兆瓦级垂直轴风力发电机组的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保持经济持续、快速发展与维持生态平衡、保护环境的矛盾是当前国际社会也是我国面临的首要问题,为了保护我们赖以生存的地球环境资源,中国和国际社会、特别是发达国家一道为减少碳排放、提高能效,做出了重要的承诺,在未来的经济活动中采用清洁能源替代技术、可再生能源技术、新能源技术来代替化石能源。相对传统能源领域,风能利用技术正在走向成熟,因而风能在施工周期、投资方式上优势明显,具有较好的社会、经济效益。
     我国在风电的理论研究、工程应用方面与发达国家相比存在很大差距,目前技术条件下的风电成本、并网电能质量以及设备制造和控制技术等均处于劣势。国内对风电产品的需求迫切,风电技术的研究基础薄弱,风电机组大型化、形式多样化等技术问题尚待解决,诸多缘由促使我国逐渐沦为国际风电行业巨头的垃圾产品倾销市场和新产品试验田。因此,深入研究各项风电技术对风能的持久开发、高效利用以及形成自主创新设计、取得自主知识产权的风电产品具有重要的现实意义。
     风电技术属于综合性系统工程,涉及空气动力学、计算流体力学、自动控制、电机学等诸多学科。目前,随着新技术、新材料的应用,突破传统形式的风电机组逐渐成为风电领域的研究热点。风电机组是非线性的复多变量杂系统,而且风能具有时变性和不稳定性,因此,对新形式风电机组关键技术的研究是解决机组运行安全、经济高效的关键。
     本文针对垂直轴风力发电机组的关键技术展开研究,主要内容归纳如下:
     1)基于贝茨理论、动量理论等风力机建模的基础理论以及低速翼型的空气动力学特性,建立了垂直轴风力发电机动力装置的非线性理论模型,综合考虑Re、计算攻角的修正值等对翼型空气动力学特性的影响。基于该风轮模型,分别对H型垂直轴风力发电机、美国圣地亚国家实验室34米直径的垂直轴风力发电机以及浙江大学40米垂直轴风力发电机完成了算例分析,围绕风轮的风能利用系数、风轮输出扭矩以及叶片的气动载荷等主要问题分别进行了讨论,分析了不同形式的风轮在不同风速、叶片处于不同位置以及风轮转速对叶片空气动力学性能和风轮输出扭矩的影响,在此基础上完成该模型的进一步优化设计
     2)根据垂直轴风力机风轮模犁的分析结果,总结出翼型攻角平面图解方法:“矢量-圆”法,即:远端风速矢最一定时,空间中处于任意位置、圆周运动的叶片,通过建立以风力机风轮旋转过程中的叶片切向速度值为半径的圆,在圆心处建立以远端风速为一个轴的直角坐标系,叶片运动的位置滞后于叶片切向速度π/2,相对风速与远端风速、叶片切向速度组成矢量三角形关系,攻角α为此矢量三角形中叶片切向速度、相对风速的夹角或其补角。文中完成了“矢量-圆”法的理论推导,该方法属于创新性研究,对今后风轮模型的进一步研究工作具有指导作用。
     3)根据兆瓦级永磁同步发电机的电磁设计和其结构的几何特点,基于集总参数法建立发电机的等效热路模型,该模型对内转子发电机具有通用性,为同类型产品的温升计算提供了理论依据。
     4)基于热交换定律编制了电机内热交换微分方程,采用有限差分来近似代替微分,利用等效热路图的计算结果来确定热联系,将温度场求解域内的导热偏微分方程及边界条件,转化为成适用于计算区域内部和边界上各个节点处的差分方程组;基于迭代法求解方程组,可得到电机求解域温度的分布。该温升计算方法对电机的设计、试验提供了理论指导。
     5)根据永磁同步发电机的特点,对兆瓦级垂直轴风力发电机的并网控制策略进行了研究,提出了基于背靠背双脉宽调制整流器的并网控制策略和基于双电压源型脉宽调制整流器的并网控制策略,建立了兆瓦级风电机组全功率控制并网策略的等效电路模型。该并网策略等效电路模型中,发电机侧与永磁同步发电机定子连接的电压源型脉宽调制整流器采用直接电流控制,控制系统结构为同步坐标系下的直流电压外环、交流输入电流内环的双闭环级联结构,与网侧基于三相电压源型脉宽调制逆变模块共同构成的双脉宽调制整流器或双电压源型脉宽调制整流器电路模型,其拓扑结构的通用性较强,在整流器建模、控制算法以及提高其故障运行能力等方面具有优势;同时,永磁同步发电机侧和网侧整流器都使用基于数字信号处理器的数字化控制,采用矢量控制,控制方法灵活,具有四象限运行功能,能够实现对永磁同步发电机的调速和并网电能的质量控制。该并网控制策略有利于解决风电机组并网对电网产生的谐波污染、电压波动、电流不平衡,对今后我国大型风力发电机组并网发电具有重要的现实意义。
The contradiction between keeping sustained and rapid economic development and maintenance of ecological balance and protecting environment is an urgent issue faced by all over the world. In order to protect our environmental resources on which we survived, China and the international community, particularly developed countries, have made their important commitments for reducing carbon emissions and improving energy efficiency. In the future industrial production, they will use clean energy to replace traditional energy, renewable energy technologies and new energy technologies to replace fossil fuels. Compared with traditional energy, utilization technology of wind energy is maturing. As a result, the superiority of wind energy is obvious in the construction cycle and the way of investment. Besides, wind energy has better social and economic benefits.
