胆碱能通路在热量限制防治脑卒中中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:高血压发病率高,在中国成人高达18.8%,目前我国大约有2亿高血压病人。脑卒中是高血压病最重要的并发症,近些年脑卒中发生率呈持续上升趋势,且日趋年轻化,中国高血压病人脑卒中的发生率要远远高于欧美国家的高血压病人。脑卒中一旦发生,后果严重,病人非死即残。全球每年新发脑卒中1500万,其中500万人死亡,500万人永久性残废,要使幸存者恢复功能,耗时费力,因此,预防和治疗脑卒中已经成为科学研究迫切需要解决的问题。如何预防脑卒中的发生?血压水平是一个非常重要的心脑血管危险因素和预测因子,血压愈高,脑卒中的危险性就愈大,且80%的脑卒中和52%的脑梗死因高血压而引发,降低血压可以显著预防脑卒中的发生,但降压治疗并不是唯一的预防策略,特别是对于非高血压性脑卒中,并且,脑卒中发生的病理生理机制复杂,有必要对其进行进一步的深入研究,找出除了血压以外的其他关键因子或预防措施,针对这些因子或措施进行干预,作为防治脑卒中的新靶点。
     热量限制(caloric restriction,CR)是指在保证机体基本营养需求前提下,降低机体约30%~40%的能量摄入。1935年McCay第一次提出了热量限制可以延长啮齿类动物的寿命,随着科学研究不断进步,发现这一作用几乎可以在所有生物中起到延长寿命的作用。热量限制可以延缓很多疾病的发生,如肾病、肿瘤、自身免疫性疾病和糖尿病等。热量限制能降低年龄相关的神经退化、神经紊乱,如帕金森病或阿尔茨海默病。最近几年有不少关于热量限制延长低等生物和细胞寿命的报道,资料显示热量限制延长寿命可能与Sir基因有关,基因家族是一类调控寿命的重要基因,它主要通过参与染色质沉默以及能量代谢而调节细胞的衰老过程。Sir2相关酶类(Sirtuins)是最近发现的NAD~+依赖的蛋白去乙酰化酶类,在哺乳动物包括SIRT1-7七种不同的同系物。其中SIRT1蛋白研究最多,功能也最为明确。哺乳动物SIRT1蛋白通过与不同的组蛋白和非组蛋白的相互作用来完成不同的功能,对细胞生存、衰老、凋亡等生理活动起到十分重要的调节作用。我们先前的初步结果显示,热量限制可以显著地延缓SHR-SP大鼠脑卒中发生时间,延长动物寿命,但其具体作用机制尚不清楚。阐明热量限制对脑卒中的预防作用途径对于寻找新的脑卒中预防靶点具有非常重要的意义。动脉压力感受性反射(arterial barloreflex,ABR)功能,是心血管系统活动最重要的自身调节机制之一,ABR功能强弱可以用压力感受性反射敏感性(Baroreflex sensitivity,BRS)这一指标来表示。近年来研究发现,ABR功能的异常,参与了多种心血管系统疾病的发生发展过程。因此,自上世纪80年代以来,对ABR功能的研究越来越得到人们的重视。1988年到1998年10年间,意大利学者La Rovere等用大量的临床数据证实,BRS高低可以预测急性心肌梗死(acute myocardial infarction,AMI)病人的预后,死亡患者的ABR功能明显低于幸存者。同时,在脑卒中动物模型以及慢性脑血管疾病的病人身上,也出现了BRS受损情况。Robinson及同事也发现,脑卒中病人,BRS功能低下者,其预后较BRS正常者明显要差。因此,ABR功能与脑卒中之间存在密切的联系,是影响脑卒中预后的一个非常重要的因素。前期的研究我们已经初步证实了ABR功能作为一个重要因子可以独立于其他诸如血压等因素之外来预测脑卒中的发生,改善ABR功能,可进一步起到预防或者延缓脑卒中的发生。那么热量限制预防脑卒中的作用是否与ABR功能相关,如果二者有关,又是如何发挥作用的,需要我们通过实验进行证实。
     2000年,Nature杂志报道乙酰胆碱(acetylcholine,ACh)与巨嗜细胞上尼古丁受体结合能够抑制内毒素诱导的炎性因子TNFα,IL-1β,IL-6,IL-18等分泌。进一步研究发现乙酰胆碱的作用主要是通过与巨嗜细胞上的α7尼古丁受体结合,通过细胞内一系列的信号传递,最终抑制了Jak2-STAT3和NF-κB信号的激活,从而抑制了炎症因子的产生。由于乙酰胆碱是迷走神经末梢分泌的主要神经递质,因此,他们把这条通路命名为“胆碱能抗炎通路”(cholinergic anti-inflammatory pathway,CAP)。它主要指中枢的免疫调节信号通过激活传出迷走神经,引起外周神经末梢释放乙酰胆碱,与免疫细胞上具有α7亚单位的N型ACh受体结合,通过细胞内信号传导抑制促炎因子的释放,调控炎症反应。传出迷走神经能够抑制外周炎症因子的产生,提示迷走神经与炎症细胞间存在信号传导机制。当机体受到伤害性刺激后,会产生炎症反应,并将冲动传到中枢。中枢再将信号投射到各个迷走神经核团(主要为背核,疑核,孤束核等),激活传出迷走神经纤维,引起外周神经末梢释放Ach,通过细胞内信号传导途径抑制促炎因子的释放来起到调整全身性炎性反应的作用。Shytle等首次报道发现脑单核巨噬细胞-小神经胶质细胞上存在含有α7亚单位的N型受体,体外实验中ACh和烟碱预处理能抑制内毒素引起的小神经胶质细胞释放TNF。这一作用可被亚单位拮抗剂所抑制。此研究结果提示中枢可能也存在与外周相似的胆碱能保护通路,那么热量限制与胆碱能通路是否也有一定的联系?本课题对以上内容进行了初步的探索。
