武夷山不同海拔土壤微生物多样性的变化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中国福建省武夷山国家自然保护区为实验地,选择不同海拔高度的4种主要植被类型:中亚热带常绿阔叶林(500m)、针叶林(1150m)、亚高山矮林(1750m)和高山草甸(2150m)为研究样地,从土壤微生物数量分布特征、土壤微生物碳源利用特征和土壤酶活性特征3方面研究了武夷山自然保护区沿海拔梯度变化典型植被带土壤微生物多样性的变化特征。从生物地理学的角度比较了沿海拔梯度变化各样地土壤微生物多样性分布规律,并就环境因子沿海拔高度的变化对土壤微生物群落多样性的影响进行了研究,阐述了气候、土壤和植物对土壤微生物分布的影响。主要研究结果如下:
     1、随海拔高度的上升,土壤微生物各类群数量分布发生了明显的变化,土壤微生物真菌数量随海拔升高而降低,土壤放线菌数量随海拔升高而升高(除了常绿阔叶林),土壤细菌和纤维素分解菌数量随海拔升高而增加(除了亚高山矮林),固氮细菌和氨化细菌随海拔的升高而降低(除了高山草甸),硝化细菌海拔趋势不明显,高山草甸土壤硝化细菌极少很难检测出。土壤微生物各类群季节变化显著,峰值主要出现在春季、夏季和秋季,冬季最少。随海拔梯度升高,土壤细菌所占比例逐渐升高,土壤真菌比例逐渐降低,土壤微生物各类群数量与土壤理化性质的相关性逐渐降低。
     2、随海拔高度的上升,总体上各样地土壤微生物AWCD值和功能多样性指数大小顺序为:高山草甸>针叶林>常绿阔叶林≈亚高山矮林,不同季节和不同土层各样地土壤微生物AWCD值和功能多样性指数的大小顺序随之改变。各样地碳源利用图谱不同,林地与草地碳源利用图谱差异较大,同一样地碳源利用图谱季节变化明显。微生物功能多样性受土壤养分、土壤温湿度、pH、细根生物量和凋落物的影响,且不同季节这些因素对微生物多样性的贡献不同,总体来看土壤温度是对土壤微生物多样性变化贡献最大的因素
     3、随海拔高度的上升,土壤酶活性总体上是升高的(除了多酚氧化酶)。各样地土壤脲酶、蔗糖酶、酸性磷酸酶、过氧化氢酶和多酚氧化酶活性海拔差异显著;各样地土壤酸性磷酸酶、多酚氧化酶和蔗糖酶活性季节差异显著;各样地脲酶、过氧化氢酶活性季节差异不显著;土壤酶活性随土层加深而降低。武夷山各样地土壤酶活性与土壤养分、温度、湿度、土壤微生物数量、活性和多样性指数密切相关,各种酶活性间密切相关。
We examined the soil microbial diversity by measuring the amount of soil microbes(bacteria, fungi, actinomucetes) and soil microbial major physiological group (nitrogen fixingbacteria, cellulose decomposing microbes, nitrifying bacteria and ammonifying bacteria) and theactivities of four soil enzymes (urease, sucrase, acidic phosphatase, catalase and polyphenoloxidase) at four typical vegetations along elevation i.e. evergreen broadleaf forest (EBF) at500m above sea level (asl), coniferous forest (CF) at1150m asl, sub-alpine dwarf forest (SDF) at1750m asl and alpine meadow (AM) at2150m asl, respectively, in the natural reserve of theWuyi Mountains in Fujian Province, China. We studied the distribution of soil microbialdiversity along elevation and the microbial effect of environmental changes along altitude fromthe point of view of the biogeography, and stated the relationship of soil microbial diversity withsoil, environment and vegetation along elevation. The major findings are as following:
     1. The amount of microbes altered along an elevation gradient. The amount of fungiincreased with altitude, the amount of actinomucetes increased with altitude (except EBF), theamount of bacteria and cellulose decomposing microbes increased with altitude (except SDF),the amount of nitrogen fixing bacteria and ammonifying bacteria decreased with altitude (exceptAM), the amount of nitrifying bacteria was very little. We did not find nitrifying bacteria at AM.The amount of microbes altered with seasons, and the peaks of microbes were in spring, summerand autumn, the bottoms of microbes were in winter. The ratio of soil bacteria increased withaltitude, and the ratio of fungi decreased with altitude. The degree of correlation of the amountof microbes with physical and chemical properties of soils receded with altitude.
     2. The AWCD of soil microbes and microbial functional diversity increased with altitude,with the order of AM>CF>EBF≈SDF, and the order changed with season and soil depth.Sole-carbon-source utilization profiles of soil microbial community were different betweendifferent sites and seasons, and pasture soil and forest soil had distinct differences of microbialcommunity carbon utilization profile. Micobial functional diversity at the four sites correlatedwith physical and chemical properties of soils, fine root biomass, and litter. Generally, soiltemperature was the most factors for micobial functional diversity.
     3. The activity of soil enzymes distinctly altered with elevation. The activity of soilenzymes increased with altitude (except polyphenol oxidase). The seasonal difference of theactivity of sucrase, acidic phosphatase and polyphenol oxidase were distinct, and that of ureaseand catalase were not significant. The activity of soil enzymes also decreased with soil depth.The activity of soil enzymes were highly correlated with physical and chemical properties ofsoils, soil temperature and soil moisture and, microbial diversity
引文
Alarcón-Gutiérrez, E., Floch, C., Augur, C., et al. Spatial variations of chemical composition, microbial functional diversity, andenzyme activities in a Mediterranean litter (Quercus ilex L.) profile[J]. Pedobiologia,2008,52:387-399.
    Albiach, R., Canet, R., Pomanes, F., et al. Microbial biomass content and enzymatic activities after the application of organicamendments to a horticultural soil[J]. Bioresource Technology,2000,75:43-48.
    Alden, L., Demoling, F.,B th, E. Rapid method of determining factors limiting bacterial growth in soil[J]. Applied andEnvironmental Microbiology,2001,67:1830-1838.
    Andersen, R., Grasset, L., Thormann, M. N., et al. Changes in microbial community structure and function following Sphagnumpeatland restoration[J]. Soil Biology and Biochemistry,2010,42(2):291-301.
    Bell, C. W., Acosta-Martinez, V., McIntyre, N. E., et al. Linking microbial community structure function to seasonal differences insoil moisture temperature in a Chihuahuan Desert grassland[J]. Microbial Ecology,2009,58:827-842.
    Bell, T., Ager, D., Song, J. I., et al. Larger islands house more bacterial taxa[J]. Science,2005,308:1884.
    Blair, B. J.,Lefroy, R. D. Soil carbon fractions based on their degree of oxidation and the developments of a carbon managementindex for agricultural systems[J]. Aust. J. Agri. Res,1995,46(46):1456-1466.
    Bloom, A. J., Chapin, I.,Mooney, H. A. Resource limitation in plants—an economic analogy[J]. Annual Review of Ecology andSystematics,1985,16:363-392.
