月球车立体视觉与视觉导航方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据我国的月球探测计划,在利用环月卫星对月球进行初步的探测之后,将需要使探测器在月球表面软着陆,并由月球车执行较大范围的详细探测任务,为载人登月和建立月球基地做好准备。月球车是各类探测仪器的平台,其安全的漫游是实现一切后续探测任务的基础,而安全漫游的实现需要准确的地形和自身位置信息,这就是本文视觉与导航系统的任务。
     作为室外移动机器人的一个特例,月球车的视觉与导航技术来源于通用视觉与导航技术,但又具有自身的特点,如对可靠性要求极高,希望系统的总质量、能耗等尽可能小,希望视觉处理速度尽可能快等。基于上述分析,本文选择被动的双目立体视觉作为视觉与导航系统的实现模式,根据月球车漫游任务要求,对系统硬件组成和配置参数进行了详细的分析,给出了一种配置方案。
     摄像机标定方面,因视场要求采用宽视场镜头,而较大的场景深度要求在较远距离处保证一定的精度,因此标定中必须采用考虑了镜头畸变的成像模型。现有的线性标定方法无法考虑镜头畸变,而基于优化的方法实现起来一般比较复杂。本文在前人研究成果的基础上,引入了扩展的径向准直准则,通过合理组织参数求解次序,给出了一种考虑了镜头畸变的迭代式优化标定方法。该方法实现简单,每一步只需用到最小二乘法,可以有效提高标定精度,并可以方便地进行扩展以包含更多或更少的畸变参数而不增加计算的复杂度。
     立体匹配是立体视觉中最为关键的一个步骤。月球车所处的月面自然地形中没有规则景物,场景图像中无纹理和少纹理区域较多,为匹配带来了困难。本文针对月球表面地形相对平坦的特点,在对图对进行立体校正以后,引入了一个适用于平面地形的视差线性变化约束,并以此为基础给出了一种多级匹配算法。算法首先对特征明显的点进行匹配,其结果通过视差线性变化约束辅助后续点的匹配。在具体匹配中,利用最有力的灰度、x方向梯度和梯度方向实现多判据匹配。算法对于多种不同类型的地形图像表现出了良好的适应性,在精度和速度方面较传统方法都有提高。
     在摄像机标定和立体匹配之后,可以重建得到场景中景物点的三维坐标。为得到月球车障碍规避和路径规划所需要的三维地形图,对重建后的三维坐标点首先去除孤立点,然后在原始数据和网格数据中进行两轮插值,在保留障碍物后遮挡空白的情况下给出了比较完整的场景表面。
     视觉导航部分,实现了以特征检测和跟踪为基础的视觉测量导航算法,分析了影响其精度的主要因素。以月球车立体视觉系统提供的局部地形图和轨道器或着陆器提供的全局地形图为基础,给出了一种利用两地形图内局部高点位置关系不变性实现定位的简便算法。这两种算法使得立体视觉的三维地形图不仅可用于路径规划和障碍规避,还可用于视觉导航定位。
According to China's lunar exploration program, a lunar satellite will be launch to execute an elementary survey of the moon. In the second step an unmanned lunar spaceship will be landed on lunar surface and a lunar rover will carry out a detailed research in a rather large range. These explorations will lay the foundation for manned lunar exploration and constructing lunar base. Lunar rover is the platform of scientific instruments and its safe roaming is the basis for subsequent exploration. The vision and navigation system, as the theme of this paper, provides the terrain information surrounding the rover and the position information of the rover, which is indispensable for lunar rover's safe roaming. This paper deals with these two systems.
     In lunar rover’s vision system a fairly large field of view is needed and thus a wide-angle lens is need in a CCD camera. As the same time the measurement precision in a large distance needs to be guaranteed for safety of the lunar rover. These two requirements constraint the camera calibration technique to adopt a camera model with distortion. In this respect existing linear methods do not accommodate distorted model and nonlinear optimization methods are usually difficult to realize and dependent on initial parameter values. This paper inherits previous research and presents an optimized calibration algorithm for distorted camera modal. The algorithm works in an iterative manner and is easy to implement as it avoids nonlinear optimization procedures. It can improve calibration precision effectively and can be extended easily to include more or less distortion term for different applications without increasing computation complexity.