     方法:实验一:利用SHR-SP,采用大脑中动脉栓塞方法建立脑梗塞模型,观察不同程度的热量限制对SHR-SP急性脑梗死损伤的保护作用差异。实验二,SHR-SP随机分为2组,分别进行去窦弓神经(SAD)手术以及假手术(Sham),术后再各自分为2组(自由饮食组以及热量限制组),观察ABR功能对热量限制预防脑卒中的作用影响。实验三,观察热量限制、ABR功能与乙酰胆碱及胆碱能通路的关系研究:通过阿托品对SAD大鼠血流动力学的影响,研究ABR功能和迷走神经的关系;利用电生理方法研究神经元细胞疑核放电情况并探索其与脑卒中发生的作用。实验四,观察胆碱能抗凋亡通路在急性脑梗死损伤中的作用:侧脑室外源性的给予新斯的明,观察其与脑卒中发生关系;实验五,胆碱能通路防治脑卒中抗凋亡通路的初步探讨:采用FCM观察Cch对H_2O_2诱导的Bend.3细胞凋亡作用;用荧光显微镜观察Cch对神经元细胞的凋亡作用;利用分子生物学技术研究了Cch对Bend.3中SIRT1蛋白表达的影响;利用RNA干扰技术制备SIRT1屏蔽的细胞株。
     结果:1、SHR-SP大鼠热量限制40周,AL、CR组都发生脑卒中,但CR组损伤较轻;CR80%、CR60%、CR40%均可改善脑卒中发生,CR60%改善最好;大鼠SAD后,削弱了CR对脑卒中保护作用,说明ABR功能参与了CR对脑卒中的保护作用;
     2、ABR功能缺损大鼠对阿托品引起的心动间期的反射减弱,并且通过单因素相关性分析,发现心动间期的差值和BRS成正相关关系;在检测疑核放电实验中,SAD组疑核神经元的放电活动显著降低,并且疑核放电低的易于发生脑卒中;
     3、SAD术后,α7和AchT蛋白的表达均显著降低。血清中炎症因子IL-1β、IL-6的含量显著升高;外源性的乙酰胆碱可延缓脑卒中的发生;
     4、卡巴胆碱能剂量依赖性的抑制Bend.3和神经元细胞的凋亡,并且这一过程有α7nAChR的参与;卡巴胆碱能剂量依赖性的增加SIRT1蛋白的表达。
     结论:1、热量限制可以显著地延缓SHR-SP大鼠脑卒中发生时间,延长大鼠寿命。
     2、ABR功能参与了热量限制延缓脑卒中发生的作用机制,ABR功能缺损削弱了热量限制延缓脑卒中发生的保护作用
     3、ABR功能缺损引起迷走神经功能减弱;而迷走神经功能减弱大鼠易发生脑卒中,提示我们ABR功能防治脑卒中的发生伴随着胆碱能通路调控机制;
     4、胆碱能通路在急性脑梗死损伤中具有一定的保护作用,其作用机制与乙酰胆碱抗神经元和脑血管内皮细胞的凋亡有关,并且这一过程有SIRT1蛋白的参与。
Background and Objectives:
     In many countries including China, stroke is the third leading cause of death only preceded by heart disease and total cancer. According to recent estimates published by the World Health Organization, about 15 million people per year fall victim to stroke worldwidely, of whom 5 million die and another 5 million are left permanently disabled. Many stroke survivors become dependent, and require lifelong assistance. Therefore, prevention is the only possible way to curb the stroke pandemicly. Blood pressure level is one of the most consistent and powerful predictor of stroke, so blood pressure control is an important way to reduce the morbidity. However, blood pressure level is not the unique determinant for stroke. Here we propose other important determinants for stroke.
     Calorie restriction (CR) is the only experimental manipulation that is known to extend the lifespan of a number of organisms including yeast, worms, flies, rodents and perhaps non-human primates. In addition, CR has been shown to reduce the incidence of age-related disorders (for example, diabetes, cancer and cardiovascular disorders) in mammals. The mechanisms through which this occurs have been unclear. CR induces metabolic changes, improves insulin sensitivity and alters neuroendocrine function in animals. In addition to its effects on metabolism, CR can have profound effects on brain function. For example, CR can protect neurons against degeneration in animal models of Huntington's disease, Alzheimer's disease, Parkinson's disease and stroke.