    Bruesh, R. J.,Datta, D. S. K. Denitrification Losses from puddled rice soils in the tropics[J]. Biology and Fertility of Soils,1990,9:1-13.
    Bryant, J. A., Lamanna, C.,al, e. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity[J].PNAS,2008,105(1):11505-11511.
    Cai, Y. F., Barber, P., Dell, B., et al. Soil bacterial functional diversity is associated with the decline of Eucalyptusgomphocephala[J]. Forest Ecology and Management,2010,260(6):1047-1057.
    Chung, K. T.,Case, C. L. Sergei Winogradsky: Founder of Soil Microbiology[J]. SIM News,2001,51(3):133-135.
    Chung, K. T.,Ferris, D. H. Martinus Willem Beijerinck-pioneer of general microbiology[J]. Features,1996,62(10):539-543.
    Cleveland, C. C., Nemergut, D. R., SK, S., et al. Increases in soil respiration following labile carbon additions linked to rapidshifts in soil microbial community composition[J]. Biogeochemistry,2007,82:229-240.
    Collins, H. P.,Cavigelli, M. A. Soil microbial community characteristics along an elevation gradient in the Laguna Mountains ofSouthern California[J]. Soil Biology&Biochemistry,2003,35(8):1027-1037.
    Cookson, W. R., Marschner, P., Clark, I. M., et al. The influence of season, agricultural management, and soil properties on grossnitrogen transformations and bacterial community structure[J]. Australian Journal of Soil Research2006,44:453-465.
    Dana, D. S. K., Bruesh, R. J.,Samson, M. L. Direct measurement of ammonia and denitrification fluxes from urea applied torice[J]. Soil Science Society of America Journal,1991,55:543-548.
    Davis, J., Haines, B., Coleman, D., et al. Fine rootdynamics along an elevational gradient in the southern Appalachian Mountains,USA[J]. Forest Ecology and Management,2004,187:19-34.
    Degens, B. P., Schipper, L. A., Sparling, G. P., et al. he microbial community in a soil with reduced catabolic diversity less resistantto stress or disturbance?[J]. Soil Biology&Biochemistry,2001,33:1143-1153.
    Dequiedt, S., Saby, N. P. A., Lelievre, M., et al. Biogeographical patterns of soil molecular microbial biomass as influenced by soilcharacteristics and management[J]. Global Ecology and Biogeography,2011,20(4):641-652.
    Dequiedt, S., Thioulouse, J., Jolivet, C., et al. Biogeographical patterns of soil bacterial communities[J]. EnvironmentalMicrobiology Reports,2009,1(4):251-255.
    Diamantidisa, G., Aline, E., Patrick, P., et al. Purification and characterization of the first bacterial laccase in the rhizosphericbacterium Azospirillum lipoferum[J]. Soil Biology and Biochemistry,2000,32(7):919-927.
    Djukic, I., Zehetner, F., Mentler, A., et al. Microbial community composition and activity in different Alpine vegetation zones[J].Soil Biology and Biochemistry,2010,42(2):155-161.
    Doran, J. W. Defining soil quality for a sustainable environment[J]. Global Change Biol,1994,28:223-234.
    Drenovsky, R. E., Vo, D., Graham, K. J., et al. Soil water content and organic carbon availability are major determinants of soilmicrobial community composition[J]. Microbial Ecology,2004,48:424-438.
    Drury, C. F., McKinney, D. J.,Findlay, W. L. Relationships between denitrification, microbial biomass and indigenous soilproperties[J]. Soil Biology&Biochemistry,1991,23(8):751-755.
    Fierer, N., Bradford, M. A.,Jackson, R. B. Toward an ecological classification of soil bacteria[J]. Ecology,2007,88:1354-1364.
    Fierer, N., Breitbart, M., Nulton, J., et al. Metagenomic and Small-Subunit rRNA Analyses Reveal the Genetic Diversity ofBacteria, Archaea, Fungi, and Viruses in Soil[J]. Applied and Environmental Microbiology,2007,73(21):7059-7066.
    Fierer, N.,Jackson, R. B. The diversity and biogeography of soil bacterial communities [J]. PNAS,2006,103(3):626-631.
    Fisk, M. C., Ruether, K. F.,Yavitt, J. B. Microbial activity and functional composition among northern peatland ecosystems[J]. SoilBiology&Biochemistry,2003,35(4):591-602.
    Fisk, M. C., Ruether, K. F.,Yavitt, J. B. Microbial activity and functional composition among northern peatland ecosystems[J]. SoilBiology&Biochemistry,2003,35(4):591-602.
    Fred, E. B., Baldwin, I. L.,McCoy, E. Root nodule bacteria and leguminous plants[M]. UW-Madison Libraries Parallel Press,2002.
    Fuhrman, J. A., Steele, J. A., Hewson, L., et al. A latitudinal diversity gradient in plank tonic[J]. Ecology,2008,105:7774-7778.
    Garland, J. L.,Mills, A. L. Classification and characterization of heterotrophic microbial communities on the basis of patterns ofcommunity-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology,1991,57:2351-2359.
    Gelsominoa, A., Keijzer Woltersb, A. C., Caccoa, G., et al. Assessment of bacterial community structure in soil by polymerasechain reaction and denaturing gradient gel electrophoresis[J]. Microbiology Methods,1999,38:1-15.
    Glimm, E., Heuer, H., Engelen, B., et al. Statistical comparisons of community catabolic profiles[J]. Journal of MicrobiologicalMethods,1997,30(1):71-80.
    G m ryová, E., Hrivnák, R., Jani ová, M., et al. Changes of the functional diversity of soil microbial community during thecolonization of abandoned grassland by a forest[J]. Applied Soil Ecology,2009,43(2-3):191-199.
    Gowda, R. N.,Bacteriol, J. Nitrification and the nitrifying organisma. I[J]. Journal of Bacteriology,1924,9(3):251-273.
    Griffiths, R., Thomson, B. C., James, P., et al. The bacterial biogeography of British soils[J]. Environmental Microbiology,2011,13(6):1642-1654.
    Groffman, P. M., Mc Dowellb, W. H., Myersc, J. C., et al. Soil microbial biomass and activity in tropical riparian forests[J]. SoilBiology and Biochemistry,2001,33:1339-1348.
    Habekost, M., Eisenhauer, N., Scheu, S., et al. Seasonal changes in the soil microbial community in a grassland plant diversitygradient four years after establishment[J]. Soil Biology and Biochemistry,2008,40(10):2588-2595.
    Hacck, S. K., Garchow, H. M., Klyg, J., et al. Analysis of factors affecting the accuracy, reproducibility, and interpretation ofmicrobial community carbon source utilization patterns[J]. Applied Environmental Microbiology,1995,61:1258-1268.
    Harch, B. D., Correll, R. L., Meech, W., et al. Using the Gini coefficient with BIOLOG substrateutilization data to provide analternative quantitativemeasure for comparing bacterial soil communities[J]. J.Microbiol. Meth.,1997,30:91-101.