     There is a big disparity between China and developed countries in the research level of wind power theory and engineering applications. Under the current condition of the technology in our country, the cost of wind power, grid electricity quality and the level of equipment manufacturing and control technologies are all at a disadvantage. Many problems of wind power are waiting for being tackled, for example, urgent domestic demand for wind power product, weak research foundation of wind electricity technology, large scale and form diversification of electrical machinery. Various reasons urge our country to degenerate gradually into the trash product dumping market of international wind power manufactory giants and the new product experimental plot. Therefore, doing deep research on every aspect of wind power technology has vital practical significance for holding lasting development and efficient use of wind power, forming independent and innovative design, and obtaining absolute intellectual property rights of wind power products.
     Wind power technology is a comprehensive and systematic project involving aerodynamics, computational fluid dynamics, automatic control, electrical science and many other subjects. Nowadays, with the applications of new technologies and materials, the breakthrough of the traditional forms of wind turbine has gradually become the research focus in this field. Wind turbine is a complex multi-variable nonlinear hybrid system. and wind power has the qualities of variability and instability with time. Therefore. research on the key technologies of wind turbine with new form is the sticking point for the solution of security of generator operation and economical high efficiency.
     The current studv focuses the on key technologies for megawatt level vertical-axis wind turbine. The major research is summarized as the following points:
     1). Based on Betz theory, the momentum theory and other fundamental theories of wind turbine modeling, and the aerodynamic characteristics of low-speed airfoil, the current study established the non-linear theoretical model for wind wheel of vertical axis wind turbine with the effect of the Reynolds number and the correct value of calculated attack angle in aerodynamic characteristics of airfoil being considered. On the basis of this model, numerical analyses have been done on H-type vertical axis wind turbine, 34-meter diameter vertical axis wind turbine in U.S. Sandia National Laboratories and 40-meters vertical axis wind turbine in Zhejiang University. The wind energy utilization coefficient of the wind wheel, output torque of wind wheel, the blade aerodynamic loads and other major issues have been discussed. Besides, the current thesis has analyzed the influence of blade of different types on aerodynamics performance and output torque of wind wheel under the condition of different wind speeds and locations. As a result, the designed model of wind turbine has been further optimized.