     ABR is one of the most important mechanisms in the regulation of cardiovascular activities. Since the end of 1980s, the pathological importance of ABR function has attracted the attention of many investigators. Baroreflex function, expressed as baroreflex sensitivity (BRS), was found as an important determinant of cardiac death after acute myocardial infarction. There is also established evidence of abnormal BRS in animal models of stroke and patients with chronic cerebrovascular disease. Indeed, it was found that BRS was impaired after acute stroke. Post-stroke patients with impaired BRS had a poor prognosis. We have proved that BRS can be as a new predictor for stroke incident. And CR can protect neurons against degeneration in animal models of stroke. However, to our knowledge, there is no more report about the mechanisms how BRS works in this process. So the first aim of this study was to investigate the relationship of ABR, CR, and Stroke.
     It had been reported that acetylcholine inhibits the production of pro-inflammatory cytokines from endotoxin-stimulated macrophages through a mechanism dependent on the a7 nicotinic acetylcholine receptor subunit in 2000. Because acetylcholine is the principal vagus neurotransmitter, the central nervous system also regulates proinflammatory cytokine production through the efferent vagus nerve, termed the "cholinergic anti-inflammatory pathway". It had been reported that activation of this mechanism via vagus nerve stimulation can control the production of pro-inflammatory cytokines in experimental models of systemic inflammation, including lethal endotoxemia, hemorrhagic shock, and ischemia-reperfusion injury. Thus, the "cholinergic anti-inflammatory pathway" can directly modulate the systemic response to pathogenic invasion. In this process, we know that vagus nerve plays an important role in the regulation of various signals central neruron system sent out. So investigation of the relationship of ABR and vagal function makes it easy to find the effects of cholinergic pathway on the protection of stroke. Shytle et al. report for the first time that cultured microglial cells express alpha7nAChR subunit as determined, and their findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.
