+Irb, n=6)。其中DM组和厄贝沙坦干预组大鼠腹腔注射链脲佐菌素(streptozotocin,STZ,65 mg/kg溶于0.1mol/L枸椽酸缓冲液中,pH值4.5),对照组只注射相同体积的枸橼酸缓冲液,48h后尾尖取血,血糖仪测定血糖,尿糖试纸测定尿糖,血糖≥16.7mmol/L,尿糖+++~++++者确定为糖尿病模型。厄贝沙坦干预组给予厄贝沙坦50mg·kg-1·d-1灌胃,连续给药12周。对照组和DM组只用等量生理盐水灌胃。厄贝沙坦干预组大鼠于给药12周后,对照组和DM组分别于注射STZ后4、8和12周每组取6只大鼠,收集血尿标本,切取肾脏,光镜观察肾脏一般病理改变,免疫组化检测肾组织MMP-2、TIMP-2和CTGF蛋白表达,以Western blot和RT-PCR分别检测肾组织MMP-2、TIMP-2、MT1-MMP和CTGF的蛋白和mRNA的表达。
     2.大鼠肾小球系膜细胞的培养和相关指标观察
     用含10%胎牛血清及100KU/L青霉素、100mg/L链霉素的DMEM培养基培养大鼠肾小球系膜细胞。细胞分为低糖组(LG组:5.5 mmol/L葡萄糖),渗透压对照组(LG+M组:5.5 mmol/L葡萄糖+24.5 mmol/L甘露醇),高糖组(HG组:30 mmol/L葡萄糖)和厄贝沙坦组处理组(HG+Irb组)。LG组、LG+M组和HG组分别刺激24h、48h、72h、96h。HG+Irb组设3个浓度,分别为:10-4mol/L,10-5mol/L,10-6mol/L,刺激时间为48h;然后选择浓度10-5mol/L,刺激24h、48h、72h、96h。于实验终点用免疫细胞化学、免疫荧光细胞化学、Western blot和RT-PCR检测MMP-2、TIMP-2、MT1-MMP和CTGF蛋白和mRNA的表达,并用ELISA法检测细胞上清中IV型胶原的含量。
     3. RNA干扰及相关指标观察
     针对大鼠Smad2和Smad3编码序列分别设计3条体外转录的小干扰RNA(small interference RNA, siRNA)。优化转染条件后将siRNA分别转染入系膜细胞,同时设正常和阴性对照,于转染结束后48小时收集细胞,提取蛋白,分别检测Smad2、Smad3和Smad4的蛋白表达量,确定敲低效果最佳的siRNA,并确认Smad2与Smad3的siRNA对相互间靶基因无交叉抑制,同时对Smad4也无抑制。随后将对数生长期细胞接种于6孔培养板中,24h后待细胞融合50%-60%开始转染。将细胞分为空白细胞对照孔、TGF-β1刺激孔、阴性对照+TGF-β1孔(转染阴性对照siRNA)、Smad21+TGF-β1孔(转染Smad21 siRNA)、Smad33+TGF-β1孔(转染Smad33 siRNA)、Smad21+Smad33+TGF-β1孔(转染Smad21和Smad33 siRNA)。转染后除空白对照组外,其余各组均经2ng/ml TGF-β1刺激48h后收集细胞提取蛋白和RNA,用Western blot和RT-PCR分别检测各组MMP-2、TIMP-2、MT1-MMP和CTGF的蛋白和mRNA表达。
     结果:
     1. MMP-2、TIMP-2、MT1-MMP和CTGF在糖尿病大鼠肾脏的表达①光镜下观察,糖尿病组大鼠从4周开始肾小球体积增大,8、12周系膜细胞增生,基质轻度增多,肾小管上皮细胞出现空泡变性,小灶状萎缩,间质水肿、炎症细胞浸润及间质纤维沉积。厄贝沙坦干预组大鼠肾组织病变较糖尿病组减轻。②免疫组化结果显示:与对照组相比,糖尿病组从4周开始MMP-2在肾小球的表达明显减少,而在肾小管则未有明显变化, 8周和12周糖尿病组肾小球和肾小管MMP-2表达均持续减少。TIMP-2和CTGF在对照组的肾小球及间质中仅有少量的表达,而糖尿病组从4周至12周二者表达逐渐增强。与糖尿病组相比,厄贝沙坦干预组肾组织MMP-2表达升高,而TIMP-2和CTGF的表达则明显降低。③Western blot和半定量RT-PCR结果:与对照组相比,糖尿病组MMP-2和MT1-MMP表达从第4周开始下降,到第8周和12周显著下降,其中酶原型MMP-2(72kD )与活化型的MMP-2(63kD)的变化趋势基本一致;CTGF和TIMP-2则与之相反,从4周开始即表达明显增强,且表达水平随时间持续增高。糖尿病组CTGF的表达量与MMP-2/TIMP -2比值呈负相关(r=-0.7158, P<0.01)。MMP-2 mRNA和MT1-MMP mRNA的表达与各自蛋白的表达趋势一致。CTGF mRNA和TIMP-2 mRNA在正常大鼠肾脏中有低水平表达,而二者在糖尿病组从4周开始表达明显上调,其后直到12周表达持续增高。与糖尿病组相比,厄贝沙坦干预组大鼠肾脏MMP-2和MT1-MMP的表达均有不同程度提升,而TIMP-2和CTGF的表达水平则明显减低。
     2.高糖刺激及厄贝沙坦干预对大鼠肾小球系膜细胞MMP-2、TIMP-2、MT1-MMP和CTGF的表达的影响
     ①免疫细胞化学检测显示MMP-2、TIMP-2和CTGF均表达于胞浆,在高糖刺激48h后系膜细胞TIMP-2和CTGF的表达明显上调,而MMP-2的表达则明显降低。免疫荧光检测显示MT1-MMP主要表达于肾小球系膜细胞胞膜。高糖组系膜细胞荧光强度较低糖组降低。与高糖组相比,10-5mol/L厄贝沙坦处理组在刺激48h后CTGF、TIMP-2表达减弱,而MMP-2和MT1-MMP的表达则增强。②蛋白印迹与半定量RT-PCR结果:高糖组MMP-2蛋白和mRNA表达在24h时较低糖组略有升高,至48h时则低于低糖组,其后随时间延长表达持续降低;MT1-MMP表达在24小时开始下降并随时间呈下降趋势;高糖组各时间点TIMP-2和CTGF表达上调,且随时间呈增高趋势。厄贝沙坦处理组在24h时MMP-2的表达低于高糖组,而与低糖组之间则无明显差异;从48h~96h厄贝沙坦处理组MMP-2表达均高于高糖组。厄贝沙坦处理组与高糖组相比各时间点CTGF、TIMP-2表达下调,MT1-MMP则表达上调。④细胞上清液检测显示,与低糖组相比,高糖组细胞上清中的IV型胶原于24 h即有增加,且持续增高至96 h;与高糖组相比,各时间点厄贝沙坦处理组IV型胶原含量明显下降(P<0.05, P<0.01)。
     3. SiRNA转染敲低Smad2和Smad3后系膜细胞ECM代谢相关调控因子的变化
     ①Smad21 siRNA和Smad33 siRNA转染使系膜细胞Smad2和Smad3的表达减少约80%。Smad21 siRNA对Smad3和Smad33 siRNA对Smad2均无敲低效应,且二者对Smad4表达均无抑制。②系膜细胞在TGF-β1刺激48小时后MMP-2 mRNA和蛋白表达减少约60%-80%。Smad2敲低后,TGF-β1刺激对系膜细胞MMP-2的表达无明显影响,而Smad3敲低组和阴性对照组的系膜细胞在TGF-β1刺激后依然表现为MMP-2表达抑制。③在TGF-β1刺激48小时后系膜细胞MT1-MMP mRNA和蛋白表达减少超过60%,Smad2敲低后逆转了TGF-β1的作用,而Smad3敲低组和阴性对照组则未出现类似作用。④在TGF-β1刺激48小时后系膜细胞TIMP-2表达显著增加。与TGF-β1刺激组相比,Smad2敲低组TIMP-2表达减少约60%,Smad3敲低组TIMP-2表达减少约40%。同时敲低Smad2和Smad3则可完全抑制TGF-β1对TIMP-2的诱导作用。阴性对照siRNA对TGF-β1刺激下的系膜细胞TIMP-2的表达无影响。⑤TGF-β1刺激48小时使系膜细胞CTGF表达显著增加(蛋白增加4-5倍,mRNA增加6-7倍)。Smad3敲低可以逆转TGF-β1在系膜细胞诱导CTGF的作用,Smad2敲低和阴性对照siRNA对TGF-β1刺激下的系膜细胞CTGF的表达无影响。
     结论:①动物和细胞实验结果显示DN中MMP-2表达下调和活性下降伴有MT1-MMP表达减少和TIMP-2表达增多,提示MMP-2调控异常,引致其降解能力下降是导致ECM代谢障碍并发展为肾小球硬化的原因之一。②DN中CTGF表达增加,且与MMP-2/TIMP-2比值呈负相关,提示CTGF在DN中可能具有抑制ECM降解的作用。③厄贝沙坦能够减轻糖尿病大鼠肾脏病变,改善肾功能,同时减少糖尿病大鼠肾组织和系膜细胞CTGF和TIMP-2的表达,增加MMP-2和MT1-MMP的表达与活性。厄贝沙坦的肾脏保护作用可能是通过改善ECM合成/降解的平衡实现的。④TGF-β1调低系膜细胞MMP-2和MT1-MMP的表达水平的作用依赖于Smad2,对于CTGF的诱导则依赖于Smad3,而诱导TIMP-2的作用需要Smad2和Smad3的共同参与。