     2). According to the analysis of vertical axis wind turbine model, the thesis summarized the plan solution method for calculation attack angle of all airfoils:"Vector-Circle" method. The method refers to when the remote wind speed vector is constant, for the blades in circular motion in space, we can draw a circle with the radius which is numerically equal to the value of tangential velocity of one blade and establish the system of rectangular coordinated with remote speed vector as one axis. In the model of "Vector-Circle", the vector of blade's location lags behind vector of blade's tangential velocity forπ/2. The vector of remote wind speed v, vector of blade's tangential velocity u and vector of relative wind speed w form triangular. In this vector triangle the angle of attack a is an acute angle between u and w or its supplementary angle. The thesis has completed the derivation of "vector-Circle" which is an innovative research. It has a guiding role in the further research work of mathematical models for wind turbine.
     3). According to megawatt-level electromagnetic design of permanent magnet synchronous generators and its geometrical characteristics, the current study established the model of equivalent thermal circuit diagram in generator based on the lumped parameter. This model has generaliability for the same type of generators with rotor in structure, which provides a theoretical basis for the calculation of temperature rising of generators.
     4). The current study composed the heat exchange equation of in generators based on the heat exchange law. Through adopting finite difference to approximately replace differential and using the results of calculation for equivalent thermal circuit diagram to determine the thermal contact within generator, the current study converted the partial differentia] equations and boundary conditions in the calculated temperature field to become applicable to the differential equations of various nodes in calculated region and on the calculated boundary. Based on method of iteration for solving equations, the temperature distribution of calculated field in generator could be obtained. The method of temperature rising calculation in generator provides a theoretical guidance for motor design and testing.
     5). According to the characteristics of permanent magnet synchronous generator, the thesis did a research on grid control strategies of permanent magnetism synchronization generator. The article also proposed double pulse-width modulation rectifier and double voltage source rectifier for wind turbine generators. Besides, the equivalent circuit model was established. In this model, voltage source PWM rectifier connected with the permanent magnet synchronous generator stator uses direct current control. Its control system structure is dual PWM rectifier or dual voltage source PWM rectifier circuit model which is composed of inner double loop cascade of outer DC voltage, AC input current and PWM inverter module based on three-phase voltage source. Its generaliability of typology is strong and has great advantages in the rectifier modeling, control algorithm and the ability of enhancing its operational capability failure. At the same time, both permanent magnet synchronous generator-side and network side of the rectifier adopt digital control based on digital signal processor. The vector control method possesses capabilities of four-quadrant operation and flexible control. It also could realize the speed governing of permanent magnet synchronous generators and grid power quality control. These grid-control strategies are beneficial to resolve the harmonic pollution, voltage fluctuations, current imbalance of power system caused by Wind Turbines. They also have important practical significance for the grid-control of large-scale wind turbine in China.
引文
[1]李俊峰,高虎,王仲颖等.中国风电发展报告2008[R].北京:中国环境科学出版社,2008,40~52.
    [2]牛山泉,三野正洋著.小型风车手册[M].北京:机械工业出版社,1987,1~31.
    [3]李传统.新能源和可再生能源技术[M].南京:东南大学出版社,2005,30~36.
    [4]廖康平.垂直轴风机叶轮空气动力学性能研究[D].哈尔滨工程大学,2006.Liao KangPing. On Study of Aerodynamic Performance of the Vertical Axis Wind Turbine Rotor[D]- Harbin Engineering University,2006.
    [5]D勒古里雷斯.风力机的理论与设计[M].北京:机械工业出版社,1987,122~151.
    [6]李建林,许洪华.风力发电系统低电压运行技术[M].北京:机械工业出版社,2009,1~101.
    [7]李杰. 风电产业陷入“过剩”大批企业被外国图纸拖垮[OL]. http://intl.ce.cn/zgysj /200909/08/t20090908_19962517.shtml.
    [8]祁和生.中国风力发电机组总装企业概况[J].中国科技投资,2008,1:61~64.
    [9]WANG Xiaorong, WANG Weisheng, DAI Huizhu. Wind Power Industry in China[J]. ELECTRICITY,2004,1:41-43.
    [10]张之一,吴秀庭,包国兴.风力机[M].呼和浩特:内蒙古人民出版社,1979.
