三维地震断层自动识别与智能解释
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球是人类赖以生存的家园,也是社会文明进步的源泉,自从人类社会出现以来,就从没停止过对地球的探索。随着社会的进步,人类对资源的需求日益增加,对于涉及到寻找资源这类与社会发展密切相关的问题,地球物理学具有得天独厚的条件,特别在油气资源勘探中,地震勘探方法更是不可或缺的技术,地震勘探方法也得到了长足的改进,从二维地震发展到了三维地震。从三维地震勘探方法的出现到现在的这30多年之间,三维地震勘探方法得到了广泛的应用,已经基本取代了传统二维地震勘探方法在油气勘探中的位置。
     断层在油气的运移过程中既可能起通道作用,也可能起封堵作用。随着勘探理论向深层次发展,输导体系的定量研究已成为油气成藏研究的重要组成部分,其中断层作为三大输导体系之一,研究难度也最大。常规的断层解释方法是解释人员在三维地震数据的垂直剖面和水平切片上手动解释断层,通常是沿着主测线方向或者选择与断层走向垂直的任意测线逐线追踪断层,然后通过水平或者沿层切片控制断层的空间对比和延伸,这种方法是通过视觉识别反射层的不连续性来实现断层解释的,此方法周期长,难度大,主观性强,很大程度上依赖于解释人员的经验和有关地质知识的先验信息。而且,当工区内断层系统比较复杂,而且断层走向不明时,解释断层的组合就面临很大的难度,因此,解释人员更希望通过提取地震数据中潜在的构造信息,来提高断层解释的精度和速度。长期以来,人们围绕断层系统的精确描述作出了大量的努力,提出并应用了很多的描述方法,而且成功的从三维地震数据中提取了许多突出断层信息的不连续属性体,如断层切片技术、相干体属性技术、方差体属性技术、倾角方位角属性和边缘增强属性技术等。其中相干属性分析技术的提出使得面向岩性的不连续边界分析技术提高到了一个崭新的水平,也使得断层的自动识别成为了可能。但是不管是第几代相干体属性技术,也不论其他的不连续属性,它们的应用效果在不同程度上都受到所选择的分析参数的影响,而且也不可能从根本上消除噪音和地层残余响应带来的影响。如果要实现真正的断层自动识别,就必须在这些不连续属性的基础上寻找另一种方法。
     缩短油气勘探的周期有着重大的经济效益,有资料表明,在油气勘探过程中,每减少6个月的时间,油田公司可以节省5%的开发费用。因此,寻找一种断层自动识别方法,能使其有效的增强地震数据的不连续属性并克服原属性的弱点就显得尤为重要。近年来针对断层识别和解释的自动化和智能化的研究,已经成为国内外众多学者和科研人员探讨的热点问题之一。
     鉴于此,本文围绕断层自动识别技术中存在的主要问题,结合最新的仿生优化算法——蚁群算法,提出了基于方向约束蚁群算法的断层自动识别与追踪方法,并研究了断层自适应分离技术。全文以“基于方向约束蚁群算法的断层自动识别与追踪方法”为核心内容,分五个部分进行论述:
     第一部分阐述了本文选题的目的和意义,分析讨论了与选题相关内容的国内外研究现状,包括地震断层解释方法、断层增强属性、断层自动识别技术和蚁群算法,并指出了目前用于断层自动识别的方法技术所存在的不足。说明了本选题的主要研究内容、主要研究成果和创新点。
     第二部分首先简要的介绍了蚁群算法的思想起源;然后重点讨论了基本蚁群算法的数学模型、算法实施过程,并在此基础上介绍了对基本蚁群算法的一些改进和算法的应用领域;考虑到断层识别与图像边缘检测的某些共通性,最后详细介绍了蚁群算法在含噪声图像边缘检测中的应用原理和实现过程,并对实际图像进行了检测,从侧面印证了将蚁群算法应用到断层自动识别的可行性。
     第三部分为本文的核心内容。首先介绍了改进的第三代相干体算法,并且通过实际资料的处理对比了其与第二代和第三代相干体算法的处理效果,证实改进的第三代相干体算法能够得到分辨率和信噪比更高的结果,为了得出更优的断层自动识别结果,以改进的第三代相干体作为断层自动识别的断层属性体;然后针对断层增强属性中的问题,提出了方向约束蚁群追踪算法,详细介绍了此算法的原理、追踪策略和实现过程;最后将此算法应用到一个多断层的二维理论模型中,验证算法的有效性和可靠性,并且讨论算法参数的影响及优化。
     第四部分首先介绍了断层线优化处理方法,包括数学形态学中的膨胀、腐蚀、开运算和闭运算,图像处理的细线化技术,对蚁群追踪结果进行断层线优化处理,得到能够直接应用于断层提取的二值数据体;然后介绍了三维断层面上断层点的瞬时产状的计算方法;最后介绍了通过瞬时产状进行断层自适应提取和分离的方法。
     第五部分是实际资料处理,通过对一个来自胜利油田的实际资料进行处理,进一步讨论了追踪控制参数的影响,讨论了对于水平切片的追踪和垂直切片的追踪各应该采用的追踪策略;将最终处理结果投影到原始地震剖面上,验证了本文方法的有效性和准确性;并将处理效果与Petrel软件的处理效果进行了对比分析,指出了本文方法的优势。
     本文的主要创新点为:
     1、在国内外首次提出了方向约束蚁群追踪算法,将此算法应用于断层自动识别与追踪,并获得了成功。本文通过模型试算和实际资料处理以及与商业软件处理效果的对比分析均证明了方向约束蚁群追踪算法具有明显的优势,不仅具有很强的抗噪声能力,而且能够有效准确的增强断层的连续性,针对地震数据量大导致的搜索时间过长问题,提出一些控制策略来有效的提高搜索效率。
     2、在国内首次提出基于三维断层瞬时产状计算的断层自适应分离方法,基于空间距离关系对断层进行初步分离,然后通过三维断层的瞬时倾角和瞬时倾向对相交断层进行细分。
The earth is the basic space of human's living and development. Since the emergence of the human society, human has never stopped exploring the earth. As society advances, human's requirement of resource is increasing. Geophysics has unique advantage at the problems such as resources prospecting etc. which are closely related to social development. Seismic exploration method is an indispensable technology in hydrocarbon resources exploration. Seismic exploration method has been improved increasingly, from the two-dimensional seismic has developed to the three-dimensional seismic. From the emergence to the present, the three-dimensional seismic exploration method has been widely used in this 30 years, the three-dimensional seismic has almost replaced the position of traditional two-dimensional seismic in hydrocarbon resources exploration.