Objectives: As a severe and most frequent complication of diabetes mellitus (DM), diabetic nephropathy is stated to be one of the most common causes of end-stage renal disease. Diabetic nephropathy is characterized by accumulation of extracellular matrix (ECM) and basement membrane thickening in the glomerulus. The components and volumes of ECM are determined by the dynamic balance between matrix synthesis and degradation. It has been gradually received that the reduced degradation of matrix plays an important role in the pathogenesis of diabetic nephropathy. Matrix metalloproteinases (MMPs) are the major physiologic determinants of ECM degradation and turnover in the glomerulus. With view to collagen IV mainly depositing in glomerular mesangium and basement membrane, MMP-2 (gelatinase A), which degradate collagen IV, is hypothetically quite associated with diabetic nephropathy. A number of literature support this hypothesis but with controversy on it. So far, there is little data available on the role of MT1-MMP (activator of pro-MMP-2) in the development of diabetic nephropathy.
     Connective tissue growth factor (CTGF) is thought to be a critical downstream mediator of TGF-βwith more simple pro-fibrotic effects. The role of CTGF on ECM dysregulation in diabetic nephropathy has not been thoroughly investigated.
     The renin-angiotensin system (RAS) is a pivotal contributor to the progress of diabetic renal disease. RAS blocking with type 1 receptor blockers (ARB) has been clearly demonstrated to have positive outcomes on diabetic complications. The precise mechanism of renoprotective effect of irbesartan (angiotensin-receptor 1 blocker) has not been fully understood.
     The imbalance between production and degradation of ECM induced by TGF-β1 is a main event in the progress of tissue fibrosis. Smads are important protein mediators in TGF-β1 signal transduction pathways. Owing to the marked similarity in their structure it was not possible to respectively study the role of Smad2 or Smad3 in TGF-β1 induced cellular responses in the past. RNA interference (RNAi) is an accurate and potent gene-silencing method, which can offer researchers a powerful tool to selectively silence genes.
     The present studies were performed to examine the expression of MMP-2, TIMP-2, MT1-MMP and CTGF in the renal tissue of STZ-induced diabetic model as well as glomerular mesangial cells (GMCs) cultured by high glucose medium. We also observed the effects of irbesartan on diabetic rats as well as high-glucose cultured GMCs and investigated the different role of Smad2 and Smad3 in TGFβ1-induced fibrotic responses by knocking them down respectively in GMCs.
     Methods:
     1. Diabetic model and examination of MMP-2, TIMP-2, MT1-MMP and CTGF
     Uninephrectomized male Wistar rats were randomly divided into three groups: control group (n=18), DM group (n=18) and DM+Irb group (n=6). The rats of DM and DM+Irb group received a single intraperitoneal injection of STZ dissolved in 0.1mol/L sodium citrate buffer (pH 4.5) at a dose of 65mg/kg. The rats of control group only received an injection of the same volume of 0.1mol/L sodium citrate. The model of diabetes was considered to be successful when the blood glucose was≥16.7mmol/L and the glucose in urine was+++~++++after 48 hours of the injection. The rats in the DM+Irb group were treated with irbesartan (average dose of 50mg.kg-1.d-1) for 12 weeks. The rats of control and DM group were treated with the same volume of normal saline. Six rats from control or DM group were respectively sacrificed at week 4, 8, 12 after STZ injection. All rats in DM+Irb group were also sacrificed at week 12. The renal cortex were removed and used for histopathology, immohistochemistry, western blot and reverse transcription and polymerase chain reaction (RT-PCR).
