晚期糖基化终产物及其受体系统对血管外膜成纤维细胞的功能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管外膜通过直接或间接作用对血管的结构和功能调节起着重要的调控作用。血管外膜成纤维细胞(AF)是血管外膜的主要细胞成分,在动脉粥样硬化发生发展、不良血管重塑和血管再狭窄起重要作用。晚期糖基化终产物(AGEs)与AF参与糖尿病相关并发症,组织AGEs浓度与动脉粥硬化斑块的严重程度相关,AGEs的直接作用以及其与受体结合后的效应,均可引起致动脉粥样硬化相关细胞以及多种因子的激活。糖尿病患者及老年人群血管外膜中AGEs逐渐堆积,对AF等外膜细胞产生影响,但其内部机制仍不甚了解,本研究从AGEs对AF细胞迁移、氧化应激及相关炎症反应方面进行探讨。主要内容分五部分:
     第一部分晚期糖基化终产物对血管外膜成纤维细胞糖基化终产物受体表达的影响
     目的:探讨AGEs对AF晚期糖基化终产物受体(Receptor for Advanced Glycation Endproducts,RAGE)表达的影响。
     方法:用组织贴块法培养SD大鼠的AF。荧光免疫细胞化学鉴定细胞。细胞同步化处理,分别加入不同浓度(50、100、150、200、300μg/ml)的晚期糖基化人血清白蛋白(Advanced Glycation Endproducts-Human Serum Albumin, AGE-HSA)干预24小时,以200μg/ml人血清白蛋白(Human Serum Albumin,HSA)作为对照。用RT-PCR和Western-blot技术检测RAGE基因和蛋白的表达。
     结果: 50、100、150、200、300μg/ml的AGE-HSA可分别上调RAGE mRNA和蛋白的表达,且RAGE表达150μg/ml、200μg/ml、300μg/ml组与对照组差异显著(P<0.05),200μg/ml时达到峰值(P<0.05)。该效应可被p38拮抗剂、ERK1/2拮抗剂、JNK拮抗剂、坎地沙坦抑制。
     结论:AGEs能够上调AFs RAGE的表达,坎地沙坦能够抑制该效应。
     第二部分晚期糖基化终产物促进血管外膜成纤维细胞迁移机制及坎地沙坦的干预作用研究
     目的:观察AGEs对AF迁移的影响,探讨其机制及观察坎地沙坦干预作用。
     方法:用组织贴块法培养SD大鼠的AF,用transwell小室检测AGE-HSA对AF迁移的影响。用免疫印迹技术观察AGE-HSA对AF丝裂原活化蛋白激酶(MAPK)通路磷酸化影响。
     结果: AGE-HSA可促进p38、ERK1/2、JNK磷酸化,JNK在20min,p38、ERK1/2在30min达峰值(P<0.05)。p38拮抗剂、ERK1/2拮抗剂、JNK拮抗剂分别抑制p38、ERK1/2、JNK磷酸化,RAGE中和抗体、坎地沙坦可抑制p38、ERK1/2、JNK磷酸化。不同浓度AGE-HSA(50,100,150,200,300μg/ml)可促进血管外膜成纤维细胞的迁移,200μg/ml时达到峰值(P<0.05)。RAGE中和抗体、p38拮抗剂、ERK1/2拮抗剂、坎地沙坦均可抑制AGE所致成纤维细胞的迁移(P<0.01)。
     结论:AGEs经由RAGE影响MAPK通路促进血管外膜成纤维细胞迁移,坎地沙坦可通过阻断此途径抑制血管外膜成纤维细胞迁移,这可能是其血管保护作用的新机制。
     第三部分晚期糖基化终产物对血管外膜成纤维细胞氧化应激激活机制的研究
     目的:观察AGEs对AF氧化应激的影响,探讨其作用机制。
     方法:用组织贴块法培养SD大鼠的AF,用DCFH-DA检测AGE-HSA对AF ROS表达的影响。用RT-PCR、Western-blot检测NADPH氧化酶亚基p22phox、p47phox表达。
     结果: AGE-HSA可分别从基因和蛋白水平上调p22phox、p47phox的表达。氧化酶抑制剂DPI(diphenyliodonium)、APO(apocynin)、抗RAGE中和抗体、坎地沙坦可以抑制由AGE-HSA刺激引起的p22phox、p47phox表达上调(P<0.05)。AGE-HSA可促进ROS的表达上调。氧化酶抑制剂DPI、APO、抗RAGE中和抗体、坎地沙坦可以抑制由AGE-HSA刺激引起ROS的表达上调。
     结论:AGE-HSA经由RAGE影响ROS与p22phox、p47phox的表达上调,ROS的上调与p22phox、p47phox表达相关。NADPH氧化酶抑制剂及坎地沙坦可通过下调p22phox、p47phox的表达减少AF内ROS的产生。
     第四部分晚期糖基化终产物促进血管外膜成纤维细胞炎症反应机制及坎地沙坦干预研究
     目的:观察AGEs对AF炎症反应影响的机制及坎地沙坦干预作用。
     方法:用组织贴块法培养SD大鼠的AF, RT-PCR检测MCP-1、IL-6、VCAM-1 mRNA表达,ELISA检测培养液上清MCP-1、IL-6、VCAM-1。Western-blot及EMSA检测NF-κB和I-κB-α。
     结果:AGE-HSA 200μg/ml作用AF后0.5h、1h、2h核内NF-κB转录活性增强,作用后0.5h、1h I-κB-α磷酸化。AGE-HSA 200μg/ml处理促进NF-κB核内移,加用坎地沙坦可抑制NF-κB核内移,I-κB-α磷酸化也可被坎地沙坦抑制。不同浓度AGE-HSA(50、100、200、300μg/ml)均可使AF IL-6、VCAM-1、MCP-1 mRNA表达上调,50、100μg/ml与对照组比较mRNA表达量有显著差异(P<0.05),200、300μg/ml与对照组比较mRNA表达量有显著差异(P<0.01)。用RAGE中和抗体、NF-κB抑制剂MG-132、坎地沙坦预处理可减少由AGE-HSA所致IL-6、VCAM-1、MCP-1 mRNA表达及上清中蛋白的浓度(P<0.05)。
     结论:AGE-HSA通过RAGE、NF-κB途径促使炎症因子表达上调。坎地沙坦可有效抑制I-κB-α磷酸化、NF-κB核内移、炎症因子表达,提示其具有糖尿病血管并发症的治疗作用。
     第五部分血管外膜成纤维细胞的galectin-3表达及galectin-3基因的RNA干扰
     目的:观察AF半乳糖凝集素-3(galectin-3)表达,构建galectin-3 RNA干扰慢病毒载体,观察AGEs受体galectin-3对血管成纤维细胞功能影响。
     方法:RT-PCR检测galectin-3表达,设计RNA干扰靶点序列,合成后galectin-3短发夹RNA克隆到慢病毒载体,限制性内切酶分析和测序鉴定重组载体。工作载体和包装质粒共转染293T细胞,72小时后收集慢病毒,加入培养的血管成纤维细胞。Western blot检测半乳糖凝集素-3表达。
     结果:50、100、150、200、300μg/ml的AGE-HSA可分别从基因和蛋白水平上调galectin-3的表达。筛选出galectin-3的RNAi有效靶点,成功构建了galectin-3小RNA干扰的慢病毒载体,该载体能有效转染AFs,目的蛋白galectin-3达到有效敲减。
     结论:构建的慢病毒载体可有效抑制外膜成纤维细胞galectin-3的表达。
There is a growing body of evidence that the vascular adventitia could act as a critical regulator modulating (directly or indirectly) the structure and function of the vascular wall, thus play a role in the process of atherosclerosis. As the principal cell type in the adventitia, fibroblasts were shown to correlate with vascular dysfunction, vascular restenosis and atherosclerosis. Advanced glycation end products (AGEs) and vascular adventitial fibroblasts (AFs) are involved in diabetes-related vascular complications. However, the effect of AGEs on AFs remains unclear. The aim of this study was to observe the impact of AGEs on cell migration capacity,oxidative stress and associated inflammatory responses of AFs. It is made up of four parts:
     Part I Effect of advanced glycation end products on the expression of receptor for advanced glycation end products in vascular adventitial fibroblasts
     Objective: To investigate the effect of advanced glycation end products (AGEs) on the expression of receptor for advanced glycation end products (RAGE) in vascular adventitial fibroblasts (AFs).