     Many reports have shown the effect of caloric restriction (CR) on pretection of stroke, and this effect is related to the function of ABR. How dose ABR produce a marked effect on it? Though preliminary, we investigate the regulations of cholinergic pathway on the protection of stroke caused by the impaired BRS. It will develop a new way to find the effective factors involved in the pretection and treatment of stroke.
     Main Methods and Results:
     Male SHR-SP, at the age of 12 weeks, were fed ad libitum (AL) or CR diet (80%, 60%, 40%of AL). We subjected the animals to middle cerebral artery (MCA) occlusion, and the infarct area and hemisphere areas of each section (both sides) were traced and quantified by an image analysis system. We found the ratio of the infarct area and hemisphere areas was significantly different in the four groups. SHR-SP fed CR diet (60% of AL) showed the best protective effect of CR. Sinoaortic denervation (SAD) was performed to destroy the peripheral baroreflex arc in SHR-SP, and after a month, they were fed ad libitum (AL) or CR diet (60% of AL). The infarct area was traced and quantified. The ratio of the infarct area and hemisphere areas was decreased in both of the CR group, while sinoaortic denervation group decreased less than the sham-operated group. The survival time and stroke incidence were observed and was expressed by Kaplan-Meier survival curves. The effects of caloric restriction to the prevention of stroke were weekened by sinoaortic denervation. Sinoaortic denervation (SAD) rats were given Atropine to observe the different reaction to the stimulation. After the injection of Atropine, the decrease of heart period in sham-operated group is more obviously than sinoaortic denervation group. Also we detected the discharge of the nucleus ambiguous of the two groups. The level of the discharge of the nucleus ambiguous in sinoaortic denervation group was lower than that of sham-operated group. The group with low discharge level has the liability to the development of stroke. We used Western blotting to detect the protein expression ofα7 and AchT. The protein expression of a7 and AchT in brain was obviously decreased in sinoaortic denervation rats. Levels of interleukin (IL)-1βand IL-6 in serum were detected by ELISA. The levels of interleukin (IL)-1βand IL-6 were higher in sinoaortic denervation rats than that in sham-operated rats. After the injection of Carbachol to the lateral cerebral ventricle, we observed the influence of Carbachol to the treatment of stroke. The ratio of the infarct area and hemisphere areas was significantly decreased by the injection of Carbachol. Carbachol dose-independently inhibited the H_2O_2-induced apoptosis of Bend. 3 detected by flow cytometry. It also inhibited the H_2O_2-induced apoptosis of neuron cells observed by fluorescence microscope. Western blotting was used to measure the protein expression of SIRT1. Carbachol dose-independently increased the protein expression of SIRT1. Knock-down of SIRT1 was attained by siRNA.
     Conclusion:
     In conclusion, the present study provides evidence that caloric restriction is a new and important predictor for stroke death in hypertension rats. Restoration of ABR function is a new target for the prevention of stroke. ABR functional impairment decreases the prevention of stroke by CR. The cholinegic pathway is involved in the protective mechanisms of stoke, and this function is mediated by ABR. The regulation of cholinegic pathway maybe have two aspects: one is due to the increase of ectogenic inflammatory transmitter, and the other is for the improvement of the apoptosis of vascular endothelial cells and neuron cells in the brain. Furthermore, we find this improvement is mediated by the protein expression of SIRT1.
引文
1. He J, Gu D, Wu X, et al. Major causes of death among men and women in China. N Engl J Med 2005; 353:1124-34.
    2. Wolf-Maier K, Cooper RS, Banegas JR, et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003; 289:2363-9.
    3. Arboix A, Morcillo C, Garcia-Eroles L, Oliveres M, Massons J, Targa C. Different vascular risk factor profiles in ischemic stroke subtypes: a study from the "Sagrat Cor Hospital of Barcelona Stroke Registry". Acta Neurol Scand 2000; 102:264-70.
    4. Vilas AP, Veiga MZ, Santos ME, Abecasis P. Hemorrhagic stroke: experience of an internal medicine department. Rev Port Cardiol 2001; 20:157-65.
    5. Luepker RV, Arnett DK, Jacobs DR, Jr., et al. Trends in blood pressure, hypertension control, and stroke mortality: the Minnesota Heart Survey. Am J Med 2006; 119:42-9.