     Stereo matching is a critical step in stereo vision. In the surroundings of lunar surface, few structured objects and many areas lacking in texture exist. This condition presents large difficulty to correlation-based stereo matching algorithm. In this paper image rectification is executed for stereo pairs in the first step. Then based on the fairly-planar property of lunar surface a disparity linearity constraint is introduced and a multi-stage matching algorithm is proposed. In the algorithm points with large intensity gradient are matched first and their matching results are used to assist in matching of other points based on the constraint. In a point’s matching procedure, a multi-criterion matching technque including intensity, x gradient and gradient orientation is utilized to improve matching accuracy. The algorithm exhibits nice adaptability to various types of natural terrain and demonstrates advantage over traditional correlation-based matching algorithm both in precision and in efficiency.
     In reconstruction section image points are reconstructed to obtain the 3D coordinates of corresponding object points. In order to acquire the digital elevation map needed for path planning and obstacle avoiding, the isolated reconstructed object points are removed at first. Then the elevation at grid points are computed by interpolation both in original object points and grid points. As a result a fairly complete scene surface is formed with occlusions behind large rocks reserved.
     As to visual navigation, this paper realized the visual odometry method which is based on feature detection and tracking and analyzed the main factors affecting navigation precision. Then we proposed a compact terrain matching algorithm to position the lunar rover based on the terrain from lunar rover and orbiter or lander. These two algorithms make further use of the reconstruction digital elevation map.
引文
1 1 T. Liu, N. M. Qi, J. Hou. Lunar exploration and lunar rover. 2002 年深空探测技术与应用科学国际研讨会论文集. 青岛,2002:8~12
    2 范剑英,于晓洋,刘泊,许万里. 三维视觉传感技术进展. 兵工自动化·传感技术. 2000,(2):25~33
    3 E. Krotkov, R. Hoffman. Terrain Mapping for a Walking Planetary Rover. IEEE Trans. on Robotics and Automation. 1994, 10(6):728~739
    4 Z. Cai, J. Yu, X. Zou, Z. Duan. A 3-D Perceptual Method Based on Laser Scanner for Mobile Robot. Proc. IEEE Int’l Conf. On Robotics and Biomimetics. Hong Kong, China, 2005:658-663
    5 M. Wang, H. Tamimi, A. Zell. Robot Navigation Using Biosonar for Natural Landmark Tracking. Proc. IEEE Int’l Symposium on Computational Intelligence in Robotics and Automation. Espoo, Finland, 2005:3-7
    6 B. Muirhead. Mars Rover, Past and Future. Proc. IEEE Aerospace Conference. Big Sky, Montana, USA, 2004, (1):128-134
    7 L. Matthies. Stereo Vision for Planetary Rovers: Stochastic Modeling to Near Real-time Implementation. Int'l J. Computer Vision. 1992, 8(1):71-91
    8 J. Matijevic, D. Shirley. The Mission and Operation of the Mars Pathfinder Microrover. Control Engineering Practice. 1997, 5(6):827-835
    9 L. Matthies, T. Balch, B. Wilcox. Fast Optical Hazard Detection for Planetary Rovers using Multiple Spot Laser Triangulation. Proc. IEEE Int'l Conf. on Robotics and Automation. Albuquerque, New Mexico, USA, 1997:859-866