     Methods: Isolated vascular adventitial fibroblast of Sprague-Dawley (SD) rats were cultured. The expressions of specific antigens on cell surface were analyzed by fluorescence immunocytochemistry. After 24 hours synchronization, AFs were exposed to AGE-HSA (concentration of 0, HSA200, 50, 100, 150, 200, 300μg/ml) for 24 hours. Expressions of RAGE were measured by RT-PCR and Western-blot.
     Results: AGEs (concentration range from 0 to 300μg/ml) up-regulated the expression of RAGE at mRNA and protein levels, peaked at a concentration of 200μg/mL(P<0.05), this effect could be significantly inhibited by p38, ERK1/2 and JNK MAPK inhibitors as well as Candesartan.
     Conclusion: AGEs can up-regulate the expression of RAGE in AFs. Candesartan can inhibit this effect
     Part II Advanced glycation end products enhance migration of vascular adventitial fibroblasts and effect of Candesartan
     Objective: To investigate the effects, mechanism on the migration of rat adventitial fibroblasts induced by AGEs and to study the intervention effects of Candesartan.
     Methods: Isolated vascular adventitial fibroblast of Sprague-Dawley (SD) rats were cultured. Migratory potential was estimated by transwell chamber in vitro. Expressions of phosphorylated mitogen-activated protein kinase (MAPK) of AFs were measured by RT-PCR and Western-blot.
     Results: AGEs increased expression of phosphorylated forms of p38, ERK1/2 and JNK mitogen-activated protein kinases in AFs, JNK peaked at 20min and p38, ERK1/2 peaked at 30min(P<0.05). Phosphorylation of p38, ERK1/2 and JNK was suppressed by p38, ERK1/2 and JNK MAPK inhibitor,respectively.This effect also could be significantly inhibited by Candesartan and anti-RAGE neutralizing antibody. The migration of AFs enhanced by AGEs (concentration ranging from 0 to 300μg/ml) was markedly increased in a dose-dependent manner, peaked at a concentration of 200μg/mL(P<0.05). Anti-RAGE neutralizing antibody, p38, ERK1/2 MAPK inhibitors and Candesartan suppressed AGEs-induced migration of AFs(P<0.01).
     Conclusion: This study indicated that AGEs promote AFs migration via RAGE and MAPK pathway.Candesartan can effectively inhibit the migration of AFs. It might be a novel mechanism on vascular protection of Candesartan.
     Part III Mechanism on activation of oxidative stress in vascular adventitial fibroblasts induced by advanced glycation end products
     Objective: To investigate the effect and mechanism of high advanced glycation end products (AGEs) on the oxidative stress in vascular adventitial fibroblasts (AFs).
     Methods: Isolated vascular adventitial fibroblast of Sprague-Dawley (SD) rats were cultured. 2,7-dichlorofluorescein-diacetate(DCFH-DA) was used as a reactive oxygen species (ROS) capture agent.The fluorescent intensity of 2,7-dichlorofluorescein (DCF), which was the product of cellular oxidation of DCFH-DA, was detected, and the level of ROS was thus measured . The expressions of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22phox and p47phox were measured by RT-PCR and Western-blot.
     Results: (1) The increase in protein and mRNA expressions of p22phox and p47phox induced by AGE-HSA was significantly inhibited by co-treatment with NADPH oxidase inhibitor APO, DPI, anti-RAGE neutralizing antibody and Candesartan (P<0.05). (2)The production of ROS in AFs induced by AGE-HSA significantly increased. The effect can be inhibited by NADPH oxidase inhibitor DPI, APO, anti-RAGE neutralizing antibody and Candesartan.
     Conclusion: The production of ROS in AFs is correlated with the interaction of AGEs and RAGE which can upregulate p22phox mRNA expression. NADPH oxidase inhibitors and Candesartan can reduce ROS by downregulating p22phox and p47phox expression.
     Part IV Advanced Glycation End Products Enhance inflammatory response of Vascular Adventitial Fibroblasts and Effect of Candesartan
     Objective: To investigate the effects, mechanism on the inflammation of vascular adventitial fibroblasts induced by AGEs and the intervention effects of Candesartan.
     Methods: Isolated vascular adventitial fibroblast of Sprague-Dawley (SD) rats were cultured. Expression of MCP-1, IL-6, VCAM-1 mRNA was analyzed by RT-PCR.MCP-1, IL-6, VCAM-1 in the supernatants were determined by enzyme-linked immunosorbent assay (ELISA). NF-κB and I-κB-αwas analyzed by electrophoretic mobility shift assay (EMSA) and Western-blot..