    6. Blacher J, Baes M, Marchal A, Younes W, Legedz L, Safar M. [New treatment strategies for hypertension. Which guidelines and how to apply them]. Presse Med 2005; 34:1279-85.
    7. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989; 5:155-71; discussion 72.
    8. Dirks AJ, Leeuwenburgh C. Tumor necrosis factor alpha signaling in skeletal muscle: effects of age and caloric restriction. J Nutr Biochem 2006; 17:501-8.
    9. Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 1999; 57:195-206.
    10. Zhu H, Guo Q, Mattson MP. Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res 1999; 842:224-9.
    11. Wood JG Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004; 430:686-9.
    12. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305:390-2.
    13. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116:551-63.
    14. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73:417-35.
    15. Potente M, Dimmeler S. Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 2008; 7:2117-22.
    16. Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann Med 2007; 39:335-45.
    17. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303:2011-5.
    18. Kobayashi Y, Furukawa-Hibi Y, Chen C, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med 2005; 16:237-43.
    19. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107:137-48.
    20. Jeortg J, Juhn K, Lee H, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med 2007; 39:8-13.
    21. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 2004; 14:408-12.
    22. Yeung F, Hoberg IE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23:2369-80.
    23. Kume S, Haneda M, Kanasaki K, et al. S1RT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem 2007; 282:151-8.
    24. Fu M, Liu M, Sauve AA, et al. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 2006; 26:8122-35.
    25. Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006; 8:1025-31.
    26. Pagans S, Pedal A, North BJ, et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 2005; 3:e41.
    27. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRTl. Nature 2005; 434:113-8.
    28. Picard F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429:771-6.
    29. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12:51-62.
    30. Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY, Leeuwenburgh C. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med 2008; 44:160-8.
    31. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16:93-105.
    32. Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxol-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006; 281:39915-24.
    33. Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirtl. Science 2005; 310:1641.
    34. Reducing the burden of stroke. Lancet 2005; 366:1752.
    35. La Rovere MT, Pinna GD, Hohnloser SH, et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation 2001; 103:2072-7.
    36. La Rovere MT, Bigger JT, Jr., Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998; 351:478-84.
    37. Doba N, Reis DJ. Role of central and peripheral adrenergic mechanisms in neurogenic hypertension produced by brainstem lesions in rat. Circ Res 1974; 34:293-301.
    38. Gross M. Circulatory reflexes in cerebral ischaemia involving different vascular territories. Clin Sci 1970; 38:491-502.
    39. Appenzeller O, Descarries L. Circulatory Reflexes in Patients with Cerebrovascular Disease. N Engl J Med 1964; 271:820-3.
    40. Robinson TG, Dawson SL, Eames PJ, Panerai RB, Potter JF. Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke 2003; 34:705-12.
    41. Robinson TG, James M, Youde J, Panerai R, Potter J. Cardiac baroreceptor sensitivity is impaired after acute stroke. Stroke 1997; 28:1671-6.
    42. Shen FM, Guan YF, Xie HH, Su DF. Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats. Shock 2004; 21:556-60.
    43. Mabley JG, Pacher P, Szabo C. Activation of the cholinergic anti-inflammatory pathway reduces ricin-induced mortality and organ failure in mice. Mol Med 2009.
    44. Pavlov VA, Tracey KJ. Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochem Soc Trans 2006; 34:1037-40.
    45. Huston JM, Ochani M, Rosas-Ballina M, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 2006; 203:1623-8.
    46. Liu C, Shen FM, Le YY, et al. Antishock effect of anisodamine involves a novel pathway for activating alpha7 nicotinic acetylcholine receptor. Crit Care Med 2009.
    47. Pavlov VA. Cholinergic modulation of inflammation. Int J Clin Exp Med2008; 1:203-12.
    48. Shytle RD, Mori T, Townsend K, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 2004; 89:337-43.
    49. Munoz-Torrero D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer's disease. Curr Med Chem 2008; 15:2433-55.
    50. Geldmacher DS, Frolich L, Doody RS, et al. Realistic expectations for treatment success in Alzheimer's disease. J Nutr Health Aging 2006; 10:417-29.