    10 E. Tunstel, T. Huntsberger, H. Aghazarian, P. Backes, E. Baumgartner, Y.Cheng, M. Garrett, B. Kennedy, C. Leger, L. Magnone, J. Norris, M. Powell, A. Trebi-Ollennu, P. Schenker. FIDO Rover Field Trials as Rehearsal for the NASA 2003 Mars Exploration Rovers Mission. Proc. 5th Biannual World Automation Congress. 2002, (14):9-13
    11 J. Maki, T. Litwin, M. Schwochert, K. Herkenhoff. Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface. Proc. IEEE Int'l Conf. Systems, Man and Cybernetics, Hawaii, USA, 2005, (1):930-936
    12 L. Matthies, E. Gat, R. Harrision, B. Wilcox, R. Volpe, T. Litwin. Mars Microrover Navigation: Performance Evaluation and Enhancement. Proc. IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems. Pittsburgh, PA, USA, 1995:433-440
    13 R. Deen, J. Lorre. Seeing in Three Dimensions: Correlation and Triangulation of Mars Exploration Rover Imagery. Proc. IEEE Int'l Conf. on Systems, man and Cybernetics. Hawaii, USA, 2005, (1):911-916
    14 J. Wright, A. Trebi-Ollennu, F. Hartman, B. Cooper, S. Maxwell, J. Yen, J. Morrision. Terrain Modelling for In-situ Activity Planning and Rehearsal for the Mars Exploration Rovers. Proc. IEEE Int'l Conf. on Systems, man and Cybernetics. Hawaii, USA, 2005, (2):1372-1377
    15 Y. Cheng, M. Maimone, L. Matthies. Visual Odometry on the Mars Exploration Rovers. IEEE Robotics and Automation Magazine. 2006, 13(2):54-62
    16 D. Alexander, P. Zamani, R. Deen, P. Andres, H. Mortensen. Automated Generation of Image Products for Mars Exploration Rover Mission Tactical Operations. Proc. IEEE Int'l Conf. Systems, Man and Cybernetics. Hawaii, USA, 2005, (1):923-929
    17 T. Litwin, J. Maki. Imaging Services Flight Software on the Mars Exploration Rovers. Proc. IEEE Int'l Conf. Systems, Man and Cybernetics. Hawaii, USA, 2005, (1):895-902
    18 J. Biesiadecki, E. Baumgartner, R. Bonitz, B. Cooper, F. Hartman, P. Leger, M. Maimone, S. Maxwell, A. Ollenu, E. Tunstel, J. Wright. Mars Exploration Rover Surface Operations: Driving Opportunity at Meridiani Planum. Proc. IEEE Int'l Conf. Systems, Man and Cybernetics. Hawaii, USA, 2005, (2):1823-1830
    19 P. Backes, A. Calderon, M. Robinson, M. Bajracharya, D. Helmick. Automated Rover Positioning and Instrument Placement. Proc. IEEE Aerospace Conference. Big Sky, Montana, USA, 2005:1-12
    20 J. Biesiadecki, C. Leger, M. Maimone. Tradeoffs Between Directed and Autonomous Driving on the Mars Exploration Rovers. Int. J. Robotics Research. 2007, 26(1):91-104
    21 P. Leger, R. Deen, R. Bonitz. Remote Image Analysis for Mars ExplorationRover Mobility and Manipulation Operations. Proc. IEEE Int'l Conf. Systems, Man and Cybernetics. Hawaii, USA, 2005, (1):917-922
    22 E. Baumgartner, R. Bonitz, J. Melko, L. Shiraishi, P. Leger. The Mars Exploration Rover Instrument Positioning System. Proc. IEEE Aerospace Conference. Big Sky, Nontana, USA, 2005:1-19
    23 S. Goldbery, M. Maimone, L. Matthies. Stereo Vision and Rover Navigation Software for Planetary Exploration. Proc. IEEE Aerospace Conference. Big Sky, Nontana, USA, 2002, (5):2025-2036
