神经网络优化方法及其在信息处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文全面地介绍了神经网络研究的发展历史及其意义、神经网络研究内容、神经网络应用前景、神经网络基本概念等,重点阐述了BP神经网络还存在的各种局限性及其改进方法。
     针对线性方程组求解问题,论文提出了基于矩阵元素的神经网络模型算法、基于向量空间的神经网络模型算法以及基于LDU分解的神经网络模型算法,证明了三种模型算法的收敛性,为神经网络学习率大小的确定建立了理论依据。在权值调整中采用龙贝格(Romberg)修正法,有效避免了BP算法存在局部极小的问题。仿真研究结果表明,所提出的基于神经网络算法的线性方程组求解方法不仅具有高的计算精度,而且不涉及逆矩阵运算,因而是有效的计算方法。
     针对非线性方程和非线性方程组的求解问题,论文分别对神经网络模型和算法作了探索性研究,证明了算法的收敛性,为神经网络学习率大小的确定建立了理论依据。在权值调整中引入了动量项,有效加快了网络收敛速度。仿真研究结果表明,本文研究的求解非线性方程和非线性方程组的神经网络算法具有收敛速度快、计算精度高、收敛性不依赖初始值等特点。
     针对数值积分问题背景,论文对神经网络模型和算法作了一系列探索性研究,分析了神经网络算法的收敛性,为神经网络学习率大小的选择建立了理论依据,创造性地建立了数值积分与神经网络权值之间的关系。仿真研究结果表明,所提出的数值积分方法具有计算精度高,计算速度快的特点。
     针对微分方程初值问题的求解,论文探索性研究了求解微分方程初值问题的神经网络模型算法,并分析了算法的收敛性,为神经网络学习率大小的确定建立了理论依据。仿真结果表明,解微分方程初值问题的神经网络算法可以对微分方程初值问题的解建立数学模型,因而可以计算出任意给定点处的函数值,这是任何差分方法无法做到的。
     针对FIR(Finite Impulse Response)线性相位数字滤波器优化设计问题,提出了以余弦基函数cos( nω)为隐层神经元激励函数的神经网络模型算法,证明了神经网络算法的收敛性,为神经网络学习率大小的确定建立了理论依据。此外,本文将四种情况下的FIR线性相位数字滤波器的优化设计进行了有效统一,算法的通用性强。仿真实验结果表明,所提出的FIR线性相位数字滤波器优化设计方法有效避免了求逆矩阵的问题,因而有效克服了高阶FIR线性相位数字滤波器的优化设计瓶颈。
     针对信号的频谱分析问题背景,本文探索性研究了基于傅立叶基函数的神经网络模型算法,研究了算法的收敛性,为神经网络学习率大小的确定给出了理论依据。所提出的基于神经网络算法的信号处理方法(频谱分析、随机噪声滤波)不涉及复数的乘法运算和复数的加法运算,计算精度高,特别适合基于DSP芯片的软、硬件实现。
     最后,本文介绍了神经网络算法在传感器中的应用实例。使用傅立叶基函数神经网络算法拟合曲线的方法,对传感器灵敏度-温度特性曲线进行了拟合。研究结果表明,用傅立叶正交基函数神经网络算法拟合的曲线十分光滑,拟合精度高。
     基于正交基神经网络算法的传感器误差补偿方法具有高的补偿精度,计算量小,收敛速度快,与最佳直线拟合法、最小二乘法多项式曲线拟合法、非线性反函数补偿法以及其它神经网络的非线性补偿等方法相比具有明显的优势,因而是一种有效的传感器误差补偿方法。
     利用正交基神经网络与最小二乘递推算法相结合的多传感器信息融合方法对参数进行检测时,不需要知道传感器量测数据的任何先验知识,就可以通过神经网络训练估计出分布式参数的值。该方法既可以提高参数的检测精度,同时也具有很好的稳定性,计算量小,便于计算机实时处理,因而是一种有效的多传感器信息融合方法。
This dissertation introduces a more comprehensive of the neural network research on the history, significance, research contents, application prospects, and other basic concepts etc. Focus on BP neural network, its limitations and improved methods were introduced.
     According to Linear systems, the article put respectively forward neural network model and algorithm based on the matrix elements, vector space and the LDU decomposition. The convergence of three kinds of neural network algorithms was proved. The theory gist selecting the neural network learning rate was given. As the Romberg method was used to the weights adjustment of neural network, the local minimum problems of the BP algorithm were effectively prevented. The results showed that the numerical method to solve linear systems based on the neural network algorithm not only has high precision, but also do not involve inverse matrix operation. Therefore it is an effective method of calculation.
     For the problems to solve nonlinear equation and nonlinear systems, the neural network models and algorithms were explored and studied in the paper. The convergence of neural network algorithms was proved. The theory gist was determined on selecting the neural network learning rate. Weight adjustment with the momentum term speeds effectively up the convergence speed of the neural network. The simulation results showed that the neural network algorithm, which is used to solve nonlinear equation and nonlinear systems, is of fast convergence speed and high accuracy, and the convergence is not dependent on the characteristics of the initial value.
     The dissertation introduced the neural network model and algorithm for solving numerical integration problem. The convergence of neural network algorithms was presented and proved. The theory gist was determined on selecting the neural network learning rate. The relations between a numerical integration and neural network weights were creatively built. The simulation results showed that the numerical integration method has high accuracy, fast computing speed characteristics.