    51. Shen ZX. Rationale for diagnosing deficiency of ChEs and for applying exogenous HuChEs to the treatment of diseases. Med Hypotheses 2008; 70:43-51.
    52. Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 1976; 7:46-53.
    53. Miao CY, Xie HH, Zhan LS, Su DF. Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats. J Hypertens 2006; 24:1125-35.
    54. Xie HH, Shen FM, Miao CY, Su DF. Blood pressure, baroreflex sensitivity, and end organ damage in hybrid offspring of spontaneously hypertensive rats and Sprague-Dawley rats. Acta Pharmacol Sin 2005; 26:1049-56.
    55. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res 1969; 24:109-21.
    56. Su DF, Chen L, Kong XB, Cheng Y Determination of arterial baroreflex-blood pressure control in conscious rats. Acta Pharmacol Sin 2002; 23:103-9.
    57. Krieger EM. Neurogenic Hypertension in the Rat. CircRes 1964; 15:511-21.
    58. Wang J, Shen FM, Wang MW, Su DF. Effects of nine antihypertensive drugs on blood pressure variability in sinoaortic-denervated rats. Acta Pharmacol Sin 2006; 27:1013-7.
    59. Gu XW, Xie HH, Wang J, Shen FM, Su DF. Arterial baroreflex is not involved in salt preference in rats. Clin Exp Pharmacol Physiol 2006; 33:607-11.
    60. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 1990; 10:290-3.
    61. Ohlsson AL, Johansson BB. Environment influences functional outcome of cerebral infarction in rats. Stroke 1995; 26:644-9.
    62. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 1995; 26:627-34; discussion 35.
    63. Liu JG, Xu LP, Chu ZX, Miao CY, Su DF. Contribution of blood pressure variability to the effect of nitrendipine on end-organ damage in spontaneously hypertensive rats. J Hypertens 2003; 21:1961-7.
    64. Wang WZ, Gao L, Wang HJ, Zucker IH, Wang W. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure. Am J Physiol Heart Circ Physiol 2008; 295 :H 1216-H26.
    65. Fang XH, Zhang XH, Yang QD, et al. Subtype hypertension and risk of stroke in middle-aged and older Chinese; a 10-year follow-up study. Stroke 2006; 37:38-43.
    66. Fang XH, Longstreth WT, Jr., Li SC, et al. Longitudinal study of blood pressure and stroke in over 37,000 People in China. Cerebrovasc Dis 2001; 11:225-9.
    67. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature 2000; 408:255-62.
    68. Everitt AV. Food restriction, pituitary hormones and ageing. Biogerontology 2003; 4:47-50.
    69. Koubova J, Guarente L. How does calorie restriction work? Genes Dev 2003; 17:313-21.
    70. La Rovere MT, Specchia G, Mortara A, Schwartz PJ. Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction. A prospective study. Circulation 1988; 78:816-24.
    71. Mortara A, La Rovere MT, Pinna GD, et al. Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 1997; 96:3450-8.
    72. Shan ZZ, Dai SM, Su DF. Relationship between baroreceptor reflex function and end-organ damage in spontaneously hypertensive rats. Am J Physiol 1999; 277:H1200-6.
    73. Su DF, Miao CY. Arterial baroreflex function in conscious rats. Acta Pharmacol Sin 2002; 23:673-9.
    74. Su DF. Treatment of hypertension based on measurement of blood pressure variability: lessons from animal studies. Curr Opin Cardiol 2006; 21:486-91.
    75. Cai GJ, Miao CY, Xie HH, Lu LH, Su DF. Arterial baroreflex dysfunction promotes atherosclerosis in rats. Atherosclerosis 2005; 183:41-7.
    76. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000; 52:595-638.
    77. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for lifespan extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000; 289:2126-2128.
    78. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improve health and survival of mice on high-calorie diet. Nature. 2006; 444:337-342.
    79. Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell. 2004; 117:441-453.