     2. Cell culture and examination of MMP-2, TIMP-2, MT1-MMP and CTGF
     Glomerular mesangial cells were cultured at 37℃in 95% air and 5% CO2 in DMEM media containing 10% fetal calf serum, 100U/ml penicillin and 100μg/ml streptomycin. Confluent mesangial cells were divided into four groups: LG group (media containing 5.5mM glucose), HG group (media containing 30mM glucose), LG+M group (media containing 5.5mM glucose and 24.5mM mannitol), HG+Irb group (media containing 30mM glucose and irbesartan). Cells cultured in the mixture of 5.5 mM glucose and 24.5 mM mannitol were used as an osmotic control. The incubation time extends to 24h, 48h, 72h and 96h. At the end of incubation, the supernatant and cells were collected. The expression of MMP-2, TIMP-2, MT1-MMP and CTGF in the cells were assessed by immunochemistry, immunofluorescence, western blot and RT-PCR. ELISA was used to detect the level of collagen IV in supernatant.
     3. RNA interference and examination of MMP-2, TIMP-2, MT1-MMP and CTGF in GMCs.
     In this study RNA interference was used to achieve selective and specific knockdown of Smad2 and Smad3. After optimizing transfection conditions the preliminary experiment was performed to determine the most effective siRNA of Smad2 or Smad3 and make sure that siRNA treatment results in selective and specific knockdown of respective Smad protein. After siRNA transfection GMCs were treated with either vehicle (0.1%BSA) or TGF-β1 (2ng/ml) for 48h under serum-free condition. Cellular MMP-2, TIMP-2, MT1-MMP and CTGF were assessed by Wertern blot and RT-PCR.
     Results:
     1. The expression of MMP-2, TIMP-2, MT1-MMP and CTGF in the renal tissue of the diabetic rats
     ①The diabetic rats showed slightly enlarged glomeruli at week 4. Thickened glomerular basement membrane and expanded mesangium were observed with tubular epithelial vacuolar degeneration, minor focal atrophy as well as inflammatory cell infiltration were also observed at week 8 and week 12.②Compared with those of control group immunohistochemical positive staining for MMP-2 decreased notably in glomeruli at week 4 but without obvious changes in tubuli of diabetic kidney. The positive stainings for MMP-2 decreased both in glomeruli and tubuli from 8 weeks to 12 weeks in diabetic rats. The control rats showed weak stainings for TIMP-2 and CTGF either in glomeruli or in interstitium whereas markedly enhancing positive signals were detected in diabetic rats from 4 weeks to 12 weeks.③The Western blot and RT-PCR results for TIMP and CTGF are consistent with the immunohistochemical results. The expression and activity of MMP-2 were decreasing from 4 weeks to 12 weeks in diabetic group versus control group. The expression of CTGF was correlated with MMP-2/TIMP-2 negatively (r=-0.7158, p<0.01).④The morphological and functional impairment of the kidneys induced by STZ was ameliorated in irbesartan group. Pro-MMP-2 and active MMP-2 as well as MT1-MMP were up-regulated in irbesartan group, while on the contrary the expression of TIMP-2 and CTGF was down-regulated in irbesartan group.
     2. The expression of MMP-2, TIMP-2, MT1-MMP and CTGF in GMCs cultured in high glucose medium
     ①The immunochemical positive stainings for MMP-2, TIMP-2, CTGF appeared in cytoplasm. The immunofluorescence positive stainings for MT1-MMP were mainly anchored at the cell membrane of GMCs.②High-glucose incubation resulted in down-regulation of MT1-MMP and up-regulation of TIMP-2 and CTGF along with the increasing secretion of Col IV. All of those regulations mediated by high-glucose are of time-dependent manners. The regulation of MMP-2 seems a little complicated. Either mRNA or protein of MMP-2 slightly increased after 24h-incubation in high-glucose media, then the expression of MMP-2 decreased up to 96h. The changes of active MMP-2 were consistent with changes of pro-MMP-2.③Immunochemistry and immunofluorescence showed decreased expression of TIMP-2 and CTGF, meanwhile increased expression of MMP-2 and MT1-MMP in irbesartan treatment group versus high-glucose stimulating group.
     3. The different role of Smad2 and Smad3 in TGFβ1-induced fibrotic responses in GMCs
     ①Smad2 and Smad3 siRNA treatment resulted in approx. 80% reduction in band density of respective Smad protein. The knockdown of respective Smad proteins was selective, as Smad2 protein levels were reduced by Smad21 siRNA, but not by Smad33 siRNA. Similarly, Smad3 protein levels were reduced by Smad33 siRNA and not by Smad21 siRNA. Neither of the transfections had any effect on Smad4 protein levels.②TGF-β1 treatment for 48h resulted in about 60%-80% decrease in MMP-2 expression. The TGF-β1-induced down-regulation of MMP-2 was prevented by Smad2 knockdown, but not by smad3 knockdown. TGF-β1 and Smad siRNA had the similar effects on the expression of MT1-MMP.③TGF-β1 treatment for 48h resulted in significant increasing expression of TIMP-2. Inhibition of either Smad2 or Smad3 resulted in partial reduction of TGF-β1-induced TIMP-2 expression. This induction was abolished by simultaneous knockdown of both Smad2 and Smad3.④TGF-β1 treatment for 48h resulted in 4-5-fold increases in CTGF protein expression as well as 6-7-fold increases in its mRNA expression. This induction was markedly attenuated in the presence of Smad3 knockdown. However Smad2 knockdown had no effect on TGF-β1-induced up-regulation of CTGF.
     Conclusion:
     ①Studies in vivo as well as in vitro reveal that the decrease of expression and proteolytic activity of MMP-2 are accompanied with the decreased expression of MT1-MMP as well as the increased expression of TIMP-2. Dysregulation of MMP-2 might be one of the causes of ECM accumulation which in turn results in diabetic glomerularsclerosis.②The increased expression of CTGF and its correlation with MMP-2/TIMP-2 suggest that CTGF might inhibit the degradation of ECM in DN.③Renoprotective effects of irbesartan might be partially by recovering the tilting balance between synthesis and degradation of ECM.④TGF-β1-induced decreases in expression of MMP-2 and MT1-MMP were Smad2-dependent, whereas increases of CTGF expression were Smad3-dependent. Increases of TIMP-2 expression were dependent on both Smad2 and Smad3.