    24 R. Volpe. Rover Technology Development and Mission Infusion Beyond MER. Proc. IEEE Aerospace Conference. Big Sky, Nontana, USA, 2005:1-11
    25 P. Schenker. Advances in Rover Technology for Space Exploration. Proc. IEEE Aerospace Conference. Big Sky, Nontana, USA, 2005:1-23
    26 E. Krotkov, R. Hoffman. Results in Terrain Mapping for a Walking Planetary Rover. Proc. Int'l Conf. Advanced Robotics. Tokyo, Japan, 1993:103-108
    27 R. Hoffman, E. Krotkov. Terrain Mapping for Outdoor Robots: Robust Perception for Walking in the Grass. Proc. IEEE Int'l Conf. Robotics and Automation. Atlanta, Georgia, USA, 1993, (1):529-533
    28 B. Ross. A Practical Stereo Vision System. Proc. Conf. Computer Vision and Pattern Recognition. New York City, NY, USA, 1993:148-153
    29 E. Krotkov, M. Hebert. Mapping and Positioning for a Prototype Lunar Rover. Proc. IEEE Int'l Conf. Robotics and Automation. Nagoya, Japan, 1995:2913~2919
    30 R. Simmons, E. Krotkov, L. Chrisman, F. Cozman, R. Goodwin, M. Hebert, L. Katragadda, S. Koenig, G. Krishnaswamy, Y. Shinoda, W. Whittaker. Experience with Rover Navigation for Lunar-Like Terrains. Proc. IEEE Int'l Conf. Intelligent Robots and Systems. Pittsburgh, USA, 1995:441~446
    31 Y. Fuke, E. Krotkov. Dead Reckoning for a Lunar Rover on Uneven Terrain. Proc. IEEE Int'l Conf. Robotics and Automation. Minneapolis, USA, 1996, (1):411-416
    32 S. Singh, B. Digney. Autonomous Cross-Country Navigation Using Stereo Vision. CMU-RI-TR-99-03. 1999:1-74
    33 E. Krotkov, M. Hebert, L. Henriksen, P. Levin, M. Maimone, R. Simmons, J.Teza. Evolution of a Prototype Lunar Rover: Addition of Laser-Based Hazard Detection, and Results from Field Trials in Lunar Analog Terrain. Autonomous Robots. 1999, 7(2):119-130
    34 I. Horswill. Polly: A Vision-based Artificial Agent. Proc. 11th National Conf. on Artificial Intelligence. Menlo Park, USA, 1993:824-829
    35 L. Lorigo, R. Brooks, W. Grimson. Visually-Guided Obstacle Avoidance in Unstructured Environments. Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems. Grenoble, France, 1997, (1):373-379
    36 K. Schilling, C. Jungius. Mobile Robots for Planetary Exploration. Control Engineering Practice. 1996, 4(4):513-524
    37 M. Vergauwen, M. Pollefeys, L. Gool. A Stereo Vision System for Support of Planetary Surface Exploration. Machine Vision and Applications. 2003, 14(1):5-14
    38 L. Boissier, B. Hotz, C. Proy, O. Faugeras, P. Fua. Autonomous Planetary Rover: On-Board Perception System Concept and Sereovision by Correlation Approach. Proc. IEEE Int'l Conf. on Robotics and Automation. Nice, France, 1992, (1):181-186
    39 M. Maurette, L. Boissier, M. Delpech, C. Proy, C. Quere. Autonomy and Remote Control Experiment for Lunar Rover Missions. Control Engineering Practice. 1997, 5(6):851-857
    40 M. Maurette. Mars Rover Autonomous Navigation. Autonomous Robots. 2003, 14(2/3):199-208
    41 P. Fua. A parallel stereo algorithm that produces dense depth maps and preserves image features. INRIA Technical Report 1369, 1991:1-21
    42 O. Faugeras, B. Hotz, H. Mathieu, T. Vieville, Z. Zhang, P. Fua, E. Theron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, C. Proy. Real Time Correlation-Based Stereo: Algorithm, Implementations and Applications. INRIA Technical report 2013. 1993:1-49