    [11]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2008.
    [12]D. G. Shepherd. Historical Development of the Windmill-Work performed for U. S. Department of Energy Wind/Hydro/Ocean Technologies Division and Solar Technology Information Program. NASA-CR-4337.1990,1-52.
    [13]陈云程.风力机设计与应用[M].上海:上海科学技术出版社,1990,262~323.
    [14]苏绍禹.风力发电机设计与运行维护[M].北京:电力工业出版社,2003.
    [15]James H. Strickland. The Darrieus Turbine:A Performance Prediction Model Using Multiple Stream-tubes[R]. SAND75-0431 1975:1-31.
    [16]D. J. Sharpe. Wind Turbine Aerodynamics. London Freris (Ed.).Prentice Hall[J]. Wind energy conversion system. 1990:54~118.
    [17]R.E.Wilson.Vortex sheet analysis of the Giromill[J]. Trans. ASME J. Fluids Engineering, Sept.1978,100(3):340-342.
    [18]James H. Strickland, B. T. Webster, T. Nguyen. A vortex model of the Darrieus turbine:An Analytical and Experimental Study[J]-Trans. ASME J. Fluids Engng.1979,101:500-505.
    [19]D. Vandenberghe, E. Dick.A Free Vortex Simulation Method for the Straight Bladed Vertical Axis Wind Turbine[J]-Journal of Wind Engineering and Industrial Aerodyneamies.1987, 26(3):307-324.
    [20]F. L. Ponta, P. M. Jacovkis. . A Vortex Model for Darrieus Turbine Using Finite Element Techniques[J]. Renewable Energy. 2001,24:1~18.
    [21]徐华舫.空气动力学基础[M].北京:北京航空学院出版社,1987.6.
    [22]吴子牛主编.空气动力学基础[M].北京:清华大学出版社,2007.4.
    [23]浙江大学VAWT项目组.兆瓦级垂直轴风力发电机计算报告[R].2009.12.
    [24]卞松江.变速恒频风力发电关键技术研究[D].浙江大学,2003.BlAN Songjiang. Study on the Technology of Variable-Speed Constant-Frequency Wind Power Generation. Zhejiang University,2003.
    [25]吴治坚.新能源和可再生能源的利用[M].北京:机械工业出版社,2006:155~212.
    [26]牛海峰,张冬.H型垂直轴风力发电机的结构设计[J].上海电力,2007,5:516~518.
    [27]伊玫.风电机组国产化症结[J].机电信息,2003,14:18~20.
    [28]阿尔然尼柯夫,H.C.,马里采夫,B.H.著,张炳暄译.空气动力学[M].北京:高等教育出版社,1954:73~92.
    [29]王建平.计算流体动力学(CFD)及其在工程中的应用[J].机电设备,1994(5):39~42.
    [30]田海蛟.巨型垂直轴风力发电机组结构静动力特性研究[D].北京:北京交通大学,2006.TIAN Haijiao. STATIC AND DYNAMICAL BEHAVIOR OF HUGE VERTICAL-AXIS WIND TURBINE[D]. Beijing:Beijing Jiaotong University,2006.
    [31]刘其辉.变速恒频风力发电系统运行与控制研究.[D].杭州:浙江大学,2005.LIU Qihui. The Investigation of Operation and Control for a Variable-Speed Constant-Frequency Wind Power Generation System[D]. Hangzhou:Zhejiang University,2005.
    [32]林勇刚.大型风力机变桨距控制技术研究[D].杭州:浙江大学,2005.LIN Yonggang. Study on the Technology of Pitch-control for Large Scale Wind Turbine [D]. Hangzhou: Zhejiang University,2005.
    [33]陈佐一,凌君肠.用参数多项式方法确定风力透平叶片的振荡流与进行气动弹性稳定性予估[C].工程热物理学会气动热力学学术会议论文,1989.
    [34]陈佐一,孙水忠,杨玲.用“参数多项式方法”确定风力透平叶片的失速振荡流[J].工程热物理学报,1994,15(4):378~381.