引文
1 Anderson S, Rennke HG, Brenner BM. Nifedipine versus fosinopril in uninephrectomized diabetic rats. Kidney Int, 1992(4), 41:891~897
    2 Baricos WH, Cortez SL, Dahr SS, et al. ECM degradation by cultured human mesangial cells is mediated by a PA/ plasmin/MMP2 cascade [J]. Kidney Int, 1995, 47(4): 1039
    3 Jalalah SM, Furness PN, Barker G, et al. Inactive matrix metalloproteinase 2 is a normal constituent of human glomerular basement membrane. An immuno-electron microscopic study. J Pathol, 2000, 191(1): 61-66
    4 Schleicher E, Kolm V, Ceol M, et al. Structural and functional changes in diabetic glomerulopathy. Kidney Blood Press Res, 1996, 19(5): 305-15
    5 Suzuki D, Yagame M, Kim Y, et al. Renal in situ hybridization studies of extracellular matrix related molecules in type 1 diabetes mellitus. Nephron, 2002, 92(3): 564-72
    6 Rysz J, Banach M, Stolarek RA, et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J Nephrol, 2007, 20(4): 444-52
    7 Prete DD, Anglani F, Forino M et al. Down-regulation of glomerular matrix metalloproteinase-2 gene in human NIDDM. Diabetologia, 1997, 40: 1449–1454
    8 Wu K, Setty S, Mauer SM et al. Altered kidney matrix gene expression in early stages of experimental diabetes. Acta Anat, 1997, 158: 155–165
    9 McLennan SV, Kelly DJ, Cox AJ, et al. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia, 2002, 45(2): 268-75
    10 Sang YH, Yi HJ, Kum HH, et al. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy. Nephrology Dialysis Transplantation, 2006, 21(9): 2406-2416
    11 Schaefer L, Han X, August C, et al. Differential regulation of glomerular gelatinase B (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in obese Zucker rats. Diabetologia, 1997, 40: 1035–1043
    12 Cheng S, Pollock AS, Mahimkar R, et al. Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEBJ, 2006, 20(11): 1898-900
    13 Shimada M, Yamabe H, Osawa H, et al. Extracellular matrix metalloproteinase nducer is expressed in the proximal tubular epithelial cells of the human kidney. Nephrology (Carlton), 2009,14(2): 171-8
    14董凤芹,李红,吴芳,等.核心蛋白聚糖Ⅱ过表达对肾组织细胞基质金属蛋白酶2和9表达的影响.中华医学杂志,2008, 88(48): 3444-7
    15 Sato. H, Kinoshita. T, Takino. T, et al. Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett, 1996, 393: 101-104
    16 Baricosw H, Cortezs L, Deboisblanc M, et al. Transforming growth factor-beta is a potent inhibitor of extracellular matrix degradation cultured human mesangial cells. J AmSoc Nephrol, 1999, 10(4): 790-5
    17 McLennan SV, Martell SK, Yue DK. Effects of mesangium glycation on matrix metalloproteinase activities: possible role in diabetic nephropathy. Diabetes, 2002, 51(8): 2612-8
    18 Singh R, Song RH, Alavi N, et al. High glucose decreases matrix metalloproteinase-2 activity in rat mesangial cells via transforming growth factor-beta1. Exp Nephrol, 2001, 9(4):249-57
    19 Singh R, Alavi N, Singh AK, et al. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes, 1999, 48(10): 2066-73
    20 Mori T, Kawara S, Shinozaki M, et al. Role and interaction of connective tissue growth factor with transforming growth factor-? in persistent fibrosis: a mouse fibrosis model. J Cell Physiol, 1999, 181: 153-159
    21 Moussad EE, Brigstock DR. Connective tissue growth factor: what’s in a name? Mol Genet Metab, 2000, 71:276-292
    22 Twigg SM, Chen MM, Joly AH, et al. Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein 2) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology, 2001, 142: 1760-1769
    23 Mason RM, Wahab NA. Extracellular matrix metabolism in diabeticnephropathy. J Am Soc Nephrol, 2003, 14: 1358-1373
    24 Twigg SM, CooperME. The time has come to target connective tissue growth factor in diabetic comp lications. Diabetologia, 2004, 47: 965-68
    25 Wang S, Denichlo M, Brubaker C, et al. Connective tissue growth factor inthe tubulointerstitial injury of diabetic nephropathy. Kidney Int, 2001, 60: 96-106
    26 Wahab NA, Yevdokimova N,Weston BS, et al. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J, 2001, 359: 77-87
    27 McLennan SV, Wang XY, Moreno V, et al. Connective Tissue Growth Factor Mediates High Glucose Effects on Matrix Degradation through Tissue Inhibitor of Matrix Metalloproteinase Type 1: Implications for Diabetic Nephropathy. Endocrinology 2004,145(12): 5646-5655
    28 Droppelmann CA, Gutiérrez J, Vial C, et al. MMP-2 deficient fibroblasts exhibit an alteration in the fibrotic response to CTGF/CCN2 due to an increase in the levels of endogenous fibronectin. J Biol Chem, 2009 Mar 9 [Epub ahead of print]
    1 Ahn JD, Morishita R, Kaneda Y, et al. Transcription factor decoy for AP-1 reduces mesangial cell proliferation and extracellular matrix production in vitro and in vivo. Gene Ther, 2004,11(11): 916-923
    2 Gooch JL, Barnes JL, Garcia S, et al. Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation. Am J Physiol Renal Physiol, 2003, 284(1): F144-F154
    3 Ayo SH, Radnik RA, Garoni JA, et al. High glucose causes an increase in extracellular matrix proteins in cultured mesangial cells. Am J Pathol 1990 136:1339-1348
    4 Kreisberg JI, Garoni JA, Radnik R, et al High glucose and TGF?1 stimulate fibronectin gene expression through a cAMP response element. Kidney Int 1994, 46: 1019-1024
    5 Nakamura T, Fukui M, Ebihara I, et al. Abnormal gene expression of matrix metalloproteinases and their inhibitors in glomeruli from diabetic rats. Renal Physiol Biochem, 1994, 17: 316-325
    6 Abdel Wahab N, Mason RM. Modulation of neutral protease expression in human mesangial cells by hyperglycaemic culture. Biochem J, 1996, 320: 777-783
    7 McLennan SV, Yue DK, Turtle JR. Effect of glucose on matrix metalloproteinase ctivity in mesangial cells. Nephron, 1998, 79: 293-298
    8 Krag S, Nyengaard JR, Wogensen L. Combined effects of moderately elevated blood glucose and locally produced TGF-beta1 on glomerular morphology and renal collagen production. Nephrol Dial Transplant, 2007, 22(9): 2485-96.