    43 M. Kolesnik. Vision and Navigation of Marsokhod Rover. Proc. Asian Conf. on Computer Vision. Singapore, 1995, (3):772-777
    44 D. Wettergreen, H. Thomas, M. Bualat. Initial Results from Vision-based Control of the Ames Marsokhod Rover. Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems. Grenoble, France, 1997, (3):1377-1382
    45 R. Washington, K. Golden, J. Bresina, D. Smith, C. Anderson, T. Smith. Autonomous Rovers for Mars Exploration. Proc. IEEE Aerospace Conference. Aspen, CO, USA, 1999, (1):237-251
    46 D. Murray, J. J. Little. Using Real-Time Stereo Vision for Mobile Robot Navigation. Autonomous Robots. 2000,8(2):161~171
    47 贾云得,吕宏静,徐一华,徐岸. 星球漫游车超广角实时立体视觉系统. 自动化学报. 2004, 30(6):986-990
    48 史海龙,李焱,贺汉根. 一个基于结构化特征匹配的月面三维重建方法. 计算机工程与科学. 2006, 28(9):56-59
    49 邬领东,陈华华,杜歆,顾伟康. 基于立体视觉的实时三维地图构建. 传感技术学报. 2006, 19(1):175-178
    50 陈华华. 视觉导航关键技术研究:立体视觉和路径规划. 浙江大学博士学位论文. 2005:46-91
    51 邹小兵,蔡自兴,于金霞,孙国荣. 基于激光测距的移动机器人 3-D 环境感知系统设计. 高技术通讯. 2005, 15(9):38-43
    52 李云翀,何克忠. 基于激光雷达的室外移动机器人避障与导航新方法. 机器人. 2006, 28(3):275-278
    53 B. Wilcox, L. Matthies, D. Gennery, B. Copper, T. Nguyen, T. Litwin, A. Mishkin, H. Stone. Robotic Vehicles for Planetary Exploration. Proc. IEEE Int'l Conf. Robotics and Automation. Nice, France, 1992:175-180
    54 C. Olson, L. Matthies. Maximum Likelihood Rover Localization by Matching Range Maps. Proc. IEEE Int'l Conf. Robotics and Automation. Leuven, Belgium, 1998, (1):272-277
    55 F. Cozman, E. Krotkov. Automatic Mountain Detection and Pose Estimation for Teleoperation of Lunar Rovers. Proc. IEEE Int'l Conf. Robotics and Automation. Albuquerque, USA, 1997, (3):2452-2457
    56 E. Krotkov, M. Hebert, M. Buffa, F. Cozman, L. Robert. Stereo Driving and Position Estimation for Autonomous Planetary Rovers. Proc. IARP Workshop on Robotics in Space. Montreal, Canada, 1994:263-268
    57 F. Cozman, E. Krotkov. Robot Localization Using a Computer Vision Sextant. Proc. IEEE Int'l Conf. Robotics and Automation. Nagoya, Japan, 1995, (1):106-111
    58 宁晓琳,房建成. 一种基于 UPF 的月球车自主天文导航方法. 宇航学报.2006,27(4):648-663
    59 岳富占,崔平远,崔祜涛,居鹤华. 基于地球敏感器和加速度计的月球车自主定向算法研究. 宇航学报. 2005,26(5):553-557
    60 P. Cui, F. Yue, H. Cui. Research on Autonomous Navigation of Lunar Rovers for the Moon Exploration. Proc. IEEE Int’l Conf. on Robotics and Biomimetics. Kunming, China, 2006:1042-1047
    61 Z. Cai, Z. Duan, J. Cai. A Multiple Particle Filters Method for Fault Diagnosis of Mobile Robot Dead-Reckoning System. Proc. IEEE Int’l Conf. Intelligent Robots and Systems. Edmonton, Alberta, Canada, 2005:481-486
    62 罗真,曹其新. 基于视觉和里程计信息融合的移动机器人自定位. 机器人. 2006,28(3):344-349
    63 P. Berkelman, M. Chen, J. Easudes, J. Hancock, M. Martin, A. Mor, E. Rollins, A. Sharf, J. Silberman, T. Warren, D. Bapna. Design of a Day/Night Lunar Rover. CMU-RI-TR-95-24. 1995:1-126
    64 M. Bjorkman, J. O. Eklundh. Real-Time Epipolar Geometry Estimation of Binocular Stereo Heads. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2002, 24(3):425~432
    65 R. Tsai. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE J. Robotics and Automation. 1987, 3(4):323-344