     Faults could not only be a channel of hydrocarbon migration, but also could have sealed effect in hydrocarbon migration. With the theory of exploration developing to the deep-level, the quantitative study of carrier system has become the important component of hydrocarbon accumulation. As one of the three carrier systems, the research of faults has the greatest difficulty. Traditionally faults are picked in 3D seismic volumes as discontinuities in seismic amplitude on sections and time slices, this method is through visual recognition of reflector's discontinuity to achieve fault interpretation. The drawback of this conventional interpretation method is its inefficiency and strong subjectivity, this method greatly depends on the experience of interpreter and geological priori information, as the exploration for oil and gas goes deep, the geologic targets are also becoming more complex, traditional interpretation method is difficult to merge fault surface. In order to improve the accuracy and efficiency of fault interpretation, interpreters hope to extract potential structural information from seismic data. For a long time, people has made a lot of efforts for the accurately description of fault system, a number of description methods has been presented and applied, and plenty of discontinuity attributes which emphasize the fault information are extracted from 3-D seismic date successfully, such as fault slicing、coherence cube、variance cube、dip-azimuth attribute and edge enhancement attribute and so on. The present of coherence cube has improved the discontinuity technology to a whole new level, and also makes auto recognition of faults being possible. But no matter what kinds of discontinuity attribute, the application effects are affected by parameters in various degrees, all the attribute impossible to completely remove the noises and remains of the strata. Therefore, another method should be exploited based on these discontinuity attributes in order to achieve the real auto recognition of fault.
     Reducing the cycle of oil and gas exploration has significant economic benefits, as the data has shown, Oil companies have suggested that for each 6 months saved,5% of the total costs of the development of the oilfield are saved. In the exploration phase, some of the most time consuming tasks involves the geological interpretation of seismic data. This is today done manually by interpreters, and much time could be saved by automating these tasks, therefore, seeking a method of fault auto recognition is very important. Recently, the study of fault automatic recognition and intelligent interpretation has become one of the hot issues which are focused on the many scholars and researchers.
     In order to effectively overcome the problems of the existing fault recognition methods, the author proposed a fault auto-tracking and recognition scheme based on ant colony algorithm which is the latest bionic simulated evolutionary algorithm. Focused on the research of fault autotracking and recognition which is based on orientation constraint ant tracking algorithm, this paper consists of five parts as follows.
     The first part of this dissertation introduces the purpose and significance of this topic based on the analysis of current relevant researches both at home and abroad, including fault interpretation methods, fault enhancement attributes, Technology of fault automatic recognition and ant colony algorithm (ACA). PartⅠalso points out the shortcomings of current technology in Fault automatic recognition. Overall, this part describes the main contents, contribution and innovative points of this dissertation.
     The second part begins with a brief introduction to the origins of ant colony algorithm, and then discusses some improvements and applications on basic ant colony algorithm, on the basis of detailed study of mathematical model and implementation process of ACA. Considering the similarities between fault recognition and image edge detection, the second part makes a fully analysis of the principles and implementation process about how ACA is applied into the image edge detection with noise, and then tests the real images, which successfully verified the feasibility that ACA can be used for fault automatic recognition from indirect sources.