    9 McLennan SV, Kelly DJ, Cox AJ et al. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia, 2002, 45(2): 268-75
    10董凤芹,李红,吴芳,等.核心蛋白聚糖Ⅱ过表达对肾组织细胞基质金属蛋白酶2和9表达的影响.中华医学杂志,2008, 88(48): 3444-7
    11 Ohtomo S, Nangaku M, Izuhara Y et al. The role of megsin, a serine protease inhibitor, in diabetic mesangial matrix accumulation. Kidney Int, 2008, 74(6): 768-74
    12 Sun SZ, Wang Y, Li Q, et al. Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor ofmetalloproteinase-2 in diabetic rats. Chin Med J (Engl), 2006, 19(10): 814-21
    13 Lee MP, Sweeney G. Insulin increases gelatinase activity in rat glomerular mesangial cells via ERK- and PI-3 kinase-dependent signalling. Diabetes Obes Metab, 2006, 8(3): 281-8
    14 McLennan SV, Wang XY, Moreno V et al. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy. Endocrinology, 2004, 145(12): 5646-55
    15 Corcoran ML, Hewitt RE, Kleiner DE et al. MMP-2: expression, activation and inhibition. Enzyme Protein, 1996, 49(1-3): 7-19
    16 Keeling J, Herrera GA. Matrix metalloproteinases and mesangial remodeling in light chain-related glomerular damage. Kidney Int, 2005, 68(4): 1590-603
    17 Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J, 2004, 18: 816-827
    18 Perbal B. CCN proteins: multifunctional signalling regulators. Lancet, 2004, 363: 62-64
    19 Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag, 2008, 4(3): 575-96
    20 Blom IE, van Dijk AJ, Wieten L et al. In vitro evidence for differential involvement of CTGF, TGFβ, and PDGF-BB in mesangial response to injury. Nephrol Dial Transplant, 2001, 16: 1139-1148
    21 Burns WC, Twigg SM, Forbes JM, et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol, 2006, 17: 2484-2494
    1 Leehey DJ, Singh AK, Alavi N, et al. Role of angiotensinⅡin diabetic nephropathy [J]. Kidney Int Suppl, 2000, 77: S93-8
    2 Vidotti DB, Casarini DE, Cristovam PC, et al. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells [J]. Am J Physiol Renal Physiol, 2004, 286(6): F1039-45
    3 Berl T. Review: Renal protection by inhibition of the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst, 2009, 10(1): 1-8
    4 Wolf G, Ziyadeh FN. Molecular mechanism of diabetic renal hypertrophy [J]. Kidney Int, 1999, 56 (2): 393-405
    5 Anderson S, Rennke HG, Brenner BM. Nifedipine versus fosinopril in uninephrectomized diabetic rats. Kidney Int, 1992, 41(4): 891-897
    6 Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension, 2002, 39: 129-134
    7 Cravedi P, Ruggenenti P, Remuzzi G. Intensified inhibition of renin-angiotensin system: a way to improve renal protection? Curr Hypertens Rep,2009,11(2): 118-24
    8 Navaneethan SD, Nigwekar SU, Sehgal AR, et al. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol,2009,4(3): 542-51
    9 Tylicki L, Renke M, Rutkowski P, et al. Dual blockade of the renin-angiotensin-aldosterone system with high-dose angiotensin-converting enzyme inhibitor for nephroprotection: an open, controlled, randomized study. Scand J Urol Nephrol,2008,42(4): 381-8
    10 Parving HH, Lehnert H, Br?chner-Mortensen J, et al. The effect ofirbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med, 2001, 345: 870-878
    11 Waanders F, van Goor H, Navis G. Adverse renal effects of the AGE inhibitor pyridoxamine in combination with ACEi in non-diabetic adriamycin-induced renal damage in rats. Kidney Blood Press Res, 2008, 31(5): 350-9
    12 Carey RM, Siragy HM. The intrarenal renin-angiotensin system and diabetic nephropathy. Trends Endocrinol Metab, 2003, 14: 274-281
    13 Lewis EJ, Hunsicker LG, Bain RP, etal. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collabora-tive study group. N Engl JMed, 1993, 329(20): 1456-1462
    14 Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascularoutcomes in patientswith type 2 diabetes and nephropathy. N Engl JMed, 2001, 345(12): 861-869
    15 Lewis EJ, Hunsicker LG, ClarkeWR, et al. Renoprotective effect of the angiotensin-receptorantagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med, 2001, 345: 851-60
    16 Shankland SJ. The podocyte's response to injury: Role in proteinuria and glomerulosclerosis. Kidney Int, 2006, 69: 2131-2147
    17 Carey RM, Siragy HM. The intrarenal renin-angiotensin system and diabetic nephropathy. Trends Endocrinol Metab, 2003, 14: 274-281
    18 Han SY, Jee YH, Han KH, et al. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy. Nephrol Dial Transplant, 2006, 21(9): 2406-16
    19 Barit D, Cooper ME. Diabetic patients and kidney protection: an attainable target.J Hypertens Suppl, 2008, 26(2): S3-7
    20 Vidotti DB, Casarini DE, Cristovam PC, et al. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol, 2004, 286: F1039-F1045
    21 van den Heuvel M, Batenburg WW, Danser AH. Diabetic complications: Arole for the prorenin-(pro)renin receptor-TGF-beta(1) axis? Mol Cell Endocrinol, 2009, 302(2): 213-8
    22 Liu BC, Chen Q, Luo DD, et al. Mechanisms of irbesartan in prevention of renal lesion in streptozotocin-induced diabetic rats [J]. Acta Pharmacol Sin, 2003, 24(1): 67-73