    Hauck, R. D.,Weaver, R. W. Field Measurement of Dinitrogen Fixation and Dinitrification[J]. Soil Science,1986,5:59-72.
    Hayatsu, M., Tago, K.,Saito, M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved innitrification and idenitrification.[J]. Soil Science and Plant Nutrition,2008,54:33-45.
    Holland, E. A.,Coleman, D. C. Litter placement effects on microbial and organic matter dynamics in an agroecosystem[J]. Ecology,1987,68:425-433.
    Horner-Devine, M. C., Lage, M., Hughes, J. B., et al. A taxa-area relationship for bacteria[J]. Nature,2004,432:750-753.
    Hovatter, S. R., Dejelo, C., Case, A., et al. Metacommunity organization of soil microorganisms depends on habitat defined bypresence of Lobelia siphilitica plants[J]. Ecology,2011,92(1):57-65.
    Hu, J. L., Lin, X. G., Wang, J. H., et al. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loamsoil as affected by long-term application of organic amendment and mineral fertilizer[J]. Journal of Soils and Sediments,2011,11(2):271-280.
    H gberg, M. N., H gberg, P.,Myrold, D. D. Is microbial community composition in boreal forest soils determined by pH, C-to-Nratio, the trees, or all three?[J]. Oecologia,2007,150:590-601.
    Ingham, E. R., Coleman, D. C.,Moore, J. C. An analysis of food-web structure and function in a shortgrass prairie, a mountainmeadow, and a lodgepole pine forest[J]. Biology and Fertility of Soils,1989,8:29-37.
    Jacob, M., Weland, N., Platner, C., et al. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along agradient of increasing tree species diversity[J]. Soil Biology and Biochemistry,2009,41(10):2122-2130.
    Jenkins, M. C.,Kemp, W. M. The coupling of nitrification and denitrification in two estuarine sediments[J]. Limnol Oceanogr,1984,29(3):609-619.
    Jensen, K., Revsbech, N. P.,Nielsen, L. P. Microscale distribution of nitrification activity in sediment determined with a shieldedmicrosensor for nitrate[J]. Applied Environmental Microbiology,1993,59:3287-3296.
    Joergensen, R. G.,Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil[J]. Soil Biology&Biochemistry,2008,40:2977-2991.
    Jones, R., Robeson, M. S., Lauber, C. L., et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing andclone library analyses[J]. ISME Journal2009,3:442-453.
    Katyal, J. C., Xarter, M. F.,Vlek, P. L. G. Nitrification activity in submerged soils and its relation to denitrification loss[J]. Biologyand Fertility of Soils,1988,7:16-22.
    Kennydy, A. C.,Smitn, K. L. Soil microbial diversity and the sustainability of agricultural soils [J]. Plant and Soil,1995,170:75-86.
    Klemedtsson, L., Sevensson, B. H.,Rosswall, T. Relationships between soil moisture content and nitrous oxide productionduring nitrification and denitrification[J]. Biology and Fertility of Soils,1988,6:106-111.
    Kourtev, P. S., Ehrenfeld, J. G.,Haeggblom, M. Exotic plant species atler the microbial community structure and function in thesoil[J]. Ecology,2002,83:3152-3166.
    Krave, A. S., Lin, B., Braster, M., et al. Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii(pine) forest soil in central Java, Indonesia[J]. Environmental Microbiology,2002,4:361-373.
    Liebig, J. Der Zustand der Chemie in Preussen[J]. Annalen der Chemie und der Pharmacie,1840,34:102-104.
    Liu, W. T., Marsh, T. L., Cheng, H., et al. Characterization of microbial diversity by determining terminal restriction fragmentlength polymorphisms of genes encoding16S rRNA[J]. Applied and Environmental Microbiology,1997,63(11):4516-4522.
    Liu, Z. F., Liu, G. H., Fu, B. J., et al. Relationship between plant species diversity and soil microbial functional diversity along alongitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China[J]. Ecological Research,2008,23:511-518.
    Liu, Z., Fu, B., Zheng, X., et al. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversityin a temperate steppe: A regional scale study[J]. Soil Biology and Biochemistry,2010,42(3):445-450.
    Lynch, H. B., Epps, K. Y., Fukami, T., et al. The effect of introduced canopy tree species on the soil microbial community in amontane tropical forest [J]. Pacific Science,2011,66(2):1-20.
    Magurran, A. E. Ecological diversity and its measurement[M]. Princeton University Press,1988,34-59.
    Margesin, R., Jud, M., Tscherko, D., et al. Microbial communities and activities in alpine and subalpine soils[J]. FEMSMicrobiology Ecology,2009,67(2):208-218.
    Marschner, P., Neumann, G., Kania, A., et al. Spatial and temporal dynamics of the microbial community structure in therhizosphere of cluster roots of white lupin (Lupinus albus L.)[J]. Plant Soil,2002,246:167-174.
    Marshall, K. C. Ecological of microbial cellulose degradation. Advances in Microbial Ecology[M]. New York: Plenum Press,1985,237-244.
    Martínez Alonso, M., Escolano, J., Montesinos, E., et al. Diversity of the bacterial community in the surface soil of a pear orchardbased on16s rRNA gene analysis[J]. International Microbiology,2010,13:123-134.
    Martnez Toledo, M. V., Salmeron, V., Rodelas, B., et al. Effects of the fungicide Captan on some functional groups of soilmicroflora [J]. Applied Soil Ecology,1998,7(3):245-255.
    Matsumoto, L. S., Martines, A. M., Avanzi, M. A., et al. Interactions among functional groups in the cycling of, carbon, nitrogenand phosphorus in the rhizosphere of three successional species of tropical woody trees[J]. Applied Soil Ecology,2005,28(1):57-65.
    Mazzarino, M. J., Szott, L.,Jimenez, M. Dynamics of soil total C and N, microbial biomass, and water-soluble C in tropicalagroecosystems[J]. Soil Biology&Biochemistry,1993,25:205-214.
    Mc Gill, W. B., Cannon, K. R., Robertson, J. A., et al. Dynamics of soil microbial biomass and water-soluble organic C in Bretonlafter50years of cropping to two rotations[J]. Canadian Journal of Soil Science,1986,66(1):1-19.
    Méndez, M.,Karlsson, P. S. Nutrient stoichiometry in Pinguicula Vulgaris: nutrient availability, plant size, and reproductive status[J]. Ecology,2005,86(4):982-991.
    Muyzer, G., de Waal, E. C.,Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gelelectrophoresis analysis of polymerase chain reaction-amplified genes coding for16S rDNA[J]. Applied and EnvironmentalMicrobiology,1993,59(3):695-700.
    Nakas, J. P., Gould, W. D.,Klein, D. A. Origin and expression of phosphatease activity in a semi-arid grassland soil[J]. SoilBiology&Biochemistry,1987,19(1):13-18.