     Results: NF-κB transcriptional activity was increased after treatment with AGE-HSA (200μg/ml) for 0.5h, 1 h and 2 h. Incubating AFs with AGE-HSA (200μg/ml) for 0.5 h and for 1 h caused phosphorylation of I-κB-α. AGE-HSA (200μg/ml) treatment increased nuclear NF-κB, Candesartan co-treatment inhibited this translocation. I-κB-αphosphorylation in response to AGE-HSA (200μg/ml) was also suppressed by Candesartan. AGEs (concentration range from 0 to 300μg/ml) elevated the mRNA expression of MCP-1, IL-6, and VCAM-1. Compared with control, the expression of IL-6、VCAM-1、MCP-1 mRNA increased significantly in AGE-HSA 50,100μg/ml groups(P<0.05) and AGE-HSA 200,300μg/ml groups(P<0.01). Pretreatment of the cells with anti-RAGE neutralizing antibody , MG-132, an inhibitor of NF-κB, and Candesartan decreased the AGE-HSA induced expression of IL-6,VCAM-1, and MCP-1 and concentration of them in the supernatants(P<0.05).
     Conclusion: This study indicated that AGEs increase the expression of MCP-1, IL-6, and VCAM-1 in AFs via RAGE and NF-κB pathways. Candesartan can effectively inhibit phosphorylation of I-κB-α, nuclear translocation of NF-κB and expression of inflammatory factors, suggesting its treatment function of vascular complication in the diabetes.
     Part V Expression of Galectin-3 in Vascular Adventitial Fibroblasts and RNA Interference of Galectin-3 Gene
     Objective: To observe the expression of galectin-3 in AFs, to construct a lentivirus vector of RNA interference (RNAi) of galectin-3 gene and to observe effects of AGEs receptor galectin-3 on vascular fibroblasts.
     Methods: The expression of galectin-3 in AFs was detected by RT-PCR. DNA containing both sense and antisense Oligo DNA of the targeting sequence was designed,synthesized.Short hairpin RNA targeting to galectin-3 was cloned to lentivirus work vector.The recombined vector was identified by restriction enzyme analysis and DNA sequencing . Work vector and package plasmids were cotransfected to 293T cells.Lentivirus was collected after 72 h and was added to cultured AFs.The expression of galectin-3 was detected by Western blot.
     Results: AGEs (concentration range from 0 to 300μg/ml) up-regulated the expression of RAGE at mRNA and protein levels. The effective target of galectin-3 gene for RNAi was screened out. The galectin-3 siRNA lentivirus vector was established successfully. This vector can infected vascular adventitial fibroblasts and knocked down expression of galectin-3. Expression level of galectin-3 in vascular adventitial fibroblasts decreased.
     Conclusion: The constructed lentiviral vector can effectively inhibit the expression of galectin-3 in the adventitial fibroblasts.
引文
1. Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease. Curr Pharm Des. 2008;14(10):979-986.
    2. Schmidt AM, Stern D. Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep. 2000;2(5):430-436.
    3. Yamagishi S, Nakamura K, Imaizumi T. Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev. 2005;1(1):93-106.
    4. Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995;34(34):10872-10878.
    5. Verbeke P, Clark BF, Rattan SI. Modulating cellular aging in vitro: hormetic effects of repeated mild heat stress on protein oxidation and glycation. Exp Gerontol. 2000;35(6-7):787-794.
    6. Sun C, Liang C, Ren Y, Zhen Y, He Z, Wang H, Tan H, Pan X, Wu Z. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol. 2009;104(1):42-49.
    7. Ohgami N, Nagai R, Ikemoto M, Arai H, Miyazaki A, Hakamata H, Horiuchi S, Nakayama H. CD36, serves as a receptor for advanced glycation endproducts (AGE). J Diabetes Complications. 2002;16(1):56-59.
    8. Yan SF, D'Agati V, Schmidt AM, Ramasamy R. Receptor for Advanced Glycation Endproducts (RAGE): a formidable force in the pathogenesis of the cardiovascular complications of diabetes & aging. Curr Mol Med. 2007;7(8):699-710.
    9. Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93(12):1159-1169.
    10. Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood SJ, Bjercke RJ, Juhasz O, Crow MT, Tilton RG, Denner L. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes. 2001;50(6):1495-1504.
    11. Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heartdisease. Diabetes Care. 1999;22(9):1543-1548.
    12. Raina AK, Perry G, Nunomura A, Sayre LM, Smith MA. Histochemical and immunocytochemical approaches to the study of oxidative stress. Clin Chem Lab Med. 2000;38(2):93-97.
    13. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280(5):E685-694.
    14. Ritthaler U, Deng Y, Zhang Y, Greten J, Abel M, Sido B, Allenberg J, Otto G, Roth H, Bierhaus A, et al. Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. Am J Pathol. 1995;146(3):688-694.
    15. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84(5):489-497.
    16. Wang R, Kudo M, Yokoyama M, Asano G. Roles of advanced glycation endproducts (AGE) and receptor for AGE on vascular smooth muscle cell growth. J Nippon Med Sch. 2001;68(6):472-481.
    17. Yoshiko Ihara KE, Kaku Nakano, Kisho Ohtani, Mitsuki Kubo, Jun-ichiro Koga a, Masaru Iwai, et al. Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. Journal of Molecular and Cellular Cardiology. 2007;43:455-464.
    18. Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol. 1996;54 Suppl:S21-35.
    19. Xu F, Ji J, Li L, Chen R, Hu W. Activation of adventitial fibroblasts contributes to the early development of atherosclerosis: a novel hypothesis that complements the "Response-to-Injury Hypothesis" and the "Inflammation Hypothesis". Med Hypotheses. 2007;69(4):908-912.
    20. Xu F, Ji J, Li L, Chen R, Hu WC. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem Biophys Res Commun. 2007;352(3):681-688.
    21. Haurani MJ, Pagano PJ. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc Res. 2007;75(4):679-689.
    22. Li G, Chen SJ, Oparil S, Chen YF, Thompson JA. Direct in vivo evidence demonstratingneointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation. 2000;101(12):1362-1365.
    23. Zalewski A, Shi Y. Vascular myofibroblasts. Lessons from coronary repair and remodeling. Arterioscler Thromb Vasc Biol. 1997;17(3):417-422.
    24. Belknap JK, Orton EC, Ensley B, Tucker A, Stenmark KR. Hypoxia increases bromodeoxyuridine labeling indices in bovine neonatal pulmonary arteries. Am J Respir Cell Mol Biol. 1997;16(4):366-371.