    80. Sinclair DA, Guarente L. Extrachromosomal rDNA circles-a cause of aging in yeast. Cell. 1997; 91:1033-1042.
    81. Ando K, Higami Y, Tsuchiya T, Kanematsu T, Shimokawa I. Impact of aging and life-long calorie restriction on expression of apoptosis-related genes in male F344 rat liver. Microsc Res Tech. 2002; 59:293-300.
    82. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell.2001; 107: 137-148.
    83. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001; 107: 149-159.
    84. Valos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell. 2002; 10: 523-535.
    85. Muth V, Nadaud S, Grummt I, Voit R. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBOJ. 2001; 20: 1353-1362.
    86. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD(R)-dependent tubulin deacetylase. Mol Cell.2003; 11: 437-444.
    87. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBOJ. 2004; 23: 2369-2380.
    88. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003; 12: 51-62.
    89. Picard F, Kurtev M, Chung N, et al.Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature.2004; 429: 771-776.
    90. Higami Y, Shimokawa I. Apoptosis in the aging process. Cell Tissue Res. 2000; 301:125-132.
    1. Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 2000; 97:5807-11.
    2. Smith JS, Brachmann CB, Celic I, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A 2000; 97:6658-63.
    3. Kaeberlein M, Powers RW, 3rd. Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev 2007; 6:128-40.
    4. Borra MT, O'Neill FJ, Jackson MD, et al. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. J Biol Chem 2002; 277:12632-41.
    5. Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D. Functional significance of histone deacetylase diversity. Curr Opin Genet Dev 2001; 11:162-6.
    6. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000; 273:793-8.
    7. Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J Biol Chem 2003; 278:50985-98.
    8. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73:417-35.
    9. Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 1995; 9:2888-902.
    10. Min J, Landry J, Sternglanz R, Xu RM. Crystal structure of a SIR2 homolog-NAD complex. Cell 2001; 105:269-79.
    11. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell 2002; 10:523-35.
    12. Khan AN, Lewis PN. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases. J Biol Chem 2005; 280:36073-8.
    13. Archer SL. Pre-B-cell colony-enhancing factor regulates vascular smooth muscle maturation through a NAD+-dependent mechanism: recognition of a new mechanism for cell diversity and redox regulation of vascular tone and remodeling. Circ Res 2005; 97:4-7.
    14. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16:4623-35.
    15. Marsh VL, Peak-Chew SY, Bell SD. Sir2 and the aceryltransferase, Pat, regulate the archaeal chromatin protein, Alba. J Biol Chem 2005; 280:21122-8.
    16. Lamming DW, Latorre-Esteves M, Medvedik O, et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 2005; 309:1861-4.
    17. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403:795-800.
    18. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16:93-105.
    19. Allison SJ, Milner J. Remodelling chromatin on a global scale: a novel protective function of p53. Carcinogenesis 2004; 25:1551-7.
    20. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107:149-59.
    21. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116:551-63.
    22. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303:2011-5.
    23. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J2004; 23:2369-80.
    24. Kume S, Haneda M, Kanasaki K, et al. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem 2007; 282:151-8.
    25. Fu M, Liu M, Sauve AA, et al. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 2006; 26:8122-35.
    26. Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006; 8:1025-31.
    27. Pagans S, Pedal A, North BJ, et al. SIRTl regulates HIV transcription via Tat deacetylation. PLoS Biol 2005; 3:e41.
    28. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRTl. Nature 2005; 434:113-8.
    29. Picard F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429:771-6.
    30. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12:51-62.
    31. Muth V, Nadaud S, Grummt I, Voit R. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J 2001; 20:1353-62.
    32. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305:390-2.
    33. Blander G, Olejnik J, Krzymanska-Olejnik E, et al. SIRT1 shows no substrate specificity in vitro. J Biol Chem 2005; 280:9780-5.
    34. Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003; 23:3173-85.
    35. Matsushita N, Takami Y, Kimura M, et al. Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells 2005; 10:321-32.
    36. Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280:13560-7.
    37. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 2002; 99:13653-8.
    38. Mahlknecht U, Ho AD, Letzel S, Voelter-Mahlknecht S. Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res 2006; 112:208-12.