    Naseby, D. C., Pascual, J. A.,Lynch, J. M. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimumpopulations, soil microbial communities and soil enzyme activities[J]. Journal of Applied Microbiology,2000,88(1):161-169.
    Nautiyal, C. S., Chauhan, P. S.,Bhatia, C. R. Changes in soil physico-chemical properties and microbial functional diversity due to14years of conversion of grassland to organic agriculture in semi-arid agroecosystem[J]. Soil&Tillage Research,2010,109:55-60.
    Niklińska, M.,Klimek, B. Effect of temperature on the respiration rate of forest soil organic layer along an elevation gradient in thePolish Carpathians[J]. Biology and Fertility of Soils,2007,43:511-518
    Okano, Y., Hristova, K. R., Leutenegger, C. M., et al. Application of Real-Time PCR To Study Effects of Ammonium onPopulation Size of Ammonia-Oxidizing Bacteria in Soil[J]. Applied and Environmental Microbiology,2004,70(2):1008-1016.
    Peay, K. G., Garbelotto, M.,Bruns, T. D. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richnesson mycorrhizal tree islands[J]. Ecology,2010,91(12):3631-3640.
    Powlson, D. S., Brookes, P. C.,Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changesin total soil organic matter due to straw incorporation[J]. Soil Biology and Biochemistry,1987,19:159-164.
    Preston-Mafham, J., Boddy, L.,Randerson, P. F. Analysis of microbial community functional diversity using sole-carbon-sourceutilisation profiles-a critique[J]. Microbial Ecology,2002,42:1-14.
    Prevost-Boure, N. C., Maron, P. A., Ranjard, L., et al. Seasonal dynamics of the bacterial community in forest soils under differentquantities of leaf litter[J]. Applied Soil Ecology,2011,47(1):14-23.
    Ranjard, L., Dequiedt, S., Jolivet, C., et al. Biogeography of soil microbial communities: a review and a description of the ongoingfrench national initiative[J]. Agronomy for Sustainable Development,2010,30(2):359-365.
    Rasche, F., Knapp, D., Kaiser, C., et al. Seasonality and resource availability control bacterial and archaeal communities in soils ofa temperate beech forest[J]. The ISME Journal,2010,5(3):389-402.
    Reichardt, W., Briones, A., de Jesus, R., et al. Microbial population shifts in experimental rice systems[J]. Applied Soil Ecology,2001,17(2):151-163.
    Ross, D. J., Sparling, G. P., Burke, C. M., et al. Microbial biomass C and N and mineralizable-N in litter and mineral soil underPinus radiata on a coastal sand: influence of stand age and harvest management[J]. Plant and Soil1995,175:167-177.
    Ross, D. J.,Tote, K. R. Microbial C and N, and respiratory activity, in litter and soil of a southern beech (Nothofagus) forest:Distribution and properties[J]. Soil Biology&Biochemistry,1993,25:477-483.
    Royer-Tardif, S., Bradley, R. L.,Parsons, W. F. J. Evidence that plant diversity and site productivity confer stability to forest floormicrobial biomass[J]. Soil Biology and Biochemistry,2010,42(5):813-821.
    Ruan, H. H., Zou, X. M., Zimmerman, J. K., et al. A synchronous fluctuation of soil microbial biomass and plant litterfall in atropical wet forest[J]. Plant and Soil,2004,260:147-154.
    Ruppel, S., Torsvik, V., Daae, F. L., et al. Nitrogen availability decreases prokaryotic diversity in sandy soils[J]. Biology andFertility of Soils,2007,43(449-459):
    Russell, P. J.,Williams.anita. The nutrition and health dictionary[M]. USA: Chapman&Hall,1995.
    Rutigliano, F. A., Ascoli, R. D.,Virzo De Santo, A. Soil microbial metabolism and nutrient status in a Mediterranean area asaffected by plant cover.[J]. Soil Biology&Biochemistry,2004,36(11):1719-1729.
    Santantinio, D.,Grace, J. C. Estimating fine-root production turnover from biomass and decomposition data a compartment-flowmodel[J]. Canadian Journal of Forest Research,1987,17:900-908.
    Seastedt, T. R.,Crossley Jr, D. A. effects of microarthropods on the seasonal dynamics of nutrients in forest litter[J]. Soil Biology&Biochemistry,1980,12(337-342):
    Shen, J. P., Zhang, L. M., Zhou, Y. B., et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizingarchaea communities of an alkaline sandy loam[J]. Environmental Microbiology,2008,10:1601-1611.
    Shi, J. Y., Yuan, X. F., Lin, H. R., et al. Differences in Soil Properties and Bacterial Communities between the Rhizosphere andBulk Soil and among Different Production Areas of the Medicinal Plant Fritillaria thunbergii[J]. International Journal ofMolecular Sciences,2011,12(6):3770-3785.
    Singh, J. S.,Gupta, S. R. Plant decomposition and soil respiration in terrestrial ecosystems.[J]. Botanical Review,1977,43:449-528.
    Smalla, K., Wachtendorf, U., Heuer, H., et al. Analysis of BIOLOG GN substrate utilization patterns by microbial communities[J].Applied and Environmental Microbiology,1998,64:1220-1225.najdr, J., Valá ková, V., Merhautová, V., et al. Spatial variability of enzyme activities and microbial biomass in the upper layers ofQuercus petraea forest soil[J]. Soil Biology&Biochemistry,2008,40:2068-2075.
    Staddon, W. J., Duchesne, L. C.,Trevors, J. T. Microbial diversity and community structure of postdisturbance forest soils asdetermined by sole-carbon-source utilization patterns[J]. Microbial Ecology,1997,34:125-130.
    Stevenson, B. A., Sparling, G. P., Schipper, L. A., et al. Pasture and forest soil microbial communities show distinct patterns intheir catabolic respiration responses at a landscape scale[J]. Soil Biology and Biochemistry,2004,36(1):49-55.
    Stres, B., Danevèiè, T., Pal, L., et al. Influence of temperature and soil water content on bacterial, archaeal and denitrifyingmicrobial communities in drained fen grassland soil microcosms.[J]. FEMS microbiology ecology2008,66:110-122.
    Tabuchi, H., Kato, K.,Nioh, I. Season and soil management affect soil microbial communities estimated using phospholipid fattyacid analysis in a continuous cabbage (Brassica oleracea var. capitata) cropping system[J]. Soil Science&Plant Nutrition,2008,54(3):369-378.
    Taylor, J. P., Wilson, B., Mills, M. S., et al. Comparison of microbial numbers and enzymatic activities in surface and subsoilsusing various techniques[J]. Soil Biology and Biochemistry,2002,34:387-401.
    Toledo-Pereyra, L. H. Louis Pasteur surgical revolution[J]. Journal of investigative surgery,2009,22(2):82-87.
    Torres, P. A., Abriland, A. B.,Bucher, E. H. Microbial succession in litter decomposition in the semi-arid Chaco woodland[J]. SoilBiology and Biochemistry,2005,37(1):49-54.
