适用于自航行观测平台的分布式多任务开放型测量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文章介绍了自动水下航行体(AUV)的国内外发展基本概况,着重介绍了水下自航行观测平台相关技术发展现状和发展趋势。文章按照功能结构、硬件结构和软件结构的顺序,在分析了分布式与集中式控制体系性能的基础上,重点讨论了布式网络结构中开放式多任务实时数据采集系统的设计与实现。
     以“863”重大项目“小型自主航行观测技术”为应用背景介绍了观测平台全局网络的设计与构成,阐述了测量子系统在此网络结构中的工作原理。
     基于开放式、面向任务、模块化设计思想,研究了布式网络结构中实时数据采集系统的硬件结构和软件系统。文章阐述了在分布式体系结构下实时多任务操作系统在测量子系统的应用技术,完成了作为分布式网络节点的测量子系统与上层控制节点的CAN协议通信,并将CAN收发程序嵌入到操作系统中。以CMX-RTOS嵌入式操作系统为基础设计并验证了分布式体系结构下实时多任务测量子系统。讨论了实时多任务测量系统中任务的划分与任务间的协调、调度机制。研究并实现了基于I~2C总线的多路RS-232/485智能转换接口的开放式协议通信控制。实现了多传感器测量任务并发执行,保证了各个传感器测量数据的实时性和有效性。
At first the thesis presents the general situation of autonomous underwater vehicle (AUV) development throughout the world and gives an introduction to the actuality and trend of autonomous underwater observation platform technology. As the sequence of functional architecture, hardware architecture, software architecture, the thesis discusses the design and implementation of measure subsystem after analysing the space-time decomposition architecture and intelligence step-down architecture. The measure subsystem performs a real-time, multi-channel data collection on a AUV platform.
     The entire architecture of an AUV platform is described. The platform is an important item of National 863 plans projects and its measure subsystem is explained particularly in this paper.
     Using the idea of open, task-oriented and modularization the hardware and software structure are researched. A real-time multitask operating system is deployed successfully on the measure subsystem which is a portion of a distributed AUV control architecture. The measure subsystem and the other nodes of the platform are connected by CAN bus. The CAN receiving and transmitting programs are embedded into the RTOS. With a CMX-RTOS the real-time multitask measure software used in a distributed architecture is designed. Task decomposition, coordination and schedule mechanism of the task modules are discussed in detail. The communication protocol and software of the multi-channel interface between I~2C bus and RS232/485 are researched and implemented. Parallel sampling of multi-sensor is achieved and the validity of the data is improved.
引文
[1]蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000.
    [2]曹丽江,AUV 任务规划技术的研究,船舶电子工程,2006 年第 3 期
    [3]冯正平,国外自治水下机器人发展现状综述,鱼类技术,2005 年 3 月,第 13卷第 1 期
    [4]徐竟青,黄俊峰,李一平,水下机器人通用实时控制软件研究与实现,机器人,2003 年 9 月,第 25 卷第 5 期
    [5]常宗虎, 边信黔, 严浙平, 汪玉, AUV实时任务协调方法研究,哈尔滨工程大学学报,2003年8月,第25卷第4期
    [6]彭慧,封锡盛,“探索者”号自治式无缆水下机器人控制软件体系结构,机器人,1995年5月,17卷第3期
    [7]唐照东,秦政,边信黔,多线程技术在 AUV 自主系统中的应用,自动化技术与应用,2007 年第 26 卷第 5 期
    [8]马骥,李一平,李硕,基于 RS-485 网络的分布式水下机器人控制系统,自动化博览
    [9]潘琢金,施国君,C8051FXXX 高速 SOC 单片机原理及应用,北京航空航天大学出版社,2002
    [10]夏道藏,操作系统高等教程,国家信息中心
    [11]Thomas B. Curtin, James G. Bellingham, Josko Catipovic and Doug Webb, AUTONOMOUS OCEANOGRAPHIC SAMPLING NETWORKS, OCEANOGRAPHY 'Vo16. , No. 3"1993
    [12]Derek A. Paley, Student Member, IEEE, Fumin Zhang, Member, IEEE,Naomi Ehrich Leonard, Senior Member, IEEE, Cooperative Control for Ocean Sampling:The Glider Coordinated Control System, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, November 2, 2006
    [13]Lee Freitag, Matthew Grund, Chris von Alt, Roger Stokey and Thomas Austin, A Shallow Water Acoustic Network for Mine Countermeasures Operations with Autonomous Underwater Vehicles, Woods Hole Oceanographic Institution
    [14]Ikuo Yamamoto, Research and Development of Past, Present, and Future AUV Technologies,Kyushu University Graduate School,Marine Technology Research and Development Program Marine Technology Center (MARITEC), Japan Agency for Marine-Earth Science and Technology
    [15]Edward Fiorelli, Naomi Ehrich Leonard, Pradeep Bhatta, Derek A. Paley, Multi-AUV Control and Adaptive Sampling in Monterey Bay, Mechanical and Aerospace Engineering Princeton University
    [16]Christopher von Alt, Autonomous Underwater Vehicles, Woods Hole Oceanographic Institution
    [17]Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard Henthorn, Rob McEwen, A Model-Based Architecture for AUV Control, Monterey Bay Aquarium Research Institute, Moss Landing, California
    [18]P. Ridao, J. Yuh, J. Batlle, K. Sugihara, On AUV Control Architecture, Informatics and Applications Institute :Mechanical Engineering Dept. University of Girona,Information and Computer Science Dept.University of Hawaii at Manoa.