    [35]林瑞麟.达里厄风轮柔性变位动力学方程[J].太阳能学报,1995,16(4):347~351.
    [36]彭侠夫,于奴欣,李福义等.5千瓦变频变速潮流发电系统设计与仿真[J].黑龙江自动化拉术与应用,1996,15(2):28~31
    [37]叶瑰昀,王忠杰,王群.5KW变频变速潮流发电系统设计与仿真[J].黑龙江电力技术,1997,19(4):196~200.
    [38]张桂湘.摆线式和蹼板式水轮机水动力性能计算方法研究[D].哈尔滨:哈尔滨工程大学,2002.ZHANG Guixiang. On Study of the Calculation Methods for Hydrodynamic Performance of the Voith-Schneider and Kobold Rotor[D]. Harbin:Harbin Engineering University, 2002.
    [39]汪鲁兵,张亮,曾念东.一种竖轴潮流发电水轮机性能优化方法的初步研究[J].哈尔滨工程大学学报,2004,25(4):417~422.
    [40]汪鲁兵,张亮,李凤来.潮流发电水轮机基于动量定理的性能计算方法研究[J].海洋工程,2005,23(1):97~102.
    [41]刘晓燕.风力机叶片设计和稳定性分析[D].西安:西北工业大学,2004.
    [42]刘虎平.风力机叶片设计和颤振分析[D].西安:西北工业大学,2005.
    [43]遇瑞.基于风力机桨叶气动弹性问题的研究[D].沈阳:沈阳工业大学,2005.YU Rui. Research on the Aerodynamic and Elastic Problem of Blade of the Wind Turbine[D]. Shenyang:Shenyang University of Technology,2005.
    [44]伍海滨.水平轴风力机动态气动问题研究及软件开发[D].汕头:汕头大学,2001.WU Haibin. Research On the Transient Aerodynamic problem of HAWT and Software Integration[D]. Shantou:Shantou University.2001.
    [45]欧阳高飞.风力机动态过程的分析系统及其软件开发[D].汕头:汕头大学,2003.OUYANG Gaofei. Analysis System and Software of the Wind Turbine Dynamic Process[D].Shantou:Shantou University, 2003.
    [46]张春莲.浓缩风能型风力发电机叶轮的风洞实验研究[D].呼和浩特:内蒙古农业大学,2001. ZHANG Chunlian. A Wind Tunnel Test and Research on Blades of the Concentrated Wind Energy Turbine[D]. Huhehaote:Inner Mongolia Agricultural University,2001.
    [47]R. J. Templin. Aerodynamic Performance Theory for the NRC Vertical Axis Wind Turbine[R]. NRC of Canada TR. LTR-LA-160.1974.
    [48]四川矿业学院数学教研组增订.数学手册[M].北京:科学出版社,1978.1.
    [49]Harrris Hancock. Elliptic Integrals[M]. New York:Dover Publications, Inc..1958.
    [50]何明高.在Matlab计算机语言程序中调用勒让德第一类完全椭圆积分[J].广东机械学院学报.1996.12,14(4):42~47.
    [51]唐勇,苏亮,葛俊旭.椭圆积分方程的快速数值求解与误差分析[J].机械工程师,2009.7,52-54.TANG Yong, SU Liang, GE Junxu. Fast Numerical Method and Error Estimate of Ellipse Integral Equation [J]. Mechanical Engineer,2009.7,52~54.
    [52]牛海峰,张冬.H型垂直轴风力发电机的结构设计[J].上海电力,2007,5:516~518.
    [53]Robert E. Sheldahl, Paul C. Klimas. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angel of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines[R]. Issued by Sandia National Laboratories.Operated for the United States Department of Energy by Sandia Corporation.1981,41~62.
    [54]Thomas, D. Ashwill. Measured Data for the Sandia 34-Meter Vertical Axis Wind Turbine[R].Issued by Sandia National Laboratories.Operated for the United States Department of Energy by Sandia Corporation.1992,12-36.