    Tourna, M., Freitag, T. E., Nicol, G. W., et al. Growth, activity and temperature responses of ammonia-oxidizing archaea andbacteria in soil microcosms[J]. Environmental Microbiology,2008,10:1357-1364.
    Tsai, S. H., Selvam, A., Chang, Y., et al. Soil bacterial community composition across different topographic sites characterized by16S rRNA gene clones in the Fushan Forest of Taiwan[J]. Microbiology2009,50:57-68.
    Unger, M., Leuschner, C.,Homeier, J. Variability of indices of macronutrient availability in soils at different spatial scales along anelevation transect in tropical moist forests (NE Ecuador)[J]. Plant and Soil,2010,336:443-458.
    Ushio, M., Kitayama, K.,Balser, T. C. Tree species effects on soil enzyme activities through effects on soil physicochemical andmicrobial properties in a tropical montane forest on Mt. Kinabalu, Borneo[J]. Pedobiologia,2010,53:227-233.
    Ushio, M., Wagai, R., Balser, T. C., et al. Variations in the soil microbial community composition of a tropical montane forestecosystem: Does tree species matter?[J]. Soil Biology and Biochemistry,2008,40(10):2699-2702.
    Vázquez, M. M., César, S., Azcón, R., et al. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants(Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in therhizosphere of maize plants[J]. Applied Soil Ecology,2000,15(3):261-272.
    Waksman, S. A. Principles of microbiology[M]. USA: Baltimore, Williams&Wilkins1927.
    Wang, S. J., Ruan, H. H.,Wang, B. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in theWuyi Mountains[J]. Soil Biology&Biochemistry,2009,41:891-897.
    White, C., Tardif, J. C., Adkins, A., et al. Functional diversity of microbial communities in the mixed boreal plain forest of centralCanada[J]. Soil Biology&Biochemistry,2005,37(7):1359-1372.
    Wiemken, V., Laczko, E., Ineichen, K., et al. Effects of Elevated Carbon Dioxide and Nitrogen Fertilization on Mycorrhizal FineRoots and the Soil Microbial Community in Beech-Spruce Ecosystems on Siliceous and Calcareous Soil [J]. MicrobialEcology,2001,42(2):126-135.
    Winogradsky, S. The Method in Soil Microbiology As Illustrated By Studies on Azotobacter and the Nitrifying Organisms[J]. SoilScience,1935,40(1):59-76.
    Yao, H. Y., He, Z. L.,Huang, C. H. Phospholipid fatty acid profiles of Chinese red soil with varying fertility levels and land usehistories[J]. Pedosphere,2001,(11):97-103.
    Zak, D. R., Grigal, D. F., Gleeson, S., et al. Carbon and nitrogen cycling during old-field succession constraints on plant andmicrobial biomass[J]. Biogeochemisty,1990,11(2):111-129.
    Zak, D. R., Holmes, W. E., White, D. C., et al. Plant diversity, soil microbial communities, and ecosystem function: are there anylinks?[J]. Ecology2003,84:2042-2050.
    Zak, D. R., Tilman, D., Parmenter, R. R., et al. Plant production and soil microorganisms in late-successional ecosystems acontinental-scale study[J]. Ecology,1994,75(8):2333-2347.
    Zhang, C. B., Ke, S. S., Wang, J., et al. Responses of microbial activity and community metabolic profiles to plant functionalgroup diversity in a full-scale constructed wetland[J]. Geoderma,2011,160(3-4):503-508.
    Zhong, W. H.,Cai, Z. C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in apaddy soil derived from quaternary red clay[J]. Applied Soil Ecology,2007,36(2-3):84-91.
    Zhou, J., Kang, S., Schadt, C. W., et al. Spatial scaling of functional gene diversity across various microbial taxa[J]. Proceedingsof the National Academy of Sciences,2008,105(22):7768-7773.
    安韶山,李国辉,陈利顶.宁南山区典型植物根际与非根际土壤微生物功能多样性[J].生态学报,2011,31(18):5225-5234.
    白震,何红波,张威,等.磷脂脂肪酸技术及其在土壤微生物研究中的应用[J].生态学报,2006,26(7):2387-2394.
    鲍俊丹,张妹婷,吴雄平,等.13种土壤硝化过程中亚硝态氮的累积与土壤性质的关系[J].农业环境科学学报,2009,28(9):1952-1958.
    曹文亮,张丽华,王静.免耕与覆盖对土壤微生物生理类群的影响[J].甘肃农业大学学报,2008,43(6):123-126.
    曹文亮.不同耕作措施对土壤纤维素分解菌及其酶活性的影响[D].兰州:甘肃农业大学硕士学位论文,2008.
    曹正邦,樊庆笙.施用肥料对于红壤中微生物区系影响的初步分析[J].土壤学报,1957,5:206-214.
    陈承利,廖敏,曾路生.污染土壤微生物群落结构多样性及功能多样性测定方法[J].生态学报,2006,26(10):3404-3412.
    陈法霖,屠乃美.保护性耕作对土壤微生物的影响及机制[J].作物研究,2009,23(3):229-233.
    陈珊,张常钟,刘东波,等.东北羊草草原土壤微生物生物量的季节变化及其与土壤生境的关系[J].生态学报,1995,15(1):93-96.
    陈双林,郭子武,杨清平.毛竹林土壤酶活性变化的海拔效应[J].生态学杂志,2010,29(3):529-533.
    陈泰雄,丁明懋,蚁伟民,等.鹤山丘陵综合试验站不同植被下土壤微生物学特性[J].热带亚热带森林生态系统研究1990,7:35-40.
    陈晓雯,林胜,尤民生,等.转基因水稻对土壤微生物群落结构及功能的影响[J].生物安全学报,2011,20(2):151-159.
    陈颖,李肖肖,应娇妍,内蒙草原不同植物功能群及物种对土壤微生物组成的影响[J].生物多样性,2012,20(1):59-65.
    陈展,王效科,段晓男,等.臭氧浓度升高对盆栽小麦根系和土壤微生物功能的影响[J].生态学报,2007,27(5):1803-1808.
    陈哲,陈春兰,秦红灵,等.化肥对稻田土壤细菌多样性及硝化、反硝化功能菌组成的影响[J].生态学报,2009,29(11):6142-6147.
    刁冶民,周富强,高晓杰,农业微生物生态学[M].西南交通大学出版社,2008,199-219.
    刁治民.高寒草地的微生物氮素生理群系研究[J].土壤,1996(1):49-53.
    冯健,张健.巨桉人工林地土壤微生物类群的生态分布规律[J].应用生态学报,2005,16(8):1422-1426.
    傅声雷,蚁伟民,丁明懋.鼎湖山不同植被类型下土壤微生物养分的矿化[J].植物生态学报,1995,19(3):217-224.
    高雪峰,武春燕,韩国栋.草原土壤微生物受放牧的影响及其季节变化[J].微生物学通报,2010,37(8):1117-1122.
    龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤氮库与微生物的季节变化[J].生态学报,2011,31(7):1763-1771.