    39. Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005; 280:21313-20.
    40. Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124:315-29.
    41. Voelter-Mahlknecht S, Letzel S, Mahlknecht U. Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene. Int J Oncol 2006; 28:899-908.
    42. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007; 282:6823-32.
    43. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107:137-48.
    44. Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004; 306:2105-8.
    45. Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005; 123:437-48.
    46. Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 2005; 280:40364-74.
    47. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRTl. J Biol Chem 2002; 277:45099-107.
    48. Sauve AA, Moir RD, Schramm VL, Willis IM. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol Cell 2005; 17:595-601.
    49. Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 2001; 98:15113-8.
    50. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004; 305:1010-3.
    51. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425:191-6.
    52. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J Biol Chem 2005; 280:37377-82.
    53. Moazed D, Kistler A, Axelrod A, Rine J, Johnson AD. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci USA 1997; 94:2186-91.
    54. Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 1997; 11:83-93.
    55. Straight AF, Shou W, Dowd GJ, et al. Netl, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 1999; 97:245-56.
    56. Shou W, Seol JH, Shevchenko A, et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdcl4 from nucleolar RENT complex. Cell 1999; 97:233-44.
    57. Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 1995; 80:583-92.
    58. Fabrizio P, Gattazzo C, Battistella L, et al. Sir2 blocks extreme life-span extension. Cell 2005; 123:655-67.
    59. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002; 298:2390-2.
    60. Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase. Curr Opin Microbiol 2004; 7:115-9.
    61. Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2:105-17.
    62. Bordone L, Motta MC, Picard F, et al. Sirtl regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006; 4:e31.
    63. Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2005; 2:153-63.
    64. Picard F, Guarente L. Molecular links between aging and adipose tissue. Int J Obes (Lond) 2005; 29 Suppl 1 :S36-9.
    65. Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 2005; 280:20589-95.
    66. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444:337-42.
    67. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006; 5:493-506.
    68. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127:1109-22.
    69. Guarente L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet 1999; 23:281-5.
    70. Tanny JC, Moazed D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Proc Natl Acad Sci U S A 2001; 98:415-20.
    71. Tsukamoto Y, Kato J, Ikeda H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 1997; 388:900-3.
    72. Ota H, Tokunaga E, Chang K, et al. Sirtl inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 2006; 25:176-85.
    73. Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res 2005; 65:10457-63.
    74. Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2006; 2:e40.
    75. Chua KF, Mostoslavsky R, Lombard DB, et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2005; 2:67-76.
    76. Kamel C, Abrol M, Jardine K, He X, McBurney MW. SirTl fails to affect p53-mediated biological functions. Aging Cell 2006; 5:81 -8.
    77. Guarente L. Calorie restriction and S1R2 genes梩owards a mechanism. Mech Ageing Dev 2005; 126:923-8.
    78. Sakamoto J, Miura T, Shimamoto K, Horio Y. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 2004; 556:281-6.
    79. Wang J, Zhai Q, Chen Y, et al. A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 2005; 170:349-55.
    80. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989; 5:155-71; discussion 72.
    81. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000; 14:1021-6.
    82. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 2004; 101:6659-63.
    83. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005; 6:298-305.
    84. Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field. Aging Cell 2006; 5:97-108.
    85. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410:227-30.
    86. Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxol-Caenhancer-binding protein alpha transcriptional complex. J Biol Chem 2006; 281:39915-24.
    87. Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Svt1. Science 2005; 310:1641.
    88. Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 1998; 101:1353-61.
    89. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8:1288-95.
    90. Guarente L. NO link between calorie restriction and mitochondria. Nat Chem Biol 2005; 1:355-6.
    91. Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310:314-7.
    92. Barbieri M, Bonafe M, Franceschi C, Paolisso G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 2003; 285:E1064-71.
    93. Rudman D, Kutner MH, Rogers CM, Lubin MF, Fleming GA, Bain RP. Impaired growth hormone secretion in the adult population: relation to age and adiposity. J Clin Invest 1981; 67:1361-9.
    94. Longo VD, Finch CE. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 2003; 299:1342-6.
    95. Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell 2006; 126:257-68.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.