     This dissertation discussed and studied the neural network algorithm solving differential equations with initial value problems. The convergence of neural network algorithms was proved. The theory gist was determined on selecting the neural network learning rate. The results of experiments show that the neural network algorithm solving differential equations with the initial value problem can establish mathematical model, which can be calculated any given point of function, which is any difference method can not do.
     According to linear phase FIR digital filter optimization design, the neural network model algorithm was put forward using a cosine basis functions cos( nω) as hidden layer neuron activation functions. The neural network algorithm convergence was proved. The theory gist selecting the neural network learning rate was determined. In addition, optimization design approaches of four kinds of the linear phase FIR digital filters were effectively reunified. Algorithm has strong generality. The results showed that the optimization design methods of the linear phase FIR digital filters presented in this paper can effectively prevent the inverse matrix problems. Therefore, it effectively overcomes the optimization design bottleneck of the higher-order linear phase FIR digital filters.
     Spectrum analysis method based on neural network algorithm with Fourier basic functions was explored and studied. The convergence of neural network algorithms was presented and proved. The theory gist was determined on selecting the neural network learning rate. Signal processing approach presented in this paper based on neural network algorithm (spectral analysis, Random noise filtering) does not involve the complex multiplication and addition operations. Its computing accuracy is high. It is particularly suitable for the implementation of software and hardware based on DSP chip.
     Finally, this paper introduces application examples of sensor based on the neural network algorithm. The model fitting the sensor sensitivity - temperature characteristic curve based on the neural network algorithm with Fourier basis functions was used. The results show that the fitting curve is very smooth using neural network algorithm with Fourier orthogonal basis function, and its fitting precision is very high.
     The sensor error compensation method based on orthogonal basis neural network algorithm has high accuracy of compensation, small calculated amount and fast convergence rate. It has significant advantages compared with the best linear fit, the least-squares polynomial curve fitting, nonlinear inverse function compensation, and other nonlinear neural network compensation methods. Therefore it is an effective method of sensor error compensation.
     The method can estimate the value of distributed parameter by orthogonal basis neural network training based on recursive least squares algorithm in the field of parameters detection of the multi-sensor information fusion, which does not need to know the measurement data of any a priori knowledge of sensor. The approach can improve the accuracy of measurement parameters, but also has good stability, a small amount of calculation and to facilitate real-time processing, which is an effective multi-sensor data fusion method.
引文
[1]刘永红.神经网络理论的发展与前沿问题[J].信息与控制,1999,28(1)
    [2] Miller W T. Real-time application of neural networks for sensor-based control of robots with vision [J]. IEEE Trans. System, Man, Cybern., 1989, (19):825-831
    [3]焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1993
    [4]焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1990
    [5]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1990
    [6]郭爱克.神经计算科学[J].上海:上海科技出版社,2001:69-81
    [7]刘秉正.生命科学中的混沌[J].长春:东北师范大学出版社,1999:110-130
    [8]何振亚.神经计算科学的展望[J].数据采集与处理,16(1):1-4,2001
    [9] Ergezinger S. Thomsen E. An accelerated learning algorithm for multilayer perceptrons: optimization layer by layer. IEEE Trans. Neural Networks, 1995,6(1):31-42
    [10] Gou Jen Wang. A fast multilayer neural network training algorithm based on the layer by layer optimizing procedures. IEEE Trans. Neural Networks, 1996, 7(3):768-775
    [11] Rubanov N.S. The layer wise method and the backpropagation hybrid approach to learning a feedforward neural network. IEEE Trans. Neural Networks, 2000,11(2):295-305