    1 Border WA, Noble NA. TGF-βin kidney fibrosis: a target for gene therapy. Kidney Int. 1997, 51: 1388-1396
    2 Bottinger EP, Bitzer M. TGF-βsignaling in renal disease. J. Am. Soc. Nephrol, 2002, 13:2600-2610.
    3 Ten Dijke P, Hill C. New insights into TGF-β-Smad signaling. Trends Biochem. Sci, 2004, 29: 265-273
    4 Piek E, Ju W J, Heyer J, et al. Functional characterization of transforming growth factorβsignaling in Smad2- and Smad3-deficient fibroblasts. J. Biol. Chem, 2001, 276: 19945-53
    5 Kretschmer A, Moepert K, Dames S, et al. Differential regulation of TGF-βsignaling through Smad2, Smad3 and Smad4. Oncogene, 2003, 22: 6748-63
    6 Poncelet AC, De Caestecker MP , Schnaper HW. The transforming growth factor- /SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int. 1999, 237(56): 1354-1365
    7阮永华,张志刚,张秀荣,等.转化生长因子β1及其信号转导分子Smad2在病变肾小球中的表达及其意义.中华病理学杂志,2002, 31: 314-317
    8 Kim SK, Jung KH, Lee BC. Protective effect of Tanshinone IIA on the early stage of experimental diabetic nephropathy. Biol Pharm Bull, 2009, 32(2): 220-4
    9 Soldatos G, Cooper ME. Diabetic nephropathy: important pathophysiologic mechanisms. Diabetes Res Clin Pract, 2008, 13(82 Suppl 1): S75-9
    10 Park HC, Choi HY, Kim BS, et al. Urinary TGF-beta1 as an indicator of antiproteinuric response to angiotensin II receptor blocker in proteinuric renal diseases. Biomed Pharmacother, 2009 Feb 28
    11 Anjaneyulu M, Berent-Spillson A, Inoue T, et al. Transforming growth factor-beta induces cellular injury in experimental diabetic neuropathy. Exp Neurol, 2008, 211(2): 469-79
    12 Zhang ZG, Liu XG, Chen GP, et al. Significance of MMP-2 and TIMP-2 mRNA expressions on glomerular cells in the development of glomerulosclerosis. Chin Med Sci J, 2004, 19(2): 84-8
    13 Singh R, Song RH, Alavi N, Pegoraro AA, et al. High glucose decreases matrix metalloproteinase-2 activity in rat mesangial cells via transforming growth factor-beta1. Exp Nephrol, 2001, 9(4): 249-57
    14 Baricos WH, Cortez SL, Deboisblanc M, et al. Transforming growth factor-beta is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells. J Am Soc Nephrol, 1999, 10(4): 790-5
    15 Phanish MK, Wahab NA, Hendry BM, et al. TGF-β1-induced connective tissue growth factor (CCN2) expression in human renal proximal tubule epithelial cells requires Ras/MEK/ERK and Smad signaling. Nephron. Exp. Nephrol, 2005, 100: 156-165
    16 Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol, 2004, 15: 1-12
    17 Xin C, Ren S, Eberhardt W, et al. The immunomodulator FTY720 and its phosphorylated derivative activate the Smad signalling cascade and upregulate connective tissue growth factor and collagen type IV expression in renal mesangial cells. Br J Pharmacol, 2006, 147(2): 164-74
    18 Lakos G, Takagawa S, Chen SJ, et al. Targeted disruption of TGF-β/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am. J. Pathol, 2004, 165: 203-217
    19 Flanders KC, Major CD, Arabshah A,et al. Interference with transforming growth factor/Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am. J. Pathol, 2003, 163: 2247-57
    20 Sato M, Muragaki Y, Saika S,et al. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest, 2003, 112: 1494-1496
    21 FireA. RNA-triggered gene silencing. J.TIG,1999, 15(9): 358-36
    22杨琛,戴璐,刘学光,等.转化生长因子β1/Smad信号通路对大鼠肾系膜细胞基质金属蛋白酶2及其组织抑制因子2表达的影响.中华病理学杂志, 2003, 32(6): 553-557
    23 Mysore K, Phanish NA, Wahab PC, et al. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFβ1 responses in human proximal-tubule epithelial cells. Biochem J, 2006, 15, 393(Pt 2): 601-607
    24 Li T, Ma H, Chiang JY. TGFbeta1, TNFalpha, and insulin signaling crosstalk in regulation of the rat cholesterol 7alpha-hydroxylase gene expression. J Lipid Res, 2008, 49(9): 1981-9
    25 Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci. 2005, 15, 118(Pt 16): 3573-84
    1 Radbill B, Murphy B, LeRoith D. Rationale and strategies for early detection and management of diabetic kidney disease. Mayo Clin Proc, 2008, 83(12): 1373-81
    2 Boright AP, Paterson AD, Mirea L, et al. Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the DCCT/EDIC Genetics Study. Diabetes, 2005, 54(4): 1238-44
    3 Maxwell P. Managing diabetic nephropathy. Practitioner, 2005, 249(1666): 9-10, 12-4, 16-7
    4 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res, 2003, 2, 92(8): 827-39
    5 Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell, 1997, 14, 91(4): 439-42
    6 Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006, 15, 69(3): 562-73.