    关松荫等.土壤酶及其研究方法[M].北京:农业出版社,1986.
    韩蕙,翟振华,张燕燕,等.环境微生物样品真菌群落BIOLOG分析方法[J].生态学报,2009,29(5):2365-2370.
    韩玉竹,陈秀蓉,王国荣,等.东祁连山高寒草地土壤微生物分布特征初探[J].草业科学,2007(4):14-18.
    郝爱平,杨立舟,国会艳. PCR-RFLP法探讨三个人工湖微生物群落多样性[J].生物技术,2007,17(6):35-37.
    何建源主编.武夷山研究(自然资源卷)[M].厦门:厦门大学出版社,1994.
    何容,汪家社,施政,等.武夷山植被带土壤微生物量沿海拔梯度的变化[J].生态学报2009,29(9):5138-5145.
    何寻阳,王克林,于一尊,等.岩溶区植被和季节对土壤微生物遗传多样性的影响[J].生态学报,2009,29(1):1763-1769.
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997(2):61-67.
    贺纪正,葛源.土壤微生物生物地理学研究进展[J].生态学报,2008,28(11):5571-5582.
    侯琳,雷瑞德,王得祥,等.黄龙山林区封育油松林土壤养分研究[J].西北农林科技大学学报,2007,35(2):63-68.
    侯晓杰,汪景宽,李世朋.不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响[J].生态学报,2007,27(2):655-661.
    胡婵娟,傅伯杰,刘国华,等.黄土丘陵沟壑区典型人工林下土壤微生物功能多样性[J].生态学报,2009,29(2):727-733.
    黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    黄建辉.物种多样性的空间格局及其形成机制初探[J].生物多样性,1994,2(2):103-107.
    惠竹梅,李华,龙妍,等.葡萄园行间生草体系中土壤微生物数量的变化及其与土壤养分的关系[J].园艺学报,2010,37(9):1395-1402.
    贾淑霞,赵妍丽,孙玥,等.施肥对落叶松和水曲人工林土壤微生物生物量碳和氮季节变化的影响[J].应用生态学报,2009,20(9):2063-2071.
    姜海燕,闫伟.大兴安岭兴安落叶松林土壤微生物分布特征[J].浙江林学院学报,2010,27(2):228-232.
    姜惠武,赵玉泉,张博.森林中的土壤酶的研究[J].林业勘察设计,2009,41(2):230-235.
    李春格,李晓鸣,王敬国.大豆连作对土体和根际微生物群落功能的影响[J].生态学报,2006,26(4):1144-1150.
    李春莉,赵萌莉,韩国栋,等.放牧对短花针茅草原土壤微生物和土壤养分的影响及其季节动态[J].干旱区资源与环境,2009,23(4):184-190.
    李佳霖,白洁,高会旺,等.长江口邻近海域夏季沉积物硝化细菌与硝化作用[J].环境科学,2009,30(11):
    李君锋,杨建文,杨婷婷,等.甘肃玛曲高寒草甸土壤微生物季节变化特性的研究[J].草业科学,2012,29(2):189-197.
    李梅,侯彦林,皮广洁.汞污染紫色土中微生物区系及生理类群[J].农业环境科学学报,2004,[23(4):668-673.
    李世朋,蔡祖聪,杨浩.贵阳市东郊不同植被类型下土壤特性对微生物功能的影响[J].土壤,2009,41(2):224-229.
    李世清,李生秀,张兴昌.不同生态系统土壤微生物体氮的差异[J].土壤侵蚀与水土保持学报,1998,5(1):69-73.
    李献梅,王小芬,崔宗均.末端限制片段长度多态技术(T-RFLP)在微生物群体分析上的应用与技术优化[J].中国农业大学学报,2009,14(4):1-9.
    李延茂,胡江春,张晶,等.杉木连载土壤微生物多样性的比较研究[J].应用生态学报,2005,16(7):1275-1278.
    李云,孙波,李忠佩.气候对旱地紫色土微生物功能多样性的长期影响[J].土壤,2009,41(2):230-235.
    李忠佩,吴晓晨,陈碧云.不同利用方式土壤有机碳转化及微生物群落功能多样性变化[J].中国农业科学,2007,40(8):1712-1721.
    林大仪.土壤学实验指导[M].北京:中国林业出版社,2004.
    林营志,刘波,张秋芳,等.土壤微生物群落磷脂脂肪酸生物标记分析程序PLFAEco[J].中国农学通报,2009,25(14):286-290.
    刘光菘.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996.
    刘光琇,董小培,张威,等.不同海拔表层土壤微生物数量消长的机理[J].冰川冻土,2010,32(6):1170-1174.
    龙健,黄昌勇,滕应,等.我国南方红壤矿区复垦土壤的微生物生态特征研究Ⅰ.对土壤微生物活性的影响[J].应用生态学报,2003,14(11):1925-1928.
    娄鑫,崔晓阳.温带森林次生演替过程中土壤微生物多样性研究[J].土壤通报,2011,42(3):557-561.
    鲁如坤,等.土壤农业化学分析[M].北京:中国农业科技出版社,2000.
    罗明,文启凯,陈全家.不同用量的氮磷化肥对棉田土壤微生物区系及活性的影响[J].土壤通报,2000,31(2):66-69.
    罗希茜,郝晓晖,陈涛,等.长期不同施肥对稻田土壤微生物群落功能多样性的影响[J].生态学报,2009,29(2):740-748.
    马悦欣, C. Holmstrm, J. Webb,等.变性梯度凝胶电泳(DGGE)在微生物生态学[J].生态学报,2003,23(8):1561-1569.
    毛志刚,谷孝鸿,刘金娥,等.盐城海滨湿地盐沼植被及农作物下土壤酶活性特征[J].生态学报,2010,30(18):5043-5049.
    闵航,吴雪昌.微生物学[M].浙江大学出版社,2005,2.
    莫江明,薛璟花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J].生态学报,2004,24(7):1413-1420.
    牛世全,杨婷婷,李君锋,等.盐碱土微生物功能群季节动态与土壤理化因子的关系[J].干旱区研究,2011,28(2):328-334.
    齐雅静,白淑兰,闫伟,等.油松、虎榛子不同林型土壤微生物功能多样性研究[J].干旱区资源与环境,2010,24(10):133-137.
    齐泽民,王开运,张远彬,等.川西亚高山林线交错带土壤微生物类群及酶活性季节动态[J].西南师范大学学报(自然科学版),2009,34(6):49-54.
    秦华,林先贵,陈瑞蕊,等. DEHP对土壤脱氢酶活性及微生物功能多样性的影响[J].土壤学报,2005,42(5):826-831.
    权伟,徐侠,王丰,等.武夷山不同海拔高度植被细根生物量及形态特征[J].生态学杂志,2008,27(7):1095-1103.
    任天志.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    邵元元,王志英,邹.莉,等.百菌清对落叶松人工防护林土壤微生物群落的影响[J].生态学报,2011,31(3):819-829.