    66 高文,陈熙霖. 计算机视觉—算法与系统原理. 清华大学出版社,1999:22-28
    67 E. Krotkov, M. Hebert, R. Simmons. Stereo Perception and Dead Reckoning for a Prototype Lunar Rover. Autonomous Robots. 1995, 2(4):313-331
    68 邱茂林,马颂德,李毅. 计算机视觉中摄像机定标综述. 自动化学报. 2000,26(1):43-55
    69 J. Weng, P. Cohen, M. Herniou. Camera Calibration with Distortion Modals and Accuracy Evaluation. IEEE Trans. Pattern Analysis and Machine Intelligence. 1992, 14(10):965-980
    70 Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Analysis and Machine Intelligence. 2000, 12(1):1330-1334
    71 J. Heikkila. Geometric Camera Calibration Using Circular Control Points. IEEE Trans. Pattern Analysis and Machine Intelligence. 2000, 22(10):1166-1177
    72 L. Robert. Camera Calibration without Feature Extraction. INRIA Technical Report 2204. 1994:1-23
    73 R. Hartley, S. Kang. Parameter-free Radial Distortion Correction with center of Distortion Estimation. Proc. IEEE Int’l Conf. Computer Vision. Beijing, China, 2005:1-8
    74 M. Ahmed, A. Farag. Nonmetric Calibration of Camera Lens Distortion: Differential Methods and Robust Estimation. IEEE Trans. on Image Processing. 2005, 14(8):1215-1230
    75 C. Vincent, T. Tjahjadi. Multiview Camera-Calibration Framework for Nonparametric Distortion Removal. IEEE Trans. on Robotics. 2005, 21(5):1004-1009
    76 R. Sagawa, M. Takatsuji, T. Echigo, Y. Yagi. Calibration of Lens Distortion by Structured-Light Scanning. Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems. Edmonton, Alberta, Canada, 2005:832-837
    77 S. Graf, T. Hanning. Analytically Solving Radial Distortion Parameters. Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA, 2005, (2):1104-1109
    78 M. Ahmed, A. Farag. Differential Methods for Nonmetric Calibration of Camera LensDistortion. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition. Kauai, Hawaii, 2001, (2):477-482
    79 F. Devernay, O. Faugeras. Straight Lines Have to Be Straight. Machine Vision and Applications. 2001, 13(1):14-24
    80 R. Swaminathan, S. Nayar. Nonmetric Calibration of Wide-Angle Lenses and Polycameras. IEEE Trans. Pattern Analysis and Machine Intelligence. 2000, 22(10):1172-1178
    81 G. Stein. Lens Distortion Calibration Using Point Correspondences. Proc. IEEE Computer Vision and Pattern Recognition. Kauai, Hawaii, USA, 2001:602-608
    82 A. Habed, B. Boufama. Camera Self-calibration from triplets of images using bivariate polynomials derived from Kruppa’s Equations. Proc. IEEE Int’l Conf. on Image Processing. Genova, Italy, 2005, (2):1174-1177
    83 D. Nister, H. Stewenius, E. Grossmann. Non-parametric Self-calibration.Proc. IEEE Int’l conf. on Computer Vision. Beijing, China, 2005, (1):120-127
    84 吴福朝,阮宗才,胡占义. 非线性模型下的摄像机自标定. 计算机学报. 2002,25(3):276-283
    85 于洪川,吴福朝,袁波,韦穗. 基于主动视觉的摄像机自标定方法. 机器人. 1999,21(1):1-7
    86 R. Lenz, R. Tsai. Techniques for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology. IEEE Trans. Pattern Analysis and Machine Intelligence. 1988, 10(5):713-720
    87 高立志,方勇,林志航. 立体视觉测量中摄像机标定的新技术. 电子学报. 1999, 27(2):12-14
    88 游素亚,柳健,徐光佑. 利用视觉相位鉴别能力求解立体视觉匹配. 电子学报. 1996, 24(10):72-75
    89 M. R. M. Jenkin. Techniques for Disparity Measurement. CVGIP: Image Understanding. 1991,53(1):14-30