    [12]田传俊,韦岗.前向神经网络的一种快速分层线性优化算法.电子学报,2002,30(7):1495-1498
    [13]谢宏,程浩忠等.前向神经网络的神经元分层逐个线性优化快速学习算法.电子学报,2005, 33(1): 111-114
    [14]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社,2005:1-2
    [15]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999:4-14
    [16] McCulloch W S and Pitts W. A logical calculus of ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943, (5):115-133
    [17] Hebb D.O. The organization of behavior[M]. New York: Wiley, 1949
    [18] Rosenblatt F. The Perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958(65):386-458
    [19] Widrow B and Hoff M E. Adaptive switching circuit[M]. New York: IRE, 1960:94-104
    [20] M.Minsky and S. Papert. Perceptrons[M]. MIT Press, 1969
    [21] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[C]. Proceedings of the National Academy of Science, 1982,79,2554-2558
    [22] Rumelhart D E, Hinton G E and Williams R J. Learning representations by back- propagation errors[J]. Nature, 1986(323):533-536
    [23] Ergezinger S. Thomsen E. An accelerated learning algorithm for multilayer perceptrons: optimization layer by layer[J]. IEEE Trans. Neural Networks, 1995,6(1):31-42
    [24] Gou Jen Wang. A fast multilayer neural network training algorithm based on the layer by layer optimizing procedures[J]. IEEE Trans. Neural Networks, 1996, 7(3):768-775
    [25] Rubanov N.S. The layer wise method and the backpropagation hybrid approach to learning a feedforward neural network[J]. IEEE Trans. Neural Networks, 2000,11(2):295-305
    [26]田传俊,韦岗.前向神经网络的一种快速分层线性优化算法[J].电子学报,2002,30(7):1495-1498
    [27]谢宏,程浩忠等.前向神经网络的神经元分层逐个线性优化快速学习算法[J].电子学报,2005, 33(1): 111-114
    [28] Selkoe D.J.大脑衰老、智能减退[M].科学(Science American中译本), 1993, 1:20-27,100
    [29] Kennedy M P, Chua L O. Neural networks for nonlinear programming[J]. IEEE Trans Circuits Syst, 1988, 35(5):554-562
    [30] Rodriguez-Vazquez A, Dominguz-Castro R, Rueda A, et al. Nonlinear switched-capacitor neural networks for optimization problems[J]. IEEE Trans Circuits Syst, 1990, 37(3):384-398
    [31] Maa C Y, Shanbatt M A. Linear and quadratic programming neural-network analysis[J]. IEEE Trans Neural Networks,1992, 3(4):580-594
    [32] Zak S H, Upatising V, Hui S. Solving linear programming problems with neural networks: A comparative study[J]. IEEE Trans Neural Networks, 1995, 6(1):94-104
    [33] Leung Yee, Chen Kaizhou, Jiao Yongchang, Gao Xingbao, et al. A new gradient-based neural network for solving linear and quadratic programming problems[J]. IEEE Trans Neural Networks,2001, 12(5):580-594
    [34] Leung M.T. Fingerprint processing using back propagation neural networks[J],IJCNN’90, 1990
    [35] Fukshima K. A neural network model for selective attention in visual pattern recognition[M]. Biological Cybernetics, Springer-Verlag,1986
    [36] Fukshima K. Handwritten alphanumeric character recognition by the necognitron[J]. IEEE Trans Neural Networks, 1991
    [37]徐青松.Improved Hamming网络在字符识别中的应用[C].中国人工智能’92,1992
    [38]王爱民等.叠层BP网识别手写中文字[C].中国神经网络首届学术大会论文集,1990
    [39] Ahalt S.C. et al. Performance of synthetic neural network classification of noise radar signals[J]. Advances in Neural Information Processing Systems, Vol 1: 181-288, 1989
    [40] Gorman R. P. Learned classification of sonar targets using a massively parallel network[J]. IEEE Trans. On ASSP, 1988, 36(7):1135-1140
    [41] Wacholder E. A neural network algorithm for the multiple travling salesman problem[J]. Biology Cybernetics, 1989, 61(1):11-19
    [42] Narendra K. S. and Parthasarathy K. Identification and control of dynamical systems using neural networks[J]. IEEE Trans On Neural Networks, 1990, 1(1):4-27
    [43] Narendra K. S. and Parthasarathy K. Gradient methods for the optimization of dynamical systems containing neural networks[J]. IEEE Trans On Neural Networks, 1991, 2(2):252-262
    [44] Bhat N.V. Modeling chemical process systems via neural computation[J]. IEEE Control Systems Magazine, 1990, 10(3):24-30
    [45]沈清,胡德文.神经网络应用技术[M],国防科技大学出版社,1993
    [46] Guez A., Eilbert J. and Kam M. Neuromorphic architecture for adaptive robot control: A preliminary analysis Proc[C]. IJCNN’87,1987, Vol. IV: 567-572
    [47]雷蕴奇.神经元自适应控制的概念[C].中国神经网络首届学术大会论文集,1990
    [48] Albus J.S. A new approach to manipulator control: The cerebellar model articulation control (CMAC) [J]. Trans. ASME J. Dyn. Syst. Meas. Contr. 1975, Vol. 97:220-227