    申卫收,林先贵,张华勇,等.不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性[J].生态学报,2008,28(6):2682-2689.
    施政,汪家社,何容,等.武夷山不同海拔植被土壤呼吸季节变化及对温度的敏感性[J].应用生态学报,2008,19(11):2357-2363.
    石红霄,于健龙.青藏高原不同植被类型土壤微生物数量及影响因子[J].土壤通报,2012,43(1):47-51.
    宋漳,朱锦懋,杨玉盛.闽北常绿阔叶林土壤微生物学特性的研究[J].福建林学院学报,2000,20(4):317-320.
    孙波,赵其国.土壤质量与持续环境:Ⅲ.土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    孙建光,徐晶,胡海燕,等.中国十三省市土壤中非共生固氮微生物菌种资源研究[J].植物营养与肥料学报,2009,15(6):1450-1465.
    孙玉焕,骆永明,杨志海.污泥施用对土壤微生物群落结构多样性的影响[J].安徽农业科学,2008,36(12):5126-5127.
    唐学芳,孙辉,罗英,等.珠穆朗玛峰北坡土壤脲酶和中性磷酸酶活性初探研究[J].土壤通报,2008,39(2):270-273.
    陶宝先,张金池,愈元春,等.苏南丘陵地区森林土壤酶活性季节变化[J].生态环境学报,2010,19(10):2349-2354.
    陶勇,陈防,万开元,等.江汉平原杨树林下土壤酶及微生物的年动态变化[J].福建林业科技,2009,36(4):90-97.
    藤应,黄昌勇,龙健,等.矿区侵蚀土壤的微生物活性及其群落功能多样性研究[J].水土保持学报,2003,17(1):115-118.
    藤应,黄昌勇,骆永明,等.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004b,41(1):113-119.
    藤应,黄昌勇,骆永明,等.重金属复合污染下土壤微生物群落功能多样性动力学特征[J].土壤学报,2004a,41(5):735-741.
    田倩,夏汉平,周丽霞.磷脂脂肪酸法分析鹤山针叶林和荷木林的土壤微生物多样性[J].热带亚热带植物学报,2011,19(2):97-104.
    万忠梅,宋长春.三江平原小叶章湿地土壤酶活性的季节动态[J].生态环境学报,2010,19(5):1215-1220.
    王斌,陈亚明,周志宇.贺兰山西坡不同海拔梯度上土壤氮素矿化作用的研究[J].中国沙漠,2007,27:483-490.
    王光华,金剑,徐美娜,等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志2006,25(5):550-556.
    王光华,刘俊杰,齐晓宁,等. Biolog和PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响[J].生态学报,2008,28(1):220-226.
    王国兵,阮宏华,唐燕飞,等.北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用生态学报,2008,19(1):37-42.
    王江,张崇邦.重金属污染土壤植被恢复过程中的土壤微生物特征[J].生态学报,2009,29(3):1636-1646.
    王静,张仁陟,张天佑.保护性耕作方式对土壤微生物生理类群和酶活性的影响[J].干旱区资源与环境,2001,25(7):168-172.
    王丽,刘霞,张光灿,等.黄前水库集水区水源保护林地土壤微生物及酶活性时空变化[J].中国水土保持,2012(1):36-40.
    王锐萍,刘强,文艳,等.鼎湖山和尖峰岭土壤及凋落物中微生物数量季节动态[J].土壤通报,2005,36(6):933-937.
    王瑞永,刘莎莎,王成章,等.不同海拔高度高寒草地土壤理化指标分析[J].草地学报,2009,17(5):621-628.
    王少昆,赵学勇,左小安,等.科尔沁沙质草甸土壤微生物数量的垂直分布及季节动态[J].干旱区地理,2009,32(4):610-615.
    王邵军.武夷山不同海拔土壤动物对凋落物分解的影响[D].南京:南京林业大学博士学位论文,2009.
    王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望[J].微生物学杂志,2002,22(1):36-39.
    王曙光,侯彦林.磷脂脂肪酸方法在土壤微生物分析中的应用[J].微生物学通报,2004,31(1):114-117.
    王啸波,唐玉秋,王金华,等.环境样品中DNA的分离纯化和文库构建[J].微生物学报,2001,41(2):133-138.
    王长庭,龙瑞军,王启基,等.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J].草业科学2005,14(4):15-20.
    韦兰英,上官周平.黄土高原白羊草、沙棘和辽东栎细根比根长特性[J].生态学报,2006,26(12):4164-4170.
    魏媛,张金池,俞元春,等.贵州花江退化喀斯特植被不同恢复阶段土壤微生物生理类群数量变化[J].农业现代化研究,2010,31(3):356-359.
    魏媛,张金池,俞元春,等.岩溶土壤4大微生物生理类群数量的时空动态特征-以贵州花江喀斯特峡谷地区为例[J].新疆农业大学学报,2010,33(5):380-384.
    吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J].中国农业科学,2007,40(10):2274-2280.
    吴建国,艾丽.土壤颗粒组分中氮含量及其与海拔和植被的关系[J].林业科学,2008,44(6):10-19.
    吴艺雪,杨效东,余广彬.两种热带雨林土壤微生物生物量碳季节动态及其影响因素[J].生态环境学报,2009,18(2):658-663.
    席劲瑛,胡洪营,钱易. Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43(1):138-141.
    夏北成.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300.
    肖育贵.不同林型凋落物土壤微生物数量动态的研究[J].林业科技通讯,1996,17(1):28-29.
    谢龙莲,陈秋波,王真辉,等.环境变化对土壤微生物的影响[J].热带农业科学,2004(6):39-47.
    熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用与环境生物学报,2004,14(4):416-420.
    徐秋芳,姜培坤,王奇赞,等.绿肥对集约经营毛竹林土壤微生物特性的影响[J].北京林业大学学报,2009,31(6):43-48.
    徐秋芳,张许昌,王绪南,等.毛竹林与马尾松林土壤生物学性质及微生物功能多样性比较[J].浙江林业科技,2008,28(3):8-12.
    徐秋芳,郑小平,余文忠.西天目山森林土壤酶活性的分析[J].浙江林学院学报,1997,4(2):142-146.
    徐侠,陈月琴,汪家社,等.武夷山不同海拔高度土壤活性有机碳变化[J].应用生态学报,2008,19(3):539-544.
    徐侠,权伟,汪家社,等.武夷山不同海拔植被带土壤活性有机碳的季节变化[J].南京林业大学学报(自然科学版),2009,33(3):55-59.
    徐永刚,宇万太,马强,等.不同施肥制度下潮棕壤氮素功能群活性的研究[J].水土保持学报,2010,24(3):160-164.
    许光辉,郑洪元,张德生,等.长白山北坡自然保护区森林土壤微生物生态分布及其生化特性的研究[J].生态学报,1984,4:207-223.
    许光辉,郑洪元.土壤微生物分析手册[M].北京农业出版社,1986.