    90 周东翔,蔡宣平,孙茂印. 一种基于特征约束的立体匹配算法. 中国图象图形学报. 2001, 6(7):653-656
    91 M. Lew, T. Huang, K. Wong. Learning and Feature Selection in Stereo Matching. IEEE Trans. Pattern Analysis and Machine Intelligence. 1994, 16(9):869-881
    92 J. Weng, N. Ahuja, T. S. Huang. Matching Two Perspective Views. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1992,14(8):806-825
    93 W. Hoff, N. Ahuja. Surfaces from Stereo: Integrating Feature, Matching, Disparity and Contour Detection. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1989,11(2):121-136
    94 周凌翔,顾伟康. 立体视觉的微分几何约束与特征匹配. 计算机学报. 1997, 20(7):608-615
    95 A. Fusiello, E. Trucco, A. Verri. A Compact Algorithm for Rectification of Stereo Pairs. Machine Vision and Applications. 2000, 12(1):16-22
    96 N. Ayache, F. Lustman. Trinocular Stereo Vision for Robotics. IEEE Trans. Pattern Analysis and Machine Intelligence. 1991, 13(1):73-85
    97 Q. Luong, R. Deriche, O. Faugeras, T. Papadopoula. On Determining the Fundamental Matrix: Analysis of Different Methods and ExperimentalResults. INRIA Technical Report 1894. 1993:1-28
    98 D. Papadimitriou, T. Dennis. Epipolar Line Estimation and Rectification for Stereo Image Pairs. IEEE Trans. Image Processing. 1996, 5(4):672-676
    99 L. Robert, M. Buffa, M. Hebert. Weakly-Calibrated Stereo Perception for Rover Navigation. Proc. 5th Int'l Conf. Computer Vision. Cambridge, MA, USA, 1995:46-51
    100 C. Loop, Z. Zhang. Computing Rectifying Homographies for Stereo Vision. MSR-TR-99-21. 1999:1-12
    101 R. Hartley. Theory and Practice of Projective Rectification. Int. J. Computer Vision. 1999, 35(2):115-127
    102 D. Oram. Rectification for Any Epipolar Geometry. Proc. 12th British Machine Vision Conference. London, UK, 2001:653-662
    103 H. Moravec. Robot Spatial Perception by Stereoscopic Vision and 3D Evidence Grids. CMU-RI-TR-96-34. 1996:1-42
    104 T. Williamson, C. Thorpe. A Trinocular Stereo System for Highway Obstacle Detection. Proc. IEEE Int'l Conf. Robotics and Automation. Detroit, MI, USA, 1999, (3):2267-2273
    105 Q. Luong, J. Weber, D. Koller and J. Malik. An Integrated Stereo-based Approach to Automatic Vehicle Guidance. Proc. 5th Int'l Conf. Computer Vision. Cambridge, MA, USA, 1995:52-57
    106 S. Mallat, S. Zhong. Characterization of Signals from Multiscale Edges. IEEE Trans. Pattern Analysis and Machine Intelligence. 1992, 14(7):710-732
    107 黄锡山,陈哲. 景象匹配定位中的图像边缘检测算法研究. 中国惯性技术学报. 2001, 9(1):24-30
    108 T. Kanade, M. Okutomi. A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment. IEEE Trans. Pattern Analysis and Machine Intelligence. 1994, 16(9):920-932
    109 P. Ballard, F. Vacherand. The Manhattan Method: A Fast Cartesian Elevation Map Reconstruction from Range Data. Proc. IEEE Int'l Conf. Robotics and Automation. Atlanta, Georgia, USA, 1993, (3):143-148
    110 I. Kweon, T. Kanade. High-Resolution Terrain Map from Multiple Sensor Data. IEEE Trans. Pattern Analysis and Machine Intelligence. 1992, 14(2):278-292
    111 G. DeSouza, A. Kak. Vision for Mobile Robot Navigation: A Survey. IEEE Trans. Pattern Analysis and Machine Intelligence. 2002, 24(2):237-267