    25. Herrmann J, Samee S, Chade A, Rodriguez Porcel M, Lerman LO, Lerman A. Differential effect of experimental hypertension and hypercholesterolemia on adventitial remodeling. Arterioscler Thromb Vasc Biol. 2005;25(2):447-453.
    26. Orton EC, LaRue SM, Ensley B, Stenmark K. Bromodeoxyuridine labeling and DNA content of pulmonary arterial medial cells from hypoxia-exposed and nonexposed healthy calves. Am J Vet Res. 1992;53(10):1925-1930.
    27. Rey FE, Pagano PJ. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol. 2002;22(12):1962-1971.
    28. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation. 1996;93(12):2178-2187.
    29. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation. 1996;94(7):1655-1664.
    30. Wilcox JN, Okamoto EI, Nakahara KI, Vinten-Johansen J. Perivascular responses after angioplasty which may contribute to postangioplasty restenosis: a role for circulating myofibroblast precursors? Ann N Y Acad Sci. 2001;947:68-90; dicussion 90-62.
    31. Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res. 2003;59(1):212-221.
    32. Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med Hypotheses. 2008;71(5):749-751.
    33. Yamagishi S, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: anovel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs. 2008;17(7):983-996.
    34. Yamagishi S, Takeuchi M, Inagaki Y, Nakamura K, Imaizumi T. Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res. 2003;23(4):129-134.
    35. Calkin AC, Giunti S, Sheehy KJ, Chew C, Boolell V, Rajaram YS, Cooper ME, Jandeleit-Dahm KA. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia. 2008;51(9):1731-1740.
    1. Patel S, Shi Y, Niculescu R, Chung EH, Martin JL, Zalewski A. Characteristics of coronary smooth muscle cells and adventitial fibroblasts. Circulation. 2000;101(5):524-532.
    2. Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res. 2003;59(1):212-221.
    3. Xu F, Ji J, Li L, Chen R, Hu W. Activation of adventitial fibroblasts contributes to the early development of atherosclerosis: a novel hypothesis that complements the "Response-to-Injury Hypothesis" and the "Inflammation Hypothesis". Med Hypotheses. 2007;69(4):908-912.
    4. Xu F, Ji J, Li L, Chen R, Hu WC. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem Biophys Res Commun. 2007;352(3):681-688.
    5. Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y, Itoh H, Yokoyama M. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation. 1999;100(14):1494-1498.
    6. Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease. Curr Pharm Des. 2008;14(10):979-986.
    7. Okamoto E, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, Wilcox JN. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation. 2001;104(18):2228-2235.
    8. Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, Martin JL, Hofmann SM, Vlassara H, ShiY. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation. 2003;108(4):472-478.
    9. Shi Y, Pieniek M, Fard A, O'Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation. 1996;93(2):340-348.
    10. van der Loo B, Martin JF. The adventitia, endothelium and atherosclerosis. Int J Microcirc Clin Exp. 1997;17(5):280-288.
    11. Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995;34(34):10872-10878.
    12. Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des. 2005;11(18):2279-2299.
    13. Yamagishi S, Nakamura K, Imaizumi T. Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev. 2005;1(1):93-106.
    14. Monnier VM, Sell DR, Nagaraj RH, Miyata S, Grandhee S, Odetti P, Ibrahim SA. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes. 1992;41 Suppl 2:36-41.
    15. Sakata N, Meng J, Takebayashi S. Effects of advanced glycation end products on the proliferation and fibronectin production of smooth muscle cells. J Atheroscler Thromb. 2000;7(3):169-176.
    16. Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T, Ueda S, Horiuchi S. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry. 1996;35(24):8075-8083.
    17. Ohgami N, Nagai R, Ikemoto M, Arai H, Miyazaki A, Hakamata H, Horiuchi S, Nakayama H. CD36, serves as a receptor for advanced glycation endproducts (AGE). J Diabetes Complications. 2002;16(1):56-59.
    18. Verbeke P, Clark BF, Rattan SI. Modulating cellular aging in vitro: hormetic effects of repeated mild heat stress on protein oxidation and glycation. Exp Gerontol. 2000;35(6-7):787-794.
    19. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597-605.
    20. Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis. 2008;196(1):9-21.
    21. Ritthaler U, Deng Y, Zhang Y, Greten J, Abel M, Sido B, Allenberg J, Otto G, Roth H, Bierhaus A, et al. Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. Am J Pathol. 1995;146(3):688-694.
    22. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84(5):489-497.
    23. Wang R, Kudo M, Yokoyama M, Asano G. Roles of advanced glycation endproducts (AGE) and receptor for AGE on vascular smooth muscle cell growth. J Nippon Med Sch. 2001;68(6):472-481.
    24. Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med Hypotheses. 2008;71(5):749-751.
    25. Yamagishi S, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs. 2008;17(7):983-996.
    26. Calkin AC, Giunti S, Sheehy KJ, Chew C, Boolell V, Rajaram YS, Cooper ME, Jandeleit-Dahm KA. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia. 2008;51(9):1731-1740.
    27. Huijberts MS, Schaper NC, Schalkwijk CG. Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev. 2008;24 Suppl 1:S19-24.
    28. Gohda T, Tanimoto M, Moon JY, Gotoh H, Aoki T, Matsumoto M, Shibata T, Ohsawa I, Funabiki K, Tomino Y. Increased serum endogenous secretory receptor for advanced glycation end-product (esRAGE) levels in type 2 diabetic patients with decreased renal function. Diabetes Res Clin Pract. 2008;81(2):196-201.
    1. Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. JClin Invest. 2008;118(1):183-194.
    2. Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease. Curr Pharm Des. 2008;14(10):979-986.
    3. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340(2):115-126.
    4. Schmidt AM, Stern D. Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep. 2000;2(5):430-436.
    5. Haurani MJ, Pagano PJ. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc Res. 2007;75(4):679-689.
    6. Shi Y, Pieniek M, Fard A, O'Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation. 1996;93(2):340-348.
    7. Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res. 2003;59(1):212-221.
    8. Xu F, Ji J, Li L, Chen R, Hu W. Activation of adventitial fibroblasts contributes to the early development of atherosclerosis: a novel hypothesis that complements the "Response-to-Injury Hypothesis" and the "Inflammation Hypothesis". Med Hypotheses. 2007;69(4):908-912.
    9. Todisco A, Takeuchi Y, Yamada J, Sadoshima JI, Yamada T. Molecular mechanisms for somatostatin inhibition of c-fos gene expression. Am J Physiol. 1997;272(4 Pt 1):G721-726.