    薛立,陈红跃,邝立刚.湿地松混交林地土壤养分,微生物和酶活性的研究[J].应用生态学报,2003,14(1):157-159.
    亚历山大,广西农学院农业微生物学教研室组译.土壤微生物学[M].北京:科学出版社,1983.
    严昶升.土壤肥力研究方法[M].北京:农业出版社,1988.
    杨成德,陈秀蓉,龙瑞军,等.东祁连山高寒草地牧草返青期土壤酶活性特征[J].草地学报,2010,18(3):308-313.
    杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2002,22(6):39-55.
    杨海君,谭周进.假单胞菌的生物防治作用研究[J].中国生态农业学报,2004,12(3):158-161.
    杨凯,朱教君,张金鑫,等.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J].生态学报,2009,29(10):5501-5508.
    杨式雄,戴教藩,陈宗献,等.武夷山土壤酶活性垂直分布与土壤肥力关系的研究[J].福建林业科技,1993,20(1):1-7.
    杨淑贞,马原,蒋平,等.浙江西天目山土壤理化性质的海拔梯度格局[J].华东师范大学学报(自然科学版),2009(6):101-107.
    杨涛,周慧,张于光,等.云南高黎贡山土壤可培养降解纤维素真菌的多样性[J].生态学报,2009,29(4):1971-1979.
    杨万勤,钟章成,陶建平,等.缙云山森林土壤酶活性与植物多样性的关系[J].林业科学,2001,37(4):124-128.
    杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159.
    姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].科学出版社,2006.
    姚健,杨永华,沈晓蓉,等.农用化学品污染对土壤微生物群落DNA序列多样性影响研究[J].生态学报,2000,20(6):66.
    叶飞,宋存江,陶剑,等.转基因棉花种植对根际土壤微生物群落功能多样性的影响[J].应用生态学报,2010,21(2):386-390.
    蚁伟民,丁明懋,廖兰玉.鼎湖山自然保护区及电白人工林土壤微生物特性的研究[J].热带亚热带森林生态系统研究,1984,2:59-68.
    殷国兰,李梅,吴宗兴,等.岷江干旱河谷辐射松人工林土壤微生物数量的季节动态[J].四川农业大学学报,2007,25(4):410-414.
    于洋,王海燕,丁国栋,等.华北落叶松人工林土壤微生物数量特征及其与土壤性质的关系[J].东北林业大学学报,2011,39(3):76-80.
    岳中辉,王博文,旁健,等.松内盐碱草地主要植物群落土壤酶活性研究[J].水土保持学报,2009,23(6):158-161.
    张成娥,陈小莉,郑粉莉.子午岭林区不同环境土壤微生物生物量与肥力关系研究[J].生态学报,1998,18(2):218-222.
    张崇邦,金则新,李均敏.浙江天台山不同林型土壤环境的微生物区系和细菌生理群的多样性[J].微生物多样性,2001,9(4):382-388.
    张崇邦.东北麦田土壤微生物_小型动物及其生化活性的季节动态[J].植物营养与肥料学报,2002,8(3):372-376.
    郑成洋,方精云.福建黄岗山东南坡气温的垂直变化[J].气象学报,2004,62(2):251-255.
    张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250.
    张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究的应用[J].生态学杂志,2003,22(5):131-136.
    张红,吕家珑,赵世伟.子午岭林区植被演替下的土壤微生物响应[J].西北林学院学报,2010,25(2):104-107.
    张慧文,马剑英,孙伟,等.不同海拔天山云杉叶功能性状及其与土壤因子的关系[J].生态学报,2010,30(21):5747-5758.
    张黎明,邓万刚,威志远,等.五指山不同海拔高度的土壤化学性质特征[J].生态环境,2006,15(6):1313-1318.
    张鹏,田兴军,何兴兵,等.亚热带森林凋落物土壤酶活性的季节动态[J].生态环境,2007,16(3):1024-1029.
    张萍,郭辉军,刀志灵,等.高黎贡山土壤微生物的数量和多样性[J].生物多样性,1999,7(4):297-302.
    张萍,郭辉军,杨世雄,等.高黎贡山土壤微生物生态分布及其生化特性的研究[J].应用生态学报,1999,10(1):53-57.
    张萍.刀耕火种对土壤微生物和土壤肥力的影响[J].生态学杂志,1996,15(3):64-67.
    张其水,俞新妥.杉木连栽林地混交林土壤酶的分布特征的研究[J].福建林学院学报,1989,9(3):256-262.
    张奇春,王光火,方斌.不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响[J].土壤学报2005,42(1):116-121.
    张巧明,王得祥,龚明贵,等.秦岭火地塘林区不同海拔森林土壤理化性质[J].水土保持学报,2011,25(5):69-74.
    张圣喜,陈法霖,郑.华.土壤微生物群落结构对中亚热带三种典型阔叶树种凋落物分解过程的响应[J].生态学报,2011,31(11):3020-3026.
    张仕艳,原海红,陆梅,等.滇西北不同利用类型土壤酶活性及其与理化性质与微生物的关系[J].亚热带水土保持,2010,22(2):13-16.
    张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    张卫健,许泉,王绪奎,等.气温上升对草地土壤微生物群落结构的影响[J].生态学报,2004,24(8):1742-1747.
    章家恩,刘文高.广东省不同地区土壤微生物数量状况初步研究[J].生态科学,2002,21(3):223-225.
    赵超,王兵,戴伟,等.不同海拔毛竹土壤酶活性与土壤理化性质关系的研究[J].河北林果研究,2010,25(1):1-6.
    赵聪,李勇.缙云山森林次生演替群落土壤微生物_酶活性和养分的研究[J].中国农学通报,2012,28(4):46-50.
    赵小蓉,林启美.纤维素分解菌对不同纤维素类物质的分解作用[J].微生物学杂志,2000,9(3):12-14.
    郑华,陈法霖,欧阳志云,等.不同森林土壤微生物群落对Biolog-GN板碳源的利用[J].环境科学,2007,28(5):1126-1130.
    郑华,欧阳志云,方治国,等. BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报,2004,41(3):455-460.
    郑华,欧阳志云,王效科,等.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报,2004,15(11):2019-2024.
    郑文教,王良睦,林鹏.福建和溪亚热带雨林土壤活性的研究[J].生态学杂志,1995,14(6):16-20.
    郑雪芳,苏远科,刘波,等.不同海拔茶树根系土壤微生物群落多样性分析[J].中国生态农业学报,2010,18(4):866-871.
    中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    周辉宇,陆文静,王洪涛,等.高效纤维素分解菌生物强化技术在工厂化好氧堆肥中的应用初探[J].农业环境科学学报,2005,24(1):182-186.
    周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.
    周礼恺.土壤酶学[M].北京:科学出版社,1987,116-267.
    周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系[J].应用生态学报,2003,14(8):1246-1250.
    朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    庄铁诚,林鹏.红树林凋落叶自然分解过程中土壤微生物生理类群的变化[J].厦门大学学报(自然科学版),1993,32(6):799-801.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.