    [55]G.E.Reis, B.F.Blaekwell. Practical Approximations to a Troposkien by Straight-line and Circular Segments[R]. SAND74-0100. Sandia Report.1980,7~10.
    [56]孙训方,方孝淑,关来秦.材料力学[M].北京:高等教育出版社,2002.8.
    [57]张兆强.MW级直驱永磁同步风力发电机设计[D].上海:上海交通大学,2007.ZHANG Zhaoqiang. Design of MW Grade of Direct-Driven Permanent-Magnet Synchronous Generators for Wind Turbine[D]. Shanghai:Shanghai Jiaotong University,2007.
    [58]陈珩.同步电机运行基本理论与计算机算法[M].北京:水里电力出版社,1992.8.
    [59]王秀和.永磁电机[M].北京:中国电力出版社,2007.8.
    [60]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.12.
    [61]程福秀,林金铭.现代电机设计[M].北京:机械工业出版社,1993.
    [62]陈世坤.电机设计[M].北京:机械工业出版社,2000.7.
    [63]白延年.水轮发电机设计与计算[M].北京:机械工业出版社,1982.
    [64]黄国治,傅丰礼.中小旋转电机设计手册[M].北京:中国电力出版社,2007.3.
    [65]李钟明.稀土永磁电机[M].北京:国防工业出版社,1999.7.
    [66]Petri Lampola. Directly Driven, Low-Speed Permanent-Magnet Generators for Wind Power AppIications[D]. Finland. Helsinki University of Technology,2000.
    [67]Anders Grauers. Design of Direct-Driven Permanent Magnet Generators for Wind Power Application[D]. Sweeden, Chalmers University of Technology,1996.
    [68]许实章.交流电机的绕组理论[M].北京:机械工业出版社,1985.
    [69]董淑惠.汽轮发电机定子的发热分析与计算[D].保定:华北电力大学,2003,6~27.DONG Shuhui. Thermal Analysis and Computation of the Stator of Large Synchronous Generator [D]. Baoding:North China Electrical Power University,2003, 6-27.
    [70]郁岚,卫运钢、尚玉琴.热工基础及流体力学[M].北京:中国电力出版社,2006.9.
    [71]薛兵.工程热力学[M].西安:陕西科学技术出版社,2005.10.
    [73]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.12.
    [74]杨世铭.传热学(第二版)[M].北京:高等教育出版社,1987.10.
    [75]Rohsenow, W. M., Harinett, J. P.. Handbook of Heat Transfer[M], McGraw-Hill Book Company, New York,1975, Sec.6-8.
    [76]陈遐昌,王在宏.电机温升试验中的数据处理[J].微特电机,2006.1,45~46.
    [77]袁世琪.温度与温升[J].电气时代,2001.2,38~39.
    [78]袁世琪.电机的温度与温升[J].电力安全技术,2001.6,49~50.
    [79]陈孝树.电机的温升与测量[J].电机电器,1997.1,12.
    [80]杜灿阳.大型交流电动机温升试验研究[J].中国农村水利水电,2003.9,55~57.
    [81]刘英豪,王顺伍.大功率增安防爆电机温升试验方法探讨[J].电气防爆,2006.4,12~13.
    [82]胡永志.谈电机的温升及处理[J].吉林建材,1994.3,35~39.
    [86]Schlichting, H., Truckenbrodt, E.,王星灿.飞机空气动力学(上册)[M].北京:国防工业出版社,1978.
    [87]刘会灯,朱飞.MATLAB编程基础与典型应用[M].北京:人民邮电出版社,2008.
    [88]施阳.MATLAB语言精要及动态仿真工具SIMULINK[M].西安:西北工业大学出版社,1997.6.
    [89]吴宇宏,刘霄.MathCAD 2001数学运算完整解决方案[M].北京:人民邮电出版社,2001.
    [90]Jimie J. Cathey著,戴文进译.电机原理与设计的MATLAB分析[M].北京:电子工业出版社,2006.7.