    7 Itoh Y, Seiki M. MT1-MMP: a potent modifier of pericellular microenvironment. J Cell Physiol, 2006, 206(1): 1-8.
    8 VU T H, WERB Z. Matrix metallop roteinases: effectors of development and normal physiology. J Genes Dev, 2000, 14: 2123-2133
    9 McLENNAN S, FISHER E, MARTELL S Y, et al. Effects ofglucose on matrix metallop roteinase and p lasmin activities in mesangial cells: possible role in diabetic nephropathy[J].Kideny Int, 2000, 58 ( Supp l 77) : S81-87
    10 BODE W, FERNANDEZOCATALAN C, GRAMS F, et al. Insights into MMP-TIMP interactions[J]. Ann N Y Acad Sci,1999, 878: 73-91
    11 Parks WC, Shapiro SD. Matrix metalloproteinases in lung biology.. Respir Res, 2001, 2(1): 10-9
    12 Silva JA, Lorencini M, Peroni LA, et al. The influence of type I diabetes mellitus on the expression and activity of gelatinases (matrix metalloproteinases-2 and -9) in induced periodontal disease. J Periodontal Res, 2008, 43(1): 48-54
    13 Jezierska A, Motyl T. Matrix Metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit, 2009, 15(2):RA32-40
    14 Takaishi H, Kimura T, Dalal S, et al. Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr Pharm Biotechnol, 2008, 9(1): 47-54
    15 Ishizaki E, Takai S, Ueki M, et al. Correlation between angiotensin-converting enzyme, vascular endothelial growth factor, and matrix metalloproteinase-9 in the vitreous of eyes with diabetic retinopathy. Am J Ophthalmol, 2006, 141(1): 129-134
    16 Giebel SJ, Menicucci G, McGuire PG, et al. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest, 2005, 85(5):597-607
    17 Medina A, Scott PG, Ghahary A, et al. Pathophysiology of chronic nonhealing wounds. J Burn Care Rehabil, 2005, 26(4): 306-19
    18 Jacqueminet S, Ben Abdesselam O, Chapman MJ, et al. Elevated circulating levels of matrix metalloproteinase-9 in type 1 diabetic patients with and without retinopathy. Clin Chim Acta, 2006, 367(1-2): 103-7
    19 Derosa G, Avanzini MA, Geroldi D, et al. Matrix metalloproteinase 2 may be a marker of microangiopathy in children and adolescents with type 1diabetes mellitus. Diabetes Res Clin Pract, 2005 , 70(2): 119-25
    20 Derosa G, Cicero AF, Scalise F, et al. Metalloproteinase-2 and -9 in diabetic and nondiabetic subjects during acute coronary syndromes. Endothelium, 2007, 14(1): 45-51
    21 Derosa G, D'Angelo A, Tinelli C, et al. Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in diabetic and healthy subjects. Diabetes Metab, 2007, 33(2): 129-34
    22 Lee SW, Song KE, Shin DS, et al. Alterations in peripheral blood levels of TIMP-1, MMP-2, and MMP-9 in patients with type-2 diabetes. Diabetes Res Clin Pract, 2005, 69(2): 175-9
    23 Rysz J, Banach M, Stolarek RA, et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J Nephrol, 2007, 20(4): 444-52
    24 Chung AW, Hsiang YN, Matzke LA, et al. Reduced expression of vascular endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in human type 2 diabetic arterial vasculature. Circ Res, 2006, 99(2): 140-8
    25 Death AK, Fisher EJ, McGrath KC, et al. High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis, 2003, 168(2): 263-9
    26 Hao F, Yu JD. High glucose enhance expression of matrix metalloproteinase-2 in smooth muscle cells. Acta Pharmacol Sin. 2003, 24(6): 534-8
    27 Lelongt B, Legallicier B, Piedagnel R, et al. Do matrix metalloproteinases MMP-2 and MMP-9 (gelatinases) play a role in renal development, physiology and glomerular diseases? Curr Opin Nephrol Hypertens, 2001, 10(1): 7-12
    28 Lenz O, Elliot SJ, Stetler-Stevenson WG. Matrix metalloproteinases in renal development and disease. J Am Soc Nephrol, 2000, 11(3): 574-81
    29 Zerbini G, Bonfanti R, Meschi F, et al. Persistent renal hypertrophy andfaster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes, 2006 , 55(9): 2620-5
    30 Frazer FL, Palmer LJ, Clarey A, et al. Relationship between renal volume and increased albumin excretion rates in children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2001, 14(7): 875-81
    31 Baumgartl HJ, Sigl G, Banholzer P, Haslbeck M, et al. On the prognosis of IDDM patients with large kidneys. Nephrol Dial Transplant, 1998, 13(3): 630-4
    32 Hasegawa G, Nakano K, Sawada M, et al. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int, 1991, 40(6): 1007-12
    33 Piao W, Wang Y, Adachi Y, et al. Insulin-like growth factor-I receptor blockade by a specific tyrosine kinase inhibitor for human gastrointestinal carcinomas. Mol Cancer Ther, 2008, 7(6): 1483-93
    34 Fowlkes JL, Serra DM, Nagase H, et al. MMPs are IGFBP-degrading proteinases: implications for cell proliferation and tissue growth. Ann N Y Acad Sci, 1999, 878(30): 696-9
    35 Zhuang S, Kinsey GR, Rasbach K, et al. Heparin-binding epidermal growth factor and Src family kinases in proliferation of renal epithelial cells. Am J Physiol Renal Physiol, 2008, 294(3): F459-68
    36 Keeling J, Herrera GA. Matrix metalloproteinases and mesangial remodeling in light chain-related glomerular damage. Kidney Int, 2005, 68(4): 1590-603
    37 Bhuvarahamurthy V, Kristiansen GO, Johannsen M, et al. In situ gene expression and localization of metalloproteinases MMP1, MMP2, MMP3, MMP9, and their inhibitors TIMP1 and TIMP2 in human renal cell carcinoma. Oncol Rep, 2006, 15(5): 1379-84
    38 Cheng S, Lovett DH. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am. J. Pathol, 2003,162(6): 1937-1949
    39 Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, et al.Myofibroblasts ,and the progression of diabetic nephropathy. Nephrol. Dial. Transplant,1997, 12(1): 43-50
    40 Zhang SX, Wang JJ, Lu K, et al. Therapeutic potential of angiostatin in diabetic nephropathy. J. Am. Soc. Nephrol, 2006, 17(2): 475-486
    41 Inada A, Nagai K, Arai H, et al Establishment of a diabetic mouse model with progressive diabetic nephropathy. Am. J. Pathol. 2005, 167(2): 327-336
    42 Sun SZ, Wang Y, Li Q, et al Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats. Chin. Med. J. Engl, 2006, 119(10): 814-821
    43 Han SY, Jee YH, Han KH, et al. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy. Nephrol. Dial. Transplant, 2006, 21(9): 2406-2416
    44 Fornoni A, Striker LJ, Zheng F, et al. Reversibility of glucose-induced changes in mesangial cell extracellular matrix depends on the genetic background. Diabetes, 2002, 51(2): 499-505
    45 Singh R, Song RH, Alavi N, et al. High glucose decreases matrix metalloproteinase-2 activity in rat mesangial cells via transforming growth factor-beta1.Exp. Nephrol, 2001, 9(4): 249-257
    46 Romanic AM, Burns-Kurtis CL, Ao Z, et al. Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients.Am. J. Physiol, 2001, 281(2):F309-F317
    47 Lee MP, Sweeney G.. Insulin increases gelatinase activity in rat glomerular mesangial cells via ERK- and PI-3 kinase-dependent signalling. Diabetes Obes. Metab, 2006, 8(3): 281-288