    [49]胡德文等.神经网络与机器人眼手系统[J].机器人,1992,13(7)
    [50] Tamura S. and Waibel A. Noise reduction using connectionist models[M]. Advances in neural information processing systems, 1988, 553-556
    [51] Widrow B. and Winter R. Neural nets for adaptive filtering and adaptive pattern recognition[J]. Computer, 1988, 21(3):25-29
    [52] Xue Q.Z. Neural network based adaptive matched filtering for QRS detection[J]. IEEE Trans. On Biomedical Engineering, 1992, 39(4):317-329
    [53] Zhang Q. Adaptive equalization using the back-propagation algorithm[J]. IEEE Trans. On CAS, 1990, 37(6):848-849
    [54] Qureshi S.U.H. Adaptive equalization[C]. Proc. Of IEEE, 1985, Vol.73, 1349-1387
    [55] Lippmann R.P. and Bexkman P. Adaptive neural net preprocessing for signal diction in non-Gaussion noise[M]. Advances in Neural Information Processing Systems, 1989, Vol. I
    [56] Provence J.D. Neural network implementation for maximum-likelihood sequence estimation of binary signals in Gaussion noise[C]. Proc. Of the IEEE ICNN, 1987, Vol.3
    [57] Zhou Y.T. Image restoration using a neural network[J]. IEEE Trans. On ASSP. 1988, 36(47)
    [58] Dhawan A.P. and Dufresne T. Low-level image processing and edge enhancement using a self organizing neural networks[C]. IJCNN’90, 1990
    [59]王成道,陈瑶.任意σ的Δ2边缘检测算子的神经元网络[C].《中国神经网络首届学术大会论文集》,1990
    [60] Liang M. and Sun Z.K. A neural network model for image segmentation[C]. ICAI & NN’92, Switzerland
    [61] Namphol A. Higher order data compression with neural network[C]. IJCNN’91, 1991, Vol.1
    [62] Daugman J.D. Complete discrete 2-D Gabor transforms by neural network for image analysis and compression[J]. IEEE Trans. On ASSP, 1988, 36(7)
    [63] Kosko B. Adaptive bi-directional associative memories[M]. Applied Optics,1982
    [64] Michel A.N. et al. Analysis and synthesis techniques for Hopfield type synchronous discrete time neural network with application to associative memory[J]. IEEE Trans. On CASII, 1990
    [65]余少波,胡守仁.联想存储器研究[J].记忆、思维、智能系统论文集,1990,武汉水电学院
    [66]施鸿宝,王秋荷.专家系统[M].西安:西安交通大学出版社,1990
    [67]吴信东,邹燕.专家系统技术[M].北京:电子工业出版社,1988
    [68]管纪文,刘大友.知识工程原理[M].吉林大学出版社,1988
    [69]王世同.神经模糊系统及其应用[M].北京航空航天大学出版社,1997
    [70] Stent G S. A Physiological mechanism for Hebb’s postulate of learning[C]. Proceedings of the National Academy of Science, 1973 (70):997-1001
    [71] Changeux J P and Danchin A. Selective stabilization of developing as a mechanism for the specification of neural networks. Nature, 1976(264):705-712
    [72] Oja E and Karhunen J. Signal separation with nonlinear Hebbian learning in Computational Intelligence[M]. New York: New York Press,1995:83-97
    [73] Oja E and hyvarinen A. Blind signal separation by neural networks[C]. Proceedings of ICONIP’96, Hong Kong, 1996:7-14
    [74] Oja E, Ogawa H and Wangviwattana J. Learning in nonlinear constrained hebbian networks[C]. Proceedings of the ICANN’91,1991:385-390
    [75] Rosenblatt F. Principles of neurodynamics [M]. Washington, DC:Spartan Books, 1962
    [76] Broomhead D S and Lowe D. Multi-variable functional interpolation and adaptive networks[J]. Complex Systems, 1988(2):269-303
    [77] Poggio T. Networks for approximation and learning[C]. Proceeding of the IEEE, 1990,78(9):1481-1497
    [78]张治国.人工神经网络及其在地学中的应用研究[D].吉林大学博士论文,2006:33-34
    [79] Richard L Burden, J Douglas Faires. NUMERICAL ANALYSIS(Seventh Edition). Higher Education Press,China, 2001. 455.
    [80]沈剑华编著.数值计算基础[M].同济大学出版社,1999年,188-205
    [81]王能超编著.数值分析简明教程.高等教育出版社,1984年,166-174
    [82] Saad Y. Krylov subspace methods on supercomputers[J]. SIAM J Sci Statist Comput, 1998, 10(6):1200-1232
    [83] Freund R W, Golub G. H, Nachtigal N M. Iterative solution of linear systems[J]. ACTA Numerica, 1992, 57-100
    [84] Barrett R, etal. Templates for the solution of linear systems: Building Blocks for Iterative Methods[M]. SIAM, Philadephia, 1994.
    [85]陈娟,陈强.一类线性系统稳定性判别的递推算法[J].湖南大学学报,2001,28(3):173-175
    [86]王秋菊,黄文梅.基于神经网络局部模型的非线性系统辨识的研究[J].湖南大学学报,2003,30(3):50-52
    [87]龚仁喜,邓艳等.一种求解线性方程组的新方法[J].广西大学学报,2004,29(1):30-34
    [88]林成森编著.数值计算方法(下册).科学出版社,1998年3第1版,1-49
    [89]王宏禹,林治铖.信号处理中的不适定问题.信号处理,1985,1(3):173-180
    [90] Cadzow J A. An extrapolation procedure for band-limited signals. IEEE Trans ASSP, 1979, 27(1):4-12
    [91]何昌礼.解病态线性方程组的奇异值分解法及其应用.武汉:中国地质大学出版社,1990
    [92]李庆扬,关治,白峰衫.数值计算原理[M].北京:清华大学出版社,2000
    [93]朱扬明,王治中.病态矩阵判别的一种新方法[J].上海交通大学学报,1992,26(3):110-112.