    10. Chang PC, Chen TH, Chang CJ, Hou CC, Chan P, Lee HM. Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway. Kidney Int. 2004;65(5):1664-1675.
    11. Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME, Lan HY. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Pathol. 2004;164(4):1389-1397.
    12. Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest. 2004;34(12):785-796.
    13. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation. 1996;93(12):2178-2187.
    14. Wilcox JN, Okamoto EI, Nakahara KI, Vinten-Johansen J. Perivascular responses after angioplasty which may contribute to postangioplasty restenosis: a role for circulatingmyofibroblast precursors? Ann N Y Acad Sci. 2001;947:68-90; dicussion 90-62.
    15. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation. 1996;94(7):1655-1664.
    16. Li L, Zhu DL, Shen WL, Gao PJ. Increased migration of vascular adventitial fibroblasts from spontaneously hypertensive rats. Hypertens Res. 2006;29(2):95-103.
    17. Yoshiko Ihara KE, Kaku Nakano, Kisho Ohtani, Mitsuki Kubo, Jun-ichiro Koga a, Masaru Iwai, et al. Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. Journal of Molecular and Cellular Cardiology. 2007;43:455-464.
    18. Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T, Ueda S, Horiuchi S. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry. 1996;35(24):8075-8083.
    19. Ritthaler U, Deng Y, Zhang Y, Greten J, Abel M, Sido B, Allenberg J, Otto G, Roth H, Bierhaus A, et al. Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. Am J Pathol. 1995;146(3):688-694.
    20. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84(5):489-497.
    21. Wang R, Kudo M, Yokoyama M, Asano G. Roles of advanced glycation endproducts (AGE) and receptor for AGE on vascular smooth muscle cell growth. J Nippon Med Sch. 2001;68(6):472-481.
    22. Raina AK, Perry G, Nunomura A, Sayre LM, Smith MA. Histochemical and immunocytochemical approaches to the study of oxidative stress. Clin Chem Lab Med. 2000;38(2):93-97.
    23. Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med Hypotheses. 2008;71(5):749-751.
    24. Yamagishi S, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs.2008;17(7):983-996.
    25. Calkin AC, Giunti S, Sheehy KJ, Chew C, Boolell V, Rajaram YS, Cooper ME, Jandeleit-Dahm KA. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia. 2008;51(9):1731-1740.
    26. Yamagishi S, Nakamura K, Matsui T, Inoue H. A novel pleiotropic effect of atorvastatin on advanced glycation end product (AGE)-related disorders. Med Hypotheses. 2007;69(2):338-340.
    27. Yamagishi S, Takeuchi M, Inagaki Y, Nakamura K, Imaizumi T. Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res. 2003;23(4):129-134.
    1. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29-38.
    2. Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med. 2007;17(2):48-54.
    3. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-820.
    4. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27(12):2627-2633.
    5. Chan YC, Leung PS. Angiotensin II type 1 receptor-dependent nuclear factor-kappaB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis. J Pharmacol Exp Ther. 2007;323(1):10-18.
    6. Liu XP, Pang YJ, Zhu WW, Zhao TT, Zheng M, Wang YB, Sun ZJ, Sun SJ. Benazepril, an Angiotensin-Converting Enzyme Inhibitor, Alleviates Renal Injury in Spontaneously Hypertensive Rats by Inhibiting Advanced Glycation End-Product-Mediated Pathways. Clin Exp Pharmacol Physiol. 2008.
    7. Mehta JL, Hu B, Chen J, Li D. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. ArteriosclerThromb Vasc Biol. 2003;23(12):2203-2208.
    8. Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y, Itoh H, Yokoyama M. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation. 1999;100(14):1494-1498.
    9. Dourron HM, Jacobson GM, Park JL, Liu J, Reddy DJ, Scheel ML, Pagano PJ. Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. Am J Physiol Heart Circ Physiol. 2005;288(2):H946-953.
    10. Okamoto E, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, Wilcox JN. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation. 2001;104(18):2228-2235.
    11. Rey FE, Pagano PJ. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol. 2002;22(12):1962-1971.
    12. Xu F, Ji J, Li L, Chen R, Hu W. Activation of adventitial fibroblasts contributes to the early development of atherosclerosis: a novel hypothesis that complements the "Response-to-Injury Hypothesis" and the "Inflammation Hypothesis". Med Hypotheses. 2007;69(4):908-912.
    13. Xu F, Ji J, Li L, Chen R, Hu WC. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem Biophys Res Commun. 2007;352(3):681-688.
    14. Shi Y, Niculescu R, Wang D, Patel S, Davenpeck KL, Zalewski A. Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury. Arterioscler Thromb Vasc Biol. 2001;21(5):739-745.
    15. Bayraktutan U. Coronary microvascular endothelial cell growth regulates expression of the gene encoding p22-phox. Free Radic Biol Med. 2005;39(10):1342-1352.
    16. Bayraktutan U, Blayney L, Shah AM. Molecular characterization and localization of the NAD(P)H oxidase components gp91-phox and p22-phox in endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20(8):1903-1911.
    17. Zhou MS, Hernandez Schulman I, Pagano PJ, Jaimes EA, Raij L. Reduced NAD(P)H oxidase in low renin hypertension: link among angiotensin II, atherogenesis, and blood pressure. Hypertension. 2006;47(1):81-86.
    18. Collins-Underwood JR, Zhao W, Sharpe JG, Robbins ME. NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radic Biol Med. 2008;45(6):929-938.
    19. Ding H, Aljofan M, Triggle CR. Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells. J Cell Physiol. 2007;212(3):682-689.
    20. Whaley-Connell A, Govindarajan G, Habibi J, Hayden MR, Cooper SA, Wei Y, Ma L, Qazi M, Link D, Karuparthi PR, Stump C, Ferrario C, Sowers JR. Angiotensin II-mediated oxidative stress promotes myocardial tissue remodeling in the transgenic (mRen2) 27 Ren2 rat. Am J Physiol Endocrinol Metab. 2007;293(1):E355-363.
    21. Zalba G, San Jose G, Moreno MU, Fortuno A, Diez J. NADPH oxidase-mediated oxidative stress: genetic studies of the p22(phox) gene in hypertension. Antioxid Redox Signal. 2005;7(9-10):1327-1336.
    22. Zhang H, Schmeisser A, Garlichs CD, Plotze K, Damme U, Mugge A, Daniel WG. Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membrane-bound NADH-/NADPH-oxidases. Cardiovasc Res. 1999;44(1):215-222.