    [91]张德丰.MATLAB/Simulink建模与仿真[M].北京:电子工业出版社,2009.
    [92]王胜开,陈国顺,王正林,等.MATLAB/Simulink与控制系统仿真[M].北京:电子工业出版社,2008.
    [93]Chapman, Stephen J.MATLAB programming for engineers[M].北京:科学出版社,2003.
    [94]郑锦聪.MATLAB程式设计[M].台北:全华科技图书股份有限公司科学出版社,2002.
    [95]阮沈勇,王永利,桑群芳.MATLAB程序设计[M].北京:电子工业出版社,2004.
    [96]陈杰.MATLAB宝典[M].北京:电子工业出版社,2007.
    [97]王琦,陈小虎,纪延超,等.变速恒频无刷双馈风电机组的并网研究[J].南京理工大学学报(自然科学版),2008,32(5):575~580.WANG Qi. CHEN Xiaohu. JI Yanchao.et al-VSCF Brushless Doubly-fed Wind Power Generation System Connected to Grid[J].Journal of Nanjing University of Science and Technology (Natural Science),2008.32(5):575~580.
    [98]李文朝.并网型风电机组软并网控制系统研究[D].南京:河海大学,2006.3.LI Wengchao. Research on the Soft Cut-in Control System of Gridding Wind Power Generators[D]. Nanjing:HOHAI University,2006.3.
    [99]王承凯,许洪华,赵斌.基于SIMULINK的失速型风电机组软并网控制系统的仿真分析[J].太阳能学报,2004,25(5):599-605.Wang Chengkai, Xu Honghua, Zhao Bin. SIMULATION AND ANALYSIS BASED ON SIMULINK OF SOFT CUT IN SYSTEM OF STALL REGULATED WIND TURBINE GENERATORS[J]. ACTA ENERGIAE SOLARIS SINICA,2004,25(5):599-605.
    [100]马金路.BONUS 150kw风力机软启动的特点及原理[J].风力发电,1994,(4):5-71.
    [101]赵仁德,贺益康,黄科元,等.变速恒频风力发电机用交流励磁电源的研究[J].电工技术学报,2004,19(6):1~6.
    [102]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析[J].电工技术杂志,2000(10):1~4.
    [103]赵斌,许洪华.大型风力发电机组的软并网控制系统[J].新能源,2000,22(12):45~47.
    [104]林飞,杜欣.电力电子技术的MATLAB仿真[M].北京:中国电力出版社,2009,129~207.
    [105]郭世明.电力电子技术[M].成都:西南交通大学出版社,2002,93~207.
    [106]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社.2003,62~419.
    [107]张兴.PWM整流器及其控制策略的研究[D].合肥工业大学,2003.ZHANG Xin. Study on the PWM Rectifier and it's Control Strategies[D]. Hefei University of Technology,2003.
    [108]陈道炼.AC-AC变换技术[M].北京:科学出版社,2009.2.
    [109]沈锦飞.电源变换应用技术[M].北京:机械工业出版社,2007.6.
    [110]曲永印.电力电子变流技术[M].北京:冶金工业出版社,2002.8.
    [111]陈国呈.PWM变频调速技术[M].北京:机械工业出版社,1998.7.
    [112]刘福鑫,阮新波.零电压开关PWM组合式三电平变换器的箝位策略[J].中国电机工程学报,2006,26(17):44~50.
    [113]王树文,纪延超,马文川.新型单相逆变电源及其调制方式的研究[J].中国电机工程学报,2006,26(17):62~66.
    [114]王久和,尹虹仁,张金龙等.采用功率内环和电压平方外环的电压型PWM整流器[J].北 京科技大学学报,2008,30(1):90~95.WANG Jiu-he, YIN Hong-ren, ZHANG Jin-long, et al. Three-phase voltage-type PWM rectifiers with inner power loop and outer voltage square loop[J]-Journal of University of Science and Technology Beijing,2008,30(1):90~95.