     The third part is the core of this dissertation. It begins with the introduction to Improved C3 Algorithm, then compares the processing effect of it from that of C3 Algorithm and C2 Algorithm through real-world data, confirming that Improved C3 Algorithm can help to get data with higher resolution and SNR(Signal to Noise Ratio). Improved C3 Algorithm is chosen as the Fault Attribute so as to achieve better results in Fault Automatic Recognition.. Then, grounded on the application of ACA in image edge detection with noise, orientation constraint ant tracking algorithm is proposed to solve the problems existing in fault enhancement attributes. It also makes a detailed introduction to the principles, tracking strategies and implementation processes of this Algorithm. At last, part III focuses on presenting the application of this algorithm to a multi-fault 2-D synthetic model in order to verify the validity and reliability, and the discussion on impact and optimization of parameters in this algorithm.
     The forth part firstly introduces the fault-line optimization methods, including expansion, corrosion, opening operation and closing operation in mathematical morphology, graph thinning technology of image processing, and then applies these methods to optimize the results, thus getting more accurate data. What's more the calculation method for transient occurrence of fault points on the 3-D fault surfaces is also presented in this part; finally, part IV presents the auto-extraction and adaptive separation methods according to transient occurrence.
     The fifth part is centered on real experiment. Based on the analysis of real data from Shengli oil field, it makes a further research on the impact of tracking control parameters, proposes the different tracking strategies which should be used for tracking vertical section and horizontal section respectively, and the final results are projected to the original seismic section to demonstrate the effectiveness and accuracy. It also carries out comparative analysis between the effect using this method and the one with Petrel software, which presenting the strengths of our method.
     The original contributions in this dissertation are as follows:
     1. The proposed scheme is first successful attempt to fault automatic recognition by orientation constraint ant tracking algorithm worldwide. Results from both synthetic models and real-world data demonstrate that orientation constraint ant tracking algorithm applied to fault automatic recognition should be considered good not only in terms of noise suppression but also in terms of fault continuity enhancement, some controlling strategies are proposed to solve the problem of time-consuming search due to large amount of seismic data, thus improving search efficiency. There is comparative analysis between the effect using this method and the one with Petrel software, which demonstrates the advantage of this method.
     2. Fault Adaptive Separation method which is based on the calculation of 3-D transient occurrence is brought forward for the first time in China. Grounded on space distance, this method makes a preliminary separation among the faults, and then conducts a further separation between intersectional faults by instantaneous dipping angle and instantaneous dipping tendency of three dimensional faults.
引文
[1]Alistair Brown. Interpretation of three-dimensional seismic data. Sixth edition. AAPG Memoir, 2004
    [2]Brown A R, Edwards G S, Howard R E. Fault slicing:A new approach to the interpretation of fault detail. Geophysics,1987,52(10):1319-1327
    [3]Bahorich M S, Bridges S R. The seismic sequence attribute map. Expanded Abstracts of the 62nd Annual Internat SEG Meeting,1992,227-230
    [4]苑书金.地震相干体技术研究综述.勘探地球物理进展,2007,30(1):7-15
    [5]Bahorich M S, Farmer S L.3-D seismic discontinuity for faults and stratigraphic features. The Leading Edge,1995,14(10):1053-1058
    [6]Bahorich M S, Lopez J A, Haskell N L, et al. Stratigraphic and structural interpretation with 3-D coherence. Expanded Abstracts of 65th Annual Internat SEG Meeting,1995,97-100
    [7]Marfurt K J, Kirlin R L, Farmer S H, et al.3-D seimic attributes using a semblance-based coherency algorithm. Geophysics,1998,63(4):1150-1165
    [8]Chopra S. Coherence cube and beyond. First Break,2002,31(7):71-73
    [9]Gersztenkorn A, Marfurt K J. Eigenstructure based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics,1999,64(5):1468-1479
    [10]Gersztenkorn A, Marfurt K J. Eigenstructure based coherence computations. Expanded abstracts of the 66th Annual Internat SEG Meeting,1996,328-331
    [11]Marfurt K J, Sudhakar V, Gerztenkorn A, et al. Coherency calculations in the presence of structural dip. Geophysics,1999,64(1):104-111
    [12]Haskell N L, Nissen S E, Lopez J A, et al.3-D seimic coherency and the imaging of sedimentological feature. Expanded Abstracts of the 65th Annual Internat SEG Meeting,1995, 1532-1534
    [13]牛小军,邱兆泰,张爱印.相干体技术在识别小断层和陷落柱中的应用.中国煤田地质,2006,18(sup):49-50,59
    [14]苑书金.地震相干体技术研究综述.勘探地球物理进展,2007,30(1):7-15
    [15]王从镔,龚洪林,许多年等.高分辨率相干体分析技术及其应用.地球物理学进展,2008,23(5):1575-1578
    [16]Cohen I, Coifman R R. Local discontinuity measures for 3-D seismic data. Geophysics,2002, 67(6):1933-1945
    [17]Al-Dossary S, Simon Y, Marfurt K J. Inter-azimuth coherence attribute for fracture detection. Expanded Abstracts of the 74th Annual Internat SEG Meeting,2004,183-186
    [18]朱成宏,黄国骞,秦瞳.断裂系统精细分析技术.石油物探,2002,41(1):42-48
    [19]Randen T, Monsen E, Signer C, et al. Three-dimensional texture attributes for seismic data analysis. Expanded Abstracts of the 70th Annual Internat SEG Meeting.2000,668-671
    [20]Bemmel P V, Pepper R. Seismic signal processing method and apparatus for generating a cube of variance values. Patent US06151555
    [21]Randen T, Pedersen S I, Sonneland L. Automatic extraction of fault surfaces from three-dimensional seismic data.71st Annual International Meeting, SEG, Expanded Abstracts, 2001,1,55-554.