    23. Hu F, Sun WW, Zhao XT, Cui ZJ, Yang WX. TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization. Biochem Biophys Res Commun. 2008;369(4):989-993.
    24. Kim HS, Loughran PA, Rao J, Billiar TR, Zuckerbraun BS. Carbon monoxide activates NF-kappaB via ROS generation and Akt pathways to protect against cell death of hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2008;295(1):G146-G152.
    25. Kim Y, Lee YS, Hahn JH, Choe J, Kwon HJ, Ro JY, Jeoung D. Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Mol Immunol. 2008;45(9):2537-2547.
    26. Messner J, Graf J. Reactive oxygen species facilitate the insulin-dependent inhibition of glucagon-induced glucose production in the isolated perfused rat liver. Wien Med Wochenschr. 2008;158(19-20):570-574.
    27. Nakagiri A, Sunamoto M, Murakami M. NADPH oxidase is involved in ischaemia/reperfusion-induced damage in rat gastric mucosa via ROS production--role of NADPH oxidase in rat stomachs. Inflammopharmacology. 2007;15(6):278-281.
    28. Perez de Obanos MP, Lopez-Zabalza MJ, Arriazu E, Modol T, Prieto J, Herraiz MT, Iraburu MJ. Reactive oxygen species (ROS) mediate the effects of leucine on translation regulation and type I collagen production in hepatic stellate cells. Biochim Biophys Acta. 2007;1773(11):1681-1688.
    29. Rodriguez-Pallares J, Rey P, Parga JA, Munoz A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derivedROS. Neurobiol Dis. 2008;31(1):58-73.
    30. Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem. 2008;106(1):45-55.
    31. Welch WJ, Blau J, Xie H, Chabrashvili T, Wilcox CS. Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am J Physiol Heart Circ Physiol. 2005;288(1):H22-28.
    32. Xu M, Dai DZ, Dai Y. Normalizing NADPH Oxidase Contributes to Attenuating Diabetic Nephropathy by the Dual Endothelin Receptor Antagonist CPU0213 in Rats. Am J Nephrol. 2008;29(3):252-256.
    33. Shen WL, Gao PJ, Che ZQ, Ji KD, Yin M, Yan C, Berk BC, Zhu DL. NAD(P)H oxidase-derived reactive oxygen species regulate angiotensin-II induced adventitial fibroblast phenotypic differentiation. Biochem Biophys Res Commun. 2006;339(1):337-343.
    34. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280(5):E685-694.
    35. Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, Martin JL, Hofmann SM, Vlassara H, Shi Y. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation. 2003;108(4):472-478.
    36. Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med Hypotheses. 2008;71(5):749-751.
    37. Yamagishi S, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs. 2008;17(7):983-996.
    38. Riganti C, Gazzano E, Polimeni M, Costamagna C, Bosia A, Ghigo D. Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. J Biol Chem. 2004;279(46):47726-47731.
    39. Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R, Channon KM. Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res. 2000;86(9):E85-90.
    40. Munzel T, Keaney JF, Jr. Are ACE inhibitors a "magic bullet" against oxidative stress?Circulation. 2001;104(13):1571-1574.
    1. Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease. Curr Pharm Des. 2008;14(10):979-986.
    2. Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, Martin JL, Hofmann SM, Vlassara H, Shi Y. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation. 2003;108(4):472-478.
    3. Isik FF, Coughlin SR, Nelken NA, Clowes AW, Gordon D. JE gene expression in an animal model of acute arterial graft rejection. J Surg Res. 1996;60(1):224-231.
    4. Rayner K, Van Eersel S, Groot PH, Reape TJ. Localisation of mRNA for JE/MCP-1 and its receptor CCR2 in atherosclerotic lesions of the ApoE knockout mouse. J Vasc Res. 2000;37(2):93-102.
    5. Xu F, Ji J, Li L, Chen R, Hu W. Activation of adventitial fibroblasts contributes to the early development of atherosclerosis: a novel hypothesis that complements the "Response-to-Injury Hypothesis" and the "Inflammation Hypothesis". Med Hypotheses. 2007;69(4):908-912.
    6. Xu F, Ji J, Li L, Chen R, Hu WC. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem Biophys Res Commun. 2007;352(3):681-688.
    7. Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol. 1996;54 Suppl:S21-35.
    8. Zhong Y, Li SH, Liu SM, Szmitko PE, He XQ, Fedak PW, Verma S. C-Reactive protein upregulates receptor for advanced glycation end products expression in human endothelial cells. Hypertension. 2006;48(3):504-511.
    9. Nakamura K, Yamagishi S, Adachi H, Matsui T, Kurita-Nakamura Y, Takeuchi M, Inoue H, Imaizumi T. Circulating advanced glycation end products (AGEs) and soluble form of receptor for AGEs (sRAGE) are independent determinants of serum monocyte chemoattractant protein-1 (MCP-1) levels in patients with type 2 diabetes. Diabetes Metab Res Rev. 2008;24(2):109-114.
    10. Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis. 2008;196(1):9-21.
    11. Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM,Schmidt AM, De Caterina R. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002;105(7):816-822.
    12. Chang PC, Chen TH, Chang CJ, Hou CC, Chan P, Lee HM. Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway. Kidney Int. 2004;65(5):1664-1675.
    13. Ihara Y, Egashira K, Nakano K, Ohtani K, Kubo M, Koga J, Iwai M, Horiuchi M, Gang Z, Yamagishi S, Sunagawa K. Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. J Mol Cell Cardiol. 2007;43(4):455-464.
    14. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84(5):489-497.
    15. Yamagishi S, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs. 2008;17(7):983-996.
    16. Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes. 2001;50(12):2792-2808.
    17. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109 Suppl:S81-96.
    18. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725-734.
    19. Mourad Zerfaoui YS, Amarjit S. Naura, et al. Nuclear translocation of p65 NF-κB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction? . Cellular Signalling,. 2008;20:186-194.
    20. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280(5):E685-694.
    21. Wilson SH, Caplice NM, Simari RD, Holmes DR, Jr., Carlson PJ, Lerman A. Activatednuclear factor-kappaB is present in the coronary vasculature in experimental hypercholesterolemia. Atherosclerosis. 2000;148(1):23-30.
    22. Raina AK, Perry G, Nunomura A, Sayre LM, Smith MA. Histochemical and immunocytochemical approaches to the study of oxidative stress. Clin Chem Lab Med. 2000;38(2):93-97.
    23. Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med Hypotheses. 2008;71(5):749-751.