    [94]贝清泉.解线性方程组的误差分析与方程组病态的判断[J].汕头大学学报(自然科学版)2000,15(1):20-24
    [95]李春光,徐成贤.一种求解大型线性方程组的自适应算法[J].工程数学学报,2001,18(3):71-77
    [96]邹积麟,钱稼茹.病态方程的复合结构解法[J].清华大学学报(自然科学版),2001,41(4):231-234
    [97]史文谱,刘迎曦,褚京莲,郭淑红.求解线性方程组的一种新方法[J].计算力学学报,2003,20(6):715-720
    [98]殷福亮,殷福新,林淑云.解病态线性方程组的遗传算法[J].大连理工大学学报,1994,34(6):732-737
    [99] Richard L.Burden and J.Douglas Faires. NUMERICAL ANALYSIS[M] (Seventh Edition). Higher Education Press, 2001,48– 90, 600-635
    [100]沈剑华编著.数值计算基础.同济大学出版社,1999年8月第1版, 117-140
    [101].倪筱颖.求解非线性方程的一种半隐式迭代法.哈尔滨理工大学学报,1998, 3(2):83-86
    [102] Ni Youying. A semi-covered Iteration Method to solve non-linear equation in one variable [J]. Transaction of Haerbin University of Science and Technology,1998,3(2):83~86
    [103] Wait R. The Numerical Solution of Algebraic Equations [M]. New York: John Wiley & Sons, Ltd., 1979
    [104] G. Adomian. A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 102(1984):420-434
    [105] G. Adomian, R. Rach. On the solution of algebraic equations by the decomposition method. J. Math. Anal. Appl. 105(1985)141-166
    [106] G. Adomian. Solving frontier problems of physics: The decomposition method. Kluwer Academic Publishers, 1994
    [107] Ibrahim Abu-Alshaikh, Ali Sahin. Two-point iterative methods for solving nonlinear equations. Appl. Math. Comput. 182 (2006)871-878
    [108]赵华敏,陈开周.解非线性方程组的神经网络算法[J].电子学报,2002,30(4):601-604
    [109]陈志,高旅端等.解非线性方程组的一类离散的Newton算法[J].计算数学,1998,20(1): 57-68
    [110]孔敏,沈祖和.解非线性方程组的极大熵方法[J].高等学校计算数学学报,1999,21(1):1-7
    [111]罗亚中,周黎妮,唐国金.用遗传算法求解非线性方程组的应用研究[J].华南理工大学学报(自然科学版),2003,31:140-142
    [112]罗亚中,袁端才,唐国金.求解非线性方程组的的混合遗传算法[J].计算力学学报, 2005, 22(1):109-114
    [113]王书亭,王战江.粒子群优化算法求解非线性问题的应用研究[J].华中科技大学学报(自然科学版),2005,33(12):4-7
    [114]莫愿斌,陈德钊,胡上序.求解非线性方程组的粒子群复形法[J].信息与控制,2006,35(4):423-427
    [115]隋允康,兆文中.非线性方程组的二次规划解法和应用[J].计算力学学报,2002,19(2):245-246
    [116]张乐友,刘三阳,吴青.解非线性方程组的路径跟踪算法[J].西安电子科技大学学报(自然科学版),2002, 29(4):558-560
    [117] S.M. El-Sayed. The modified decomposition for solving nonlinear algebraic equations. Appl. Math. Comput. 132(2002)589-597
    [118] E. Babolian, J. Biazar. Solution of nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 132(2002)167 -172
    [119] S. Abbasbandy. Improving Newton-Raphson method for non-linear equations by modified Adomian decomposition method. Appl. Math. Comput. 145 (2003)887 -893
    [120] M.Basto, V. Semiao, F.L. Calheiros. A new iterative method to compute nonlinear equations. Appl. Math. Comput. 173 (2006)468 -483
    [121] S. Abbasbandy. Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 170 (2005)648-656
    [122]沈剑华.数值计算基础[M].上海:同济大学出版社,1999,73-109
    [123]王能超.数值分析简明教程[M].北京:高等教育出版社,1997,66~96
    [124] Richard L. Burden, J. Douglas Faires. Numerical Analysis(Seventh Edition)[M].北京:高等教育出版社,2001,186-226;190;212;206、772
    [125]熊华,杨国孝.一类振荡函数的数值积分方法[J].北京理工大学学报,1999,19(3):280-284
    [126]郭汉伟,何建国,伊家贤等.基于多分辨率分析的数值积分算法[J].国防科技大学学报,2000,22(4):94-96
    [127]薛峰,丁纯,薛禹胜.数值积分自动中止的算法及其工程应用[J].电力系统自动化,2001,(10):9-13
    [128]闫再友,姜楫,何友声等.声学边界元方法中超奇异数值积分处理的新方法[J].声学学报,2001,26(3):282-286
    [129]刘承志,崔斗星.天文动力学方程数值积分中的一种有效变步法[J].天文学报,2002,43(4):387-390
    [130] M.S. Al-Haik, H.Garmestani, I.M. Navon. Truncated-Newton training algorithm for neurocomputational viscoplastic model [J]. Computer methods in applied mechanics and engineering, 2003, 192:2249-2267
    [131] Cao Chunhong, Zhang Yongjian, Li Wenhui. A new method for geometric constraint solving-A hybrid genetic algorithm based on conjugate gradient algorithm [J]. Chinese journal of scientific instrument,2004,25(4):389-392
    [132] Xiao Jun, Lv Zhenzhong, Wang Jun. Diagnostic model of cinder characteristic based on improved BP algorithm [J]. Journal of Engineering For Thermal Energy and power, 2002, 17(3): 271-274
    [133] Wang Huaxiang, Zhu Xueming, Zhang Lifeng. Conjugate gradient algorithm for electrical capacitance tomography [J]. Journal of Tianjin University, 2005, 38(1): 1-4
    [134] R. Fletcher. Practical methods of optimization[M]. Second ed., John Wiley and Sons, 1987
    [135] R. Fletcher, C. Reeves, Function minimization by conjugate gradients[J]. Computer J. 1964,7:149-154
    [136] Liang Ximing, Cai Zixing. Active set truncated-Newton algorithm for large-scale bound constrained minimization[J]. J. CENT. SOUTH UNIV. TECHNOL., 2002, 33(1): 82-86
    [137] Liang Ximing, Qian Jixin. Subspace truncated-Newton algorithm for large-scale bound constrained optimization [J]. Journal of Zhejiang University (Science Edition), 2002, 29(5): 494-499
    [138] Dembo R S, Steihaug T. Truncated-Newton algorithm for large-scale unconstrained optimization [J]. Math Prog, 1983,26(2): 190-212
    [139] Facch Neif, Judice J, Soares J. An active set Newton algorithm for large-scale nonlinear programs with box constraints [J]. SIAM J Optim, 1998,8(1): 158-186
    [140]沈剑华.数值计算基础[M].上海:同济大学出版社,1999,73-109
    [141]王能超.数值分析简明教程[M].北京:高等教育出版社,1997,66-96
    [142] Richard L. Burden, J. Douglas Faires. Numerical Analysis(Seventh Edition)[M].北京:高等教育出版社,2001,251-342
    [143]曾喆昭,文卉编著.数值计算[M].清华大学出版社,2005年9月第1版,137-160
    [144] V.R.Algazi and M.Suk. On the frequency weight least squares design of finite duration filters. IEEE Trans. Circuits and Syst., Cas-22:943- 953, 1975
    [145] Y.C.Lim, J.H.Lee, C.K.Chen and R.H.Yang. A weight Least Squares Algorithm for Quasi-Equiriple FIR and IIR Digital Filter Design. IEEE Trans. Signal Processing, 40:551-558, Mar. 1992
    [146] J.H.Lee, C.K.Chen and Y.C.Lim. Design of Discrete Coefficent FIR Digital Filters with Arbitrary Amplitute and Phase Responses. IEEE Trans. Circuits Syst., 40:444-448, July,1993.