    48 Liu S, Li Y, Zhao H, et al. Increase in extracellular cross-linking by tissue transglutaminase and reduction in expression of MMP-9 contribute differentially to focal segmental glomerulosclerosis in rats.Mol. Cell. Biochem, 2006, 284(12): 9-17
    49 Kuroda T, Yoshida Y, Kamiie J, et al. Expression of MMP-9 in mesangial cells and its changes in anti-GBM glomerulonephritis in WKY rats. Clin. Exp. Nephrol, 2004, 8(3): 206-215
    50 Ahuja TS, Gopalani A, Davies P, et al. Matrix metalloproteinase-9 expression in renal biopsies of patients with HIV-associated nephropathy. Nephron Clin. Pract, 2003, 95(3): c100-c104
    51 Kawata N, Nagane Y, Igarashi T, et al Strong significant correlation between MMP-9 and systemic symptoms in patients with localized renal cell carcinoma.Urology, 2006, 68(3): 523-527
    52 Qing HG, Ju ML, Chang YP, et al. The kidney expression of matrix metalloproteinase-9 in the diabetic nephropathy of Kkay mice. J. Diabetes Complicat, 2007, 22: 408-412
    53 Tashiro K, Koyanagi I, Ohara I, et al. Levels of urinary matrix metalloproteinase-9 (MMP-9) and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal, 2004, 18(3): 206-210
    54 Lauhio A, Sorsa T, Srinivas R, et al. Urinary matrix metalloproteinase -8, -9, -14 and their regulators (TRY-1, TRY-2, TATI) in patients with diabetic nephropathy. Ann. Med, 2008, 40(4): 312-320
    55 Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte.Physiol. Rev, 2003, 83(1): 253-307
    56 Bai Y, Wang L, Li Y, et al. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell Physiol. Biochem, 2006, 17(12): 57-68
    57 Asanuma K, Shirato I, Ishidoh K, et al. Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. Kidney Int, 2002, 62(3): 822-831
    58 Liu S, Liang Y, Huang H, et al. ERK-dependent signaling pathway and transcriptional factor Ets-1 regulate matrix metalloproteinase-9 production in transforming growth factor-beta1 stimulated glomerular podocytes.Cell Physiol. Biochem, 2005, 16(46): 207-216
    59 Susztak K, Raff AC, Schiffer M, et al. Glucose-induced reactive oxygenspecies cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 2006, 55(1): 225-233
    60 Wolf G, Chen S, Ziyadeh FN. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes, 2005, 54(6): 1626-1634
    61 Nakamura T, Ushiyama C, Suzuki S, et al. Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol. Dial. Transplant, 2000, 15(9): 1379-1383
    62 Surendran K, Simon TC, Liapis H, et al. Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int, 2004, 65(6): 2212-2222
    63 Riera M, Burtey S, Fontes M. Transcriptome analysis of a rat PKD model: Importance of genes involved in extracellular matrix metabolism. Kidney Int, 2006, 69(9): 1558-1563
    64 Henger A, Kretzler M, Doran P, et al. Gene expression fingerprints in human tubulointerstitial inflammation and fibrosis as prognostic markers of disease progression. Kidney Int, 2004, 65(3): 904-917
    65 Sarkissian G, Fergelot P, Lamy PJ, et al. Identification of pro-MMP-7 as a serum marker for renal cell carcinoma by use of proteomic analysis. Clin. Chem, 2008, 54(3): 574-581
    66 Melk A, Mansfield ES, Hsieh SC, et al. Transcriptional analysis of the molecular basis of human kidney aging using cDNA microarray profiling. Kidney Int, 2005, 68(6): 2667-2679
    67 Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem, 1999, 274(31): 21491-4
    68 Maldonado A, He L, Game BA, et al. Pre-exposure to high glucose augments lipopolysaccharide-stimulated matrix metalloproteinase-1 expression by human U937 histiocytes.J. Periodont. Res, 2004, 39(6): 415-423
    69 Hemers E, Duval C, McCaig C, et al. Insulin-like growth factor binding protein-5 is a target of matrix metalloproteinase-7: implications forepithelial-mesenchymal signaling. Cancer Res, 2005, 65(16): 7363-7369
    70 McCaig C, Duval C, Hemers E, et al. The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology, 2006, 130(6): 1754-1763
    71 Imai K, Hiramatsu A, Fukushima D, et al. Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem. J, 1997, 322(Pt 3): 809-814
    72 Movassat J, Saulnier C, Serradas P, et al. Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia, 1997, 40(8): 916-925
    73 Portik-Dobos V, Harris AK, Song W, et al. Endothelin antagonism prevents early EGFR transactivation but not increased matrix metalloproteinase activity in diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2006, 290(2): R435-R441
    74 Boucher E, Mayer G, Londono I, et al. Expression and localization of MT1-MMP and furin in the glomerular wall of short- and long-term diabetic rats. Kidney Int, 2006, 69(9): 1570-1577
    75 Romanic AM, Burns-Kurtis CL, Ao Z, et al. Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients. Am. J. Physiol, 2001, 281(2): F309-F317
    76 Lauhio A, Sorsa T, Srinivas R, et al. Urinary matrix metalloproteinase -8, -9, -14 and their regulators (TRY-1, TRY-2, TATI) in patients with diabetic nephropathy. Ann. Med, 2008, 40(4): 312-320
    77 Osenkowski P, Toth M, Fridman R. Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). J. Cell. Physiol, 2004, 200(1): 2-10
    78 Yang Q, Xie RJ, Yang T, et al. Transforming growth factor-beta1 and Smad4 signaling pathway down-regulates renal extracellular matrix degradation in diabetic rats. Chin. Med. Sci. J, 2007, 22(4): 243-249
    79 Suzuki D, Miyazaki M, Jinde K, et al. In situ hybridization studies of matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-1 and type IV collagen in diabetic nephropathy. Kidney Int, 1997, 52(1): 111-119
    80 Aoyama T, Yamamoto S, Kanematsu A, et al. Local delivery of matrix metalloproteinase gene prevents the onset of renal sclerosis in streptozotocin-induced diabetic mice. Tissue Eng, 2003, 9(6): 1289-1299
    81 Cruzado JM, Lloberas N, Torras J, et al. Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats. Diabetes, 2004, 53(4): 1119-1127
    82 Rysz J, Banach M, Stolarek RA, et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy J. Nephrol, 2007, 20(4): 444-452
    83 Kanauchi M, Nishioka H, Nakashima Y, et al. Role of tissue inhibitors of metalloproteinase in diabetic nephropathy. Nippon Jinzo Gakkai Shi, 1996, 38(3): 124-128
    84 Thrailkill KM, Bunn RC, Moreau CS, et al. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes care, 2007, 30(9): 2321-2326
    85 Zoja C, Abbate M, Remuzzi G. Progression of chronic kidney disease: insights from animal models. J. Med, 1998, 339(20): 1448-1456
    86 Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol, 2006, 17(11): 2974-84
    87 Zeisberg M, Khurana M, Rao VH, et al. Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med, 2006, 3(4): e100.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.