    24. Calkin AC, Giunti S, Sheehy KJ, Chew C, Boolell V, Rajaram YS, Cooper ME, Jandeleit-Dahm KA. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia. 2008;51(9):1731-1740.
    1. Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002;1572(2-3):263-273.
    2. Stern DM, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev. 2002;1(1):1-15.
    3. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92(7):785-792.
    4. Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun. 2001;280(4):1183-1188.
    5. Hernandez JD, Baum LG. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology. 2002;12(10):127R-136R.
    6. Hsu DK, Yang RY, Pan Z, Yu L, Salomon DR, Fung-Leung WP, Liu FT. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol. 2000;156(3):1073-1083.
    7. Seki N, Hashimoto N, Sano H, Horiuchi S, Yagui K, Makino H, Saito Y. Mechanisms involved in the stimulatory effect of advanced glycation end products on growth of rat aorticsmooth muscle cells. Metabolism. 2003;52(12):1558-1563.
    8. Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004;15(8):3580-3590.
    9. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156(3):899-909.
    10. Nachtigal M, Ghaffar A, Mayer EP. Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am J Pathol. 2008;172(1):247-255.
    11. Downward J. RNA interference. BMJ. 2004;328(7450):1245-1248.
    12. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494-498.
    13. Kim VN. RNA interference in functional genomics and medicine. J Korean Med Sci. 2003;18(3):309-318.
    14. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. 2003;9(4):493-501.
    15. Nishitsuji H, Ikeda T, Miyoshi H, Ohashi T, Kannagi M, Masuda T. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect. 2004;6(1):76-85.
    1. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597-605.
    2. Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis. 2008;196(1):9-21.
    3. Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995;34(34):10872-10878.
    4. Takahashi M, Oikawa M, Nagano A. Effect of age and menopause on serum concentrationsof pentosidine, an advanced glycation end product. J Gerontol A Biol Sci Med Sci. 2000;55(3):M137-140.
    5. Verbeke P, Clark BF, Rattan SI. Modulating cellular aging in vitro: hormetic effects of repeated mild heat stress on protein oxidation and glycation. Exp Gerontol. 2000;35(6-7):787-794.
    6. Brownlee M. Negative consequences of glycation. Metabolism. 2000;49(2 Suppl 1):9-13.
    7. Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T, Ueda S, Horiuchi S. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry. 1996;35(24):8075-8083.
    8. Ohgami N, Nagai R, Ikemoto M, Arai H, Miyazaki A, Hakamata H, Horiuchi S, Nakayama H. CD36, serves as a receptor for advanced glycation endproducts (AGE). J Diabetes Complications. 2002;16(1):56-59.
    9. Yan SF, D'Agati V, Schmidt AM, Ramasamy R. Receptor for Advanced Glycation Endproducts (RAGE): a formidable force in the pathogenesis of the cardiovascular complications of diabetes & aging. Curr Mol Med. 2007;7(8):699-710.
    10. Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93(12):1159-1169.
    11. Ritthaler U, Deng Y, Zhang Y, Greten J, Abel M, Sido B, Allenberg J, Otto G, Roth H, Bierhaus A, et al. Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. Am J Pathol. 1995;146(3):688-694.
    12. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84(5):489-497.
    13. Wang R, Kudo M, Yokoyama M, Asano G. Roles of advanced glycation endproducts (AGE) and receptor for AGE on vascular smooth muscle cell growth. J Nippon Med Sch. 2001;68(6):472-481.
    14. Raina AK, Perry G, Nunomura A, Sayre LM, Smith MA. Histochemical and immunocytochemical approaches to the study of oxidative stress. Clin Chem Lab Med. 2000;38(2):93-97.
    15. Sun C, Liang C, Ren Y, Zhen Y, He Z, Wang H, Tan H, Pan X, Wu Z. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2mitogen-activated protein kinase pathways. Basic Res Cardiol. 2009;104(1):42-49.
    16. Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J Clin Invest. 2008;118(1):183-194.
    17. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952-958.
    18. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92(2):362-367.
    19. Higashi T, Sano H, Saishoji T, Ikeda K, Jinnouchi Y, Kanzaki T, Morisaki N, Rauvala H, Shichiri M, Horiuchi S. The receptor for advanced glycation end products mediates the chemotaxis of rabbit smooth muscle cells. Diabetes. 1997;46(3):463-472.
    20. Yamagishi S, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs. 2008;17(7):983-996.
    21. Calkin AC, Giunti S, Sheehy KJ, Chew C, Boolell V, Rajaram YS, Cooper ME, Jandeleit-Dahm KA. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia. 2008;51(9):1731-1740.
    22. Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med Hypotheses. 2008;71(5):749-751.
    23. Huijberts MS, Schaper NC, Schalkwijk CG. Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev. 2008;24 Suppl 1:S19-24.
    24. Gohda T, Tanimoto M, Moon JY, Gotoh H, Aoki T, Matsumoto M, Shibata T, Ohsawa I, Funabiki K, Tomino Y. Increased serum endogenous secretory receptor for advanced glycation end-product (esRAGE) levels in type 2 diabetic patients with decreased renal function. Diabetes Res Clin Pract. 2008;81(2):196-201.
    25. Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease. Curr Pharm Des. 2008;14(10):979-986.
    26. Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002;1572(2-3):263-273.
    27. Stern DM, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev. 2002;1(1):1-15.
    28. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92(7):785-792.
    29. Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, Frigeri L, Hsu DK, Vlassara H, Liu FT, Di Mario U. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J. 2001;15(13):2471-2479.
    30. Pugliese G, Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Lenti L, Sale P, Gradini R, Liu FT, Di Mario U. The diabetic milieu modulates the advanced glycation end product-receptor complex in the mesangium by inducing or upregulating galectin-3 expression. Diabetes. 2000;49(7):1249-1257.
    31. Hernandez JD, Baum LG. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology. 2002;12(10):127R-136R.
    32. Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun. 2001;280(4):1183-1188.
    33. Seki N, Hashimoto N, Sano H, Horiuchi S, Yagui K, Makino H, Saito Y. Mechanisms involved in the stimulatory effect of advanced glycation end products on growth of rat aortic smooth muscle cells. Metabolism. 2003;52(12):1558-1563.
    34. Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004;15(8):3580-3590.
    35. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156(3):899-909.
    36. Nachtigal M, Ghaffar A, Mayer EP. Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am J Pathol. 2008;172(1):247-255.
    37. Utimura R, Fujihara CK, Mattar AL, Malheiros DM, Noronha IL, Zatz R. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int. 2003;63(1):209-216.