    [147] G.C.Goodwin and K.S.Sin. Adaptive Filtering Prediction and Control. Pretice-Hall, Englewood Cliffs, NJ., 1984
    [148] L. Ljung and T.Soderstrom. Theory and Practice of Recursive Identification[M]. The MIT. Press, 1983
    [149] Xiaoping Lai. A Random Sampling Recursive Least-Squares Approach to the Design of FIR Digital Filters. Signal Processing, China, 15(3):260-264,1999
    [150] Hui Zhao and Juebang Yu. A Novel Neural Network-Based Approach for designing digital filter, in Proc. ISCAS’97/IEEE, Hong Kong, pp2272-2275, June 1997
    [151] Hui Zhao and Juebang Yu. A Novel Neural Network-Based Approach for designing 2-D FIR filters. IEEE Trans. On CASII,44:1095-1099, Nov. 1997
    [152] Yan Wang, Xiaofeng Liao and Juebang Yu. Complex Neural Network on Designing FIR Digital Filter. Signal Processing , China, Vol. 15(3):193-198, 1999
    [153] ZENG Zhe-zhao and LI Ren-fa. Study on the Optimum Design of the High-Order Muti-Band-Pass Filters. ACTA ELECTRONICA SINICA, China, 30(1):87-89, 2002
    [154] Rahenkamp C A, Kumar B V. Modifications to the McClellan-Parks and Rabiner Computer Program for Designing Higher Order Differentiating FIR Filters[J].IEEE Trans. On Acoust Speech Signal process, 1986,34:1671-1674.
    [155] Pei S C, Shyu J J. Eigenfilter Design of Higher-Order Digital Differentiating[J]. IEEE Trans. On Acoust Speech Signal process, 1989,37:505-511.
    [156] Tzeng S T, Lu H C. Genetic Algorithm Approach for Designing Higher-order Digital Differentiators[J]. Signal Processing, 1999, 79(2):175-186.
    [157] WANGLing, LI Wen-feng, ZHENG Da-zhong. Simulated Annealing for Designing Higher-Order Digital Differentiator[J]. Systems Engineering and Electronics, china, 2001,23(12):1-3.
    [158]程佩青.数字信号处理教程[M].清华大学出版社, 2001年第2版,pp334-341,369-372
    [159] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series[J]. Mathmatics of Computation, 1965, 19(90):297-301
    [160] Marple S.L. Digital spectral analysis with application[M]. Prentice Hall, 1985, 40-65
    [161]齐国清.几种基于FFT的频率估计方法精度分析[J].振动工程学报,2006,19(1):86-92
    [162]齐国清,贾欣乐.插值FFT估计正弦信号频率的精度分析[J].电子学报,2004,32(4):625-629
    [163]齐国清,贾欣乐.基于DFT相位的正弦波频率和初相位的高精度估计方法[J].电子学报,2001,29(9):1164-1167
    [164] H.V. Sorensen et al. Real-valued fast Fourier transform algorithms[J]. IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp.849-863, june 1987
    [165] M. Vetterli and H. Nussbaumer. Simple FFT and DCT algorithms with reduced number of operations. Signal Processing, vol. 6, pp.267-278, Aug. 1984
    [166] A. Gupta and K. R. Rao. An efficient FFT algorithm based on the discrete sine transform[J]. IEEE Transactions on Signal Processing, 39(2): 486-490, Feb. 1991
    [167] P. Duhamel and H. Hollmann. Split-radix FFT algorithm[J]. Electron Lett., vol. 20, pp. 14-16, Jan. 1984
    [168]丁康,陈建林,苏向荣.平稳和非平稳振动信号的若干处理方法和发展[J].振动工程学报, 2003, 16(1):1-10
    [169]丁康,张晓飞.发展频谱校正理论的[J].振动工程学报,2000,13(5):14-22
    [170] John C Burges. On digitai spectrum analysis of periodic signals[J]. J. Acoust Soc. Am, 1975, 58(3): 556-567
    [171] Thomas Grandke. Interpolation algorithms for discrete Fourier transforms of weighted signals[J]. IEEE Transactions on Instrumentation and Measurement,1983, 32(2): 350-355