    [115]何新霞,张加胜,王平.电压型PWM可逆整流器建模与系统仿真[J].石油大学学报(自然科学版),1999,23(3):93~95.HE Xin-xia, ZHANG Jia-sheng, WANG Ping. Molding and simulation for voltage-source PWM rectifier[J]. Journal of the University of Petroleum,1999,23(3):93-95.
    [116]王久和,李华德,李正熙.电压型PWM整流器直接功率控制研究[J].辽宁工程技术大学学报,2004,23(5):658~660.WANG Jiu-he, LI Hua-de, LI Zheng-xi-Research on direct power control for three phase boost-type PWM rectifiers[J]. Journal of Liaoning Technical University,2004,23(5):658-660.
    [117]张晓华.控制系统数字仿真与CAD[M].北京:机械工业出版社,2006.1.
    [118]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [119]王海英,袁丽英,吴勃.控制系统的MATLAB仿真与设计[M].北京:高等教育出版社,2006.1.
    [120]永磁直驱风机—中国未来风机发展的趋势[OL]. http://www.crein.org.cn/view/ viewnews.aspx?id=20091228171633328.
    [121]2010 年风电装机预增 1000 万千瓦[OL]. http://www.crein.org.cn/view/ viewnews.aspx?id=20100122114253343.
    [122]W.N.Sullivan, T.M.Leonard. A Computer Subroutine for Estimating Aerodynamic Blades Loads on Darrieus Vertieal Axis Wind Turbines[J]. Sandia Laboratory Rept. SAND80-2047.Nov.1980.
    [123]J.H.Striekland. The Darrieus Turbine:A Performance Prediction Model Using Multiple Streamtubes. SAND75-0431,1975:1-31.
    [124]Ion Parasehivoiu. Aerodynamic Loads and Performance of the Darrieus Rotor[J].J. Energy. VOL.1981(6),Na.6.
    [125]J.H.Striekland, B.T.Webster, T.Nguyen.A vortex model of the Darrieus turbine:An Analytical and Experimental Study[J]. Trans. ASME J. Fluids Engng. 1979,101:500-505-
    [126]M. S. U. K.Fernando, V.J.Modi. A Numerical Analysis of the Unsteady Flow Past a Savonius Wind Turbine[J]. J. Wind Engineering and Industrial Aerodynamics. Oct.1989,32(3):303-327.
    [127]E.G.Ladopoulos. Non-linear singular Integral Representation Analysis for Inviscid Flow Field of Unsteady Airfoils[J]. Int. J. Non-Linear Mechanics.1997,32(2):377-384.
    [128]世界首台MW级半直驱风力发电机成功下线[J].东方电机,2009.4,42.
    [129]李声晋,马瑞卿,卢刚,等.4KW开关磁阻发电机[J].西北工业大学学报,1999,17(2):327~331.
    [130]李声晋,励庆孚,卢刚.开关磁阻发电系统数学建模[J].电工技术学报2001,16(4):1~6.
    [131]蒋冬青,朱学忠.单相开关磁阻发电机仿真研究[J].中小型电机,2002,29(2):1~4.
    [132]苏少平,励庆孚.单相多极开关磁阻发电机设计及性能仿真[J].微特电机,2003.5,9~12.
    [133]茅靖峰,刘羡飞,吴晓.开关磁阻电机发电运行原理与实现[J].南通大学学报(自然科学版),2005,4(1):57~59.
    [134]邓秋玲,刘金泽.风力发电系统中的开关磁阻发电机的研究[J].电机技术,2006.1,41~43.
    [135]黄嬖,易灵芝,钟坤炎,等.开关磁阻风电系统中并网逆变器的研究与实现[J].电力电子,2008.4,48~52.
    [136]高奇,杨玉岗.开关磁阻发电系统的非线性仿真[J].微特电机,2009.6,12~14,25.
    [137]熊立新,高厚磊,徐丙垠,等.开关磁阻发电机最大输出功率的控制原则[J].电机与控制学报,2009,13(2):250~254.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.