    [19]Stefan B. Williams, Paul Newman, Gamini Dissanayake, Julio Rosenblatt, Hugh Durrant-Whyte, A decoupled, distributed AUV control architecture, Australian Centre for Field Robotics University of Sydney NSW 2006, Australia
    [20]Jorge Estrela Silva, Alfredo Martins, Fernando Lobo Pereira, A RECONFIGURABLE MISSION CONTROL SYSTEM FOR UNDERWATER VEHICLES
    [21]P. Oliveira, A. Pascoal, V. Silva, C. Silvestre, Mission Control of the MARIUS AUV:System Design, Implementation, and Sea Trials
    [22]D. Fryxell, P. Oliveira,A. Pascoal,C.Silvestre,I. Kaminer, NAVIGATION, GUIDANCE AND CONTROL OF AUVS: ANAPPLICATION TO THE MARIUS VEHICLE
    [23]D. Richard Blidberg, The Development of Autonomous Underwater Vehicles (AUV);A Brief Summary, Autonomous Undersea Systems Institute, Lee New Hampshire, USA
    [24]James S. Albus,RonaldLumia,John Fiala,Albert Wavering, THE NASA/NBS STANDARD REFERENCE MODEL FOR TELEROBOT CONTROL SYSTEM ARCHITECTURE, Robot Systems Division National Institute of Standards and Technology (formerly the Nationai Bureau of Standards)
    [25]Alain L. Kornhauser, A Modular Event-Based Approach to Autonomous Vehicle Control, Department of Operations Research and Financial Engineering
    [26]Snehasis Mukhopadhyay, Distributed Control and Distributed Computing, Department of Computer and Information Science_ Indiana University PurdueUniversity Indianapolis
    [27]G. J. Beidler, University of Idaho Department of Electrical and Computer Engineering, Dr. R. W. Wall, University of Idaho Department of Electrical and Computer Engineering, Low Cost Distributed Control System for Autonomous Vehicles
    [28]高剑,严卫生,赵宁宁,徐德民, 基于CAN总线的水下机器人分布式控制系统, 中国造船,2007年9月 48卷第3期
    [29]张宏伟,王树新,杨晓华,侯巍,梁捷, 基于CAN总线的自治水下机器人控制系统,机器人,2006年7月,第28卷第4期
    [30]曹亦明,徐华,杨泽红,贾培发, 基于RTLinux的模块化、网络化开放式控制器系统, 高技术通讯,2005年3月第15卷第3期
    [31]高剑,严卫生, 水下机器人递阶控制系统结构设计, 舰船科学技术, 2005年 8 月第 27 卷第 4 期
    [32]HiroshiYoshida,TaroAoki,TakashiMurashima,SatoshiTsukioka,HidehikoNakajoh,A Deep Sea AUV “MR-X1” for Scientific Work,Japan Marine Science and Technology Center
    [33]王二西,边信黔,常宗虎,QNX 环境下多线程数据采集,维普资讯 http://www.cqvip.com
    [34]广州周立功单片机发展有限公司, CAN-bus 规范V2.0 版本, http://www.zlgmcu.com
    [35]广州周立功单片机发展有限公司, I2C 总线规范, http://www.zlgmcu.com
    [36]CMX SYSTEM USER MANUAL,http://www.cmx.com
    [37]MODBUS Application Protocol Specification, http://www.modbus.org
    [38]中国单片机公共实验室,RTOS中文教程v5, http://www.bol-system.com
    [39]Philips Semiconductors, Data Sheet P8xC591, 2000
    [40]PHYTEC Technology Holding Company, phyCORE-P8xC591 Hardware Manual, 2001
    [41]PHYTEC Technology Holding Company, phyCORE-P8xC591 QuickStart Instructions, 2001
    [42]PHYTEC Technology Holding Company, phyCORE Development Board LD 5V Hardware Manual, 2001
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.