    [172] Carlo Offelli, Dario Petri. The influence of windowing on the accuracy of multifrequency signal parameter estimation[J]. IEEE Transactions on Instrumentation and Measurement, 1992, 41(2): 256-261
    [173]丁康,谢明.离散频谱三点卷积幅值修正法的误差分析[J].振动工程学报,1994,9(1):92-98
    [174]谢明,丁康.频谱分析的校正方法[J].振动工程学报,1994,7(2):172-179
    [175]谢明,丁康.离散频谱分析的一种新校正方法[J].重庆大学学报,1995,18(2):47-54
    [176] Huang Dishan. Phase error in fast Fourier transform analysis[J]. Mechanical System and Signal Processing, 1995, 9(2): 113-118
    [177] Xie Ming, Ding Kang. Correction for the frequency, amplitude and phase in FFT of harmonic signal[J]. Mechanical System and Signal Processing, 1996, 10(2): 211-221
    [178]谢明,丁康,莫克斌.频谱校正时谱线干涉的影响和判定方法[J].振动工程学报,1998,11(1):22-28
    [179]刘进民,应怀樵. FFT谱连续细化分析的傅立叶变换法[J].振动工程学报,1995,8(2):162-166
    [180]余佳兵,史铁林,杨叔子.窗谱校正方法的实用峰搜索算法研究[J].振动工程学报,1997,10(2):12-16
    [181]谢明,丁康,莫克斌.频谱校正时谱线干涉的影响和判定方法[J].振动工程学报,1998,11(1):22-28
    [182]陈奎孚,焦群英,高小蓉.提高FFT谱质量的一种新方法[J].振动、测试与诊断,1998,18(3):216-232
    [183]朱利民,钟秉林,黄仁.离散频谱多点卷积幅值修正法的理论分析[J].振动工程学报,1999,12(1):120
    [184]丁康,江利旗.离散频谱的能量重心校正法[J].振动工程学报,2001,14(3):354-358
    [185]谢明,张晓飞,丁康.频谱分析中相位和频率校正的一种新方法——相位差校正法[J].振动工程学报,1999,12(4):454-459
    [186] Ding Kang, Xie Ming. Phase difference correction method for phase and frequency in spectral analysis[J]. Mechanical System and Signal Processing, 2000, 14(5): 835-843
    [187] Zhu Limin, Li Hanxiong, Ding H, et al. Noise influence on estimation of signal parameter from the phase difference of discrete Fourier transforms[J]. Mechanical System and Signal Processing, 2002, 16(6): 991-1004
    [188] Ding Kang, Luo Jiangkai, Xie Ming. Time-shifting correcting method of phase difference on discrete spectrum[J]. Applied Mathematics and Mechanics, 2002, 23(7): 819-827
    [189]丁康,朱小勇.适用于加各种窗的一种离散频谱相位差校正法[J].电子学报,2001,29(7):987-989
    [190]丁康,江利旗.离散频谱综合相位差校正法[J].振动工程学报,2002,15(1):114-116
    [191]丁康,谢明等.复解析带通滤波器及其在解调分析中的应用[J].振动工程学报,2000,13(3): 385-392
    [192]丁康,谢明等.基于复解析带通滤波器的复调制细化频谱分析方法研究[J].振动工程学报,2001,14(1): 29-35
    [193]谢明,丁康.基于复解析带通滤波器的复调制细化频谱分析的算法研究[J].振动工程学报,2002,15(4): 479-483
    [194]郝重阳,唐文斌,齐敏等.一种快速局部细化频谱分析新方法——SSA[J].电子学报,2000,28(3):106-108
    [195] Randall R.B. A new method of modeling gear faults[J]. Journal of Mechanical Design, 1982,pp. 259-267
    [196] Mofadden P.D. Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design, 1986, pp.108-165
    [197]唐德尧.共振解调技术在机械故障诊断中的应用和发展[M].设备故障管理及维修,1991,pp.11
    [198]王延春,谢明,丁康.包络分析方法及其在齿轮故障诊断中的应用[J].重庆大学学报,1995,18(1):87-91
    [199]朱利民,许秉林,黄仁.齿轮故障振动信号检波解调分析中的混频效应[J].振动工程学报,1999,12(3): 331-337
    [200]丁康,江利旗.解调分析在机械振动分析中应用的局限性研究[J].机械科学与技术,2000,19(5):722-725
    [201]张桂才,史铁林,杨叔子.基于高阶统计量的机械故障特征提取方法研究[J].华中理工大学学报,1999,27(3):6-8
    [202]杨江天,陈家骥,曾子平.基于高阶谱的旋转机械故障征兆提取[J].振动工程学报,2001,14(1): 13-18
    [203]李志农,丁启全,吴昭同等.转子裂纹的高阶谱分析[J].振动与冲击,2002,21(1):60-63
    [204]丁康,罗维,朱小勇等.提高扭转振动瞬态信号处理精度的方法研究[J].振动工程学报,2000,13(2): 195-201
    [205] Daubechies I. The wavelet transform, time frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990,46(5): 961-1005
    [206]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999
    [207]何岭松.小波函数性质及其对小波分析结果的影响[J].振动工程学报,2000,13(1):143-146
    [208] Echeverria J.C.,et al. Application of empirical mode decomposition to heart rate variability analysis[J]. Medical & Biological Engineering & Computing, 2001, (39): 471-479
    [209]刘崇春,裘正定,杜锡钰.小波变换理论及其在信号处理中的应用[J].北京交通大学学报,1997,21(1):20-27