    38. Hsu DK, Yang RY, Pan Z, Yu L, Salomon DR, Fung-Leung WP, Liu FT. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol. 2000;156(3):1073-1083.
    1. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340(2):115-126.
    2. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation. 1996;94(7):1655-1664.
    3. Wilcox JN, Waksman R, King SB, Scott NA. The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation. Int J Radiat Oncol Biol Phys. 1996;36(4):789-796.
    4. Zhao L, Moos MP, Grabner R, Pedrono F, Fan J, Kaiser B, John N, Schmidt S, Spanbroek R, Lotzer K, Huang L, Cui J, Rader DJ, Evans JF, Habenicht AJ, Funk CD. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med. 2004;10(9):966-973.
    5. Bush E, Maeda N, Kuziel WA, Dawson TC, Wilcox JN, DeLeon H, Taylor WR. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension. 2000;36(3):360-363.
    6. Capers Qt, Alexander RW, Lou P, De Leon H, Wilcox JN, Ishizaka N, Howard AB, Taylor WR. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension. 1997;30(6):1397-1402.
    7. Wick G, Romen M, Amberger A, Metzler B, Mayr M, Falkensammer G, Xu Q. Atherosclerosis, autoimmunity, and vascular-associated lymphoid tissue. FASEB J. 1997;11(13):1199-1207.
    8. Schwartz CJ, Mitchell JR. Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation. 1962;26:73-78.
    9. Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol. 1996;54 Suppl:S21-35.
    10. Higuchi ML, Gutierrez PS, Bezerra HG, Palomino SA, Aiello VD, Silvestre JM, Libby P,Ramires JA. Comparison between adventitial and intimal inflammation of ruptured and nonruptured atherosclerotic plaques in human coronary arteries. Arq Bras Cardiol. 2002;79(1):20-24.
    11. Vink A, Schoneveld AH, van der Meer JJ, van Middelaar BJ, Sluijter JP, Smeets MB, Quax PH, Lim SK, Borst C, Pasterkamp G, de Kleijn DP. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation. 2002;106(15):1985-1990.
    12. Rayner K, Van Eersel S, Groot PH, Reape TJ. Localisation of mRNA for JE/MCP-1 and its receptor CCR2 in atherosclerotic lesions of the ApoE knockout mouse. J Vasc Res. 2000;37(2):93-102.
    13. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation. 1996;93(12):2178-2187.
    14. Wilcox JN, Okamoto EI, Nakahara KI, Vinten-Johansen J. Perivascular responses after angioplasty which may contribute to postangioplasty restenosis: a role for circulating myofibroblast precursors? Ann N Y Acad Sci. 2001;947:68-90; dicussion 90-62.
    15. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res. 2001;89(12):1111-1121.
    16. Shi Y, Niculescu R, Wang D, Patel S, Davenpeck KL, Zalewski A. Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury. Arterioscler Thromb Vasc Biol. 2001;21(5):739-745.
    17. Stenmark KR, Gerasimovskaya E, Nemenoff RA, Das M. Hypoxic activation of adventitial fibroblasts: role in vascular remodeling. Chest. 2002;122(6 Suppl):326S-334S.
    18. Li G, Chen SJ, Oparil S, Chen YF, Thompson JA. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation. 2000;101(12):1362-1365.
    19. Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res. 2003;59(1):212-221.
    20. Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ. Transcriptional regulation and function during the human cell cycle. Nat Genet. 2001;27(1):48-54.
    21. Rey FE, Pagano PJ. The reactive adventitia: fibroblast oxidase in vascular function.Arterioscler Thromb Vasc Biol. 2002;22(12):1962-1971.
    22. Dourron HM, Jacobson GM, Park JL, Liu J, Reddy DJ, Scheel ML, Pagano PJ. Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. Am J Physiol Heart Circ Physiol. 2005;288(2):H946-953.
    23. Patel S, Shi Y, Niculescu R, Chung EH, Martin JL, Zalewski A. Characteristics of coronary smooth muscle cells and adventitial fibroblasts. Circulation. 2000;101(5):524-532.
    24. Chilian WM, Dellsperger KC, Layne SM, Eastham CL, Armstrong MA, Marcus ML, Heistad DD. Effects of atherosclerosis on the coronary microcirculation. Am J Physiol. 1990;258(2 Pt 2):H529-539.
    25. Heistad DD, Armstrong ML. Blood flow through vasa vasorum of coronary arteries in atherosclerotic monkeys. Arteriosclerosis. 1986;6(3):326-331.
    26. van der Loo B, Martin JF. The adventitia, endothelium and atherosclerosis. Int J Microcirc Clin Exp. 1997;17(5):280-288.
    27. Barker SG, Tilling LC, Miller GC, Beesley JE, Fleetwood G, Stavri GT, Baskerville PA, Martin JF. The adventitia and atherogenesis: removal initiates intimal proliferation in the rabbit which regresses on generation of a 'neoadventitia'. Atherosclerosis. 1994;105(2):131-144.
    28. Prescott MF, McBride CK, Court M. Development of intimal lesions after leukocyte migration into the vascular wall. Am J Pathol. 1989;135(5):835-846.
    29. Fukumoto Y, Shimokawa H, Ito A, Kadokami T, Yonemitsu Y, Aikawa M, Owada MK, Egashira K, Sueishi K, Nagai R, Yazaki Y, Takeshita A. Inflammatory cytokines cause coronary arteriosclerosis-like changes and alterations in the smooth-muscle phenotypes in pigs. J Cardiovasc Pharmacol. 1997;29(2):222-231.
    30. Tsutsui M, Chen AF, O'Brien T, Crotty TB, Katusic ZS. Adventitial expression of recombinant eNOS gene restores NO production in arteries without endothelium. Arterioscler Thromb Vasc Biol. 1998;18(8):1231-1241.
    31. Jabs A, Okamoto E, Vinten-Johansen J, Bauriedel G, Wilcox JN. Sequential patterns of chemokine- and chemokine receptor-synthesis following vessel wall injury in porcine coronary arteries. Atherosclerosis. 2007;192(1):75-84.
    32. Okamoto E, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, Wilcox JN. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation. 2001;104(18):2228-2235.
    33. Geng YJ, Hellstrand K, Wennmalm A, Hansson GK. Apoptotic death of human leukemiccells induced by vascular cells expressing nitric oxide synthase in response to gamma-interferon and tumor necrosis factor-alpha. Cancer Res. 1996;56(4):866-874.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.