    112 F. Cozman, E. Krotkov. Robot Localization Using a Computer Vision Sextant. Proc. IEEE Int'l Conf. Robotics and Automation. Nagoya, Japan, 1995, (1):106-111
    113 Y. Kuroda, T. Kurosawa, A. Tsuchiya, T. Kubota. Accurate Localization in Combination with Planet Observation and Dead Reckoning for Lunar Rover. Proc. IEEE Int'l Conf. Robotics and Automation. New Orleans, USA, 2004, (2):2092-2097
    114 L. Matthies, B. Chen, J. Petrescu. Stereo Vision, Residual Image processing and Mars Rover Localization. Proc. IEEE Int'l Conf. Image Processing. Santa Barbara, CA, USA, 1997, (3):248-251
    115 L. Matthies, C. Olson, G. Tharp, S. Laubach. Visual Localization Methods for Mars Rovers Using Lander, Rover, and Descent Imagery. Proc. 4th Int'l Symposium on Artificial Intelligence, Robotics, and Automation in Space. Tokyo, Japan, 1997:413-418
    116 F. Cozman, E. Krotkov. Position Estimation from Outdoor Visual Landmarks for Teleoperation of Lunar Rovers. Proc. IEEE Workshop on Applications of Computer Vision. Sarasota, Florida, USA, 1996:156-161
    117 C. Olson. A Probabilistic Formulation for Hausdorff Matching. Proc. IEEE Conf. Computer Vision and Pattern Recognition. Santa Barnara, CA, USA, 1998:150-156
    118 F. Cozman, E. Krotkov, C. Guestrin. Outdoor Visual Position Estimation for Planetary rovers. Autonomous Robots. 2000, 9(2):135-150
    119 A. Johnson, R. Willson, J. Goguen, J. Alexander, D. Meller. Field Testing of the Mars Exploration Rovers Descent Image Motion Estimation System. Proc. IEEE Int'l Conf. Robotics and Automation. Barcelona, Spain, 2005:4463-4469
    120 J. Bakambu, S. Gemme, E. Dupuis. Rover Localization through 3D Terrain Registration in Natural Environments. Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems. Beijing, China, 2006:4121-4126
    121 J. Barbosa, S. Lacroix. Rover Localization in Natural Environments byIndexing Panoramic Images. Proc. IEEE Int'l Conf. Robotics and Automation. Washington DC, USA, 2002, (2):1365-1370
    122 A. Mallet, S. Lacroix, L. Gallo. Position Estimation in Outdoor Environments using Pixel Tracking and Stereovision. Proc. IEEE Int'l Conf. Robotics and Automation. San Francisco, USA, 2000, (4):3519-3524
    123 C. Olson, L. Matthies, M. Schoppers, M. Maimone. Stereo Ego-Motion Improvements for Robust Rover Navigation. Proc. IEEE Int'l Conf. Robotics and Automation. Seoul Korea, 2001, (2):1099-1104
    124 D. Nister. O. Naroditsky, J. Bergen. Visual Odometry. Proc. IEEE Conf. Computer Vision and Pattern Recognition. Washington, DC, USA, 2004, (1):652-659
    125 D. Helmick, Y. Cheng, D. Clouse, L. Matthies, S. Roumeliotis. Path Following Using Visual Odometry for a Mars Rover in High-Slip Environments. Proc. IEEE Aerospace Conference. Big Sky, Montana, USA, 2004, (2):772-789
    126 T. Litwin. General 3D Acquisition and Tracking of Dot Targets on a Mars Rover Prototype. Proc. IEEE Int'l Conf. Systems, Man and Cybernetics. Hawaii, USA, 2005, (1):443-449
    127 J. Campbell, R. Sukthankar, I. Nourbakhsh, A. Pahwa. A Robust Visual Odometry and Precipice Detection System Using Consumer-grade Monocular Vision. Proc. IEEE Int'l Conf. Robotics and Automation. Barcelona, Spain, 2005:3421-3427
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.