    [210]张吉先,钟秋海,戴亚平.一种基于小波变换的去噪新算法[J].北京理工大学学报,2003,23(6):740-743
    [211]范晓志.小波变换的信号去噪应用[J].武汉科技大学学报, 2004 ,27(3):286-288
    [212] D.W. Tufts and G. Sadasive. The arithmetic Fourier transform[J]. IEEE ASSP Mag, Jan. 1988, pp.13-17
    [213]张宪超,武继刚,蒋增荣等.离散傅立叶变换的算术傅立叶变换算法[J].电子学报,2000,28(5):105-107
    [214] I. S. Reed, D.W. Tufts, Xiao Yu, T.K. Troung, et al. Fourier analysis and signal processing by use of Mobius inversion formula[J]. IEEE Trans. Acoust. Speech Processing, Mar, 1990, 38(3):458-470
    [215] I.S. Reed, Ming Tang Shih, T.K. Truong, et al. A VLSI architecture for simplified arithmetic Fourier transform algorithm[J]. IEEE Trans. Signal Processing, May, 1993, 40(5): 1122-1132
    [216] H.Park and V.K. Prasanna. Modular VLSI architectures for computing the arithmetic Fourier transform[J]. IEEE Trans. Signal Processing, June, 1994, 41(6): 2236-2246
    [217]王盛利,张光义.离散匹配傅立叶变换[J].电子学报, 2001 ,29(12):1717-1718
    [218] Zhong Hu and Honghui Wang. A novel generic fast Fourier transform pruning technique and complexity analysis[J]. IEEE Transactions on Signal Processing,Jan. 2005, 53(1): 274-282
    [219]庞浩,李东霞,俎云霄等.应用FFT进行电力系统谐波分析的改进算法[J].中国电机工程学报,2003,23(6):50-54
    [220]柴旭峥,文习山,关根志,等.一种高精度的电力系统谐波分析算法[J].中国电机工程学报,2003,23(9):67-70
    [221]张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,19(3):63-66
    [222]曾喆昭,文卉,王耀南.一种高精度的电力系统谐波智能分析方法[J].中国电机工程学报,2006,26(10):23-27
    [223]顾宁,付德刚,张海琴等编著.纳米技术与应用[M].北京:人民邮电出版社,2002
    [224]简弃非,刘海燕. SnO2纳米传感器灵敏度-温度特性曲线拟合研究[J].传感技术学报,2005,18(1):50-52
    [225]孙慧卿,郭志友.压力传感器及误差补偿[J].传感器世界,2002,(3): 14-16
    [226]李德胜,赵新民.一种传感器非线性反函数校正方法[J].仪器仪表学报,1991,12(2): 215-218
    [227]孙以材等.传感器与固体电子学中非线性函数多项式拟合的规范化[J].电子器件,2004,27(1):1-7
    [228]孙德敏,张利,王永等.基于乘积型最小二乘法的传感器特性拟合[J].传感技术学报,2002,4:293-298
    [229]陈敏,马丽.传感器特性曲线的一种拟合方法[J].传感器技术, 2003, 22(1):38-41
    [230]王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策,2001,16(5): 519-522
    [231] Hall D L, Llinas J. An introduction to multisensor data fusion[J]. Proc IEEE, 1997,85(1):6-23
    [232]邓勇等.一种模糊传感器数据融合的方法[J].上海交通大学学报,2003,37(1):1-4
    [233]腾召胜等.智能检测系统与数据融合[M].北京:机械工业出版社,1999,234-236
    [234]孙勇等.最优加权与递推最小二乘法相结合的多传感器信息融合[J].传感技术学报,2004,17(4):630-632
    [235]项新建.基于模糊数学与统计理论集成的多传感器数据融合方法[J].传感技术学报,2004,17(2):197-199
    [236] Chanussot J, Mauris G, Lambert P. Fuzzy fusion techniques for linear featuresdetection in multi-temporal SAR images [J]. IEEE Trans on Geosci Remote Sening, 1999, 37(3):1292-1305.
    [237] Jimenez L O, Morales-Morell A, Creus A. Classification of hyper-dimensional data based on feature and decision approaches using projection pursuit, majority voting and neural networks [J]. IEEE Trans on Geosci Remote Sening, 1999, 37(3):1360-1365.
    [238] Li S T, Wang Y N. Multisensor image fusion using discrete multiwavelet transform [A]. Proc of the 3rd Int conf on Visual Computing [C]. Mexico, 2000, pp93-103.
    [239] Ben-Yacoub S, Abdeljaoued Y, Mayoran E. Fusion of face and speech data for person identity verification[J]. IEEE Trans on Neural Networks, 1999, 10(5):1065-1074.
    [240]孙慧卿,郭志友.传感器的误差补偿技术[J].传感技术学报,2004,17(1): 90-92
    [241]俞啊龙.热敏电阻温度传感器的一种线性优化设计[J].电气自动化,2003, 25(2):58-59
    [242]俞啊龙.基于RBF神经网络的热敏电阻温度传感器非线性补偿方法[J].仪器仪表学报,2007,28(5):899-902
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.