    [22]Pedersen S I, Randen T, Sonneland L. Automatic fault extraction using artificial ants.72nd Annual International Meeting, SEG, Expanded Abstracts,2002,21,512-515.
    [23]Pedersen S I, Skov T, Hetlelid A, et al. New paradigm of fault interpretation. SEG Technical Program, Expanded Abstracts,2003,22,350-353.
    [24]Gibson D, Spann M, Turner J. Automatic fault detection for 3D seismic data. Proceedings of digital image computing Techniques and Applications conference, Expanded Abstracts,2003, 1,821-830
    [25]Dorn, G, and H. James,2005, Automatic fault extraction of faults and a salt body in a 3-D survey from the Eugene Island area, Gulf of Mexico:AAPG International Conference and Exhibition, Expanded Abstracts.
    [26]Tingdahl K M, M de Rooij. Semi-automatic detection of faults in 3D seismic data. Geophysical Prospecting,2005,53,533-542.
    [27]Tingdahl K M, Steen, Meldahl P, et al. Semi-automatic detection of faults in 3D seismic signals:71st Annual International Meeting, SEG,Expanded Abstracts,2001,1,1953-1956
    [28]Jacquemin P, Mallet J-L. Automatic faults extraction using double hough transform. Expanded Abstracts of the 75th Annual Internat SEG Meeting,2005,755-759,
    [29]Admasu F, Back S, Toennies K. Autotracking of faults on 3D seismic data, Geophysics,2006, 71(6):A49-53
    [30]Won-ki Jeong, Ross Whitaker, Mark Dobin. Interactive 3D seismic fault detection on the Graphics Hardware. Proceedings International Workshop on Volume Graphics,2006, 111-118
    [31]Benjamin J K, Geoffrey A D, Henry M T, et al. Interactive 3-D computation of fault surfaces using level sets. Visual Geosciences,2008,13(1):133-138
    [32]Black M J, Jepson A. Estimating Optical Flow in Segmented Images using Variable-Order Parametric Models with Local Deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):972-986
    [33]Roberts A. Curvature attributes and their application to 3D interpreted horizons. First Break,2001,19,85-100.
    [34]de Rooij M, Tingdahl K M.2002. Meta-attributes-the key to multivolume, multi-attribute interpretation. The Leading Edge,2002,21,1050-1053.
    [35]Heggland R, Meldahl P, Bril A H, et al. The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks:Part I; interpretation. 69th SEG meeting, Houston, USA, Expanded Abstracts,1999,931-934.
    [36]Heggland R, Meldahl P, Bril A H, et al. The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks:Part II; interpretation. 69th SEG meeting, Houston, USA, Expanded Abstracts,1999,935-937.
    [37]Tingdahl K M, Bril A H, de Groot P F M. Improving seismic chimney detection using directional attributes. Journal of Petroleum Science and Engineering,2001,29,205-211.
    [38]Field D. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America,1987,4,2379-2394.
    [39]Weldon T, Higgins W, Dunn D. Gabor filter design for multiple texture segmentation. Optical Engineering,1996,35,2852-2863.
    [40]Kass M, Witkin A, Terzopoulos D. Snakes:Active contour models. International Journal of Computer Vision,1987,1,321-331.
    [41]Weickert J. Coherence-enhancing diffusion filtering. International Journal of Computer Vision, 1999,31,111-127.
    [42]Bakker P. Image structure analysis for seismic interpretation. PhD thesis, Technisch Universiteit Delft,2002.
    [43]Owens J, Luebke D, Govindaraju N, et al. A survey of general-purpose computation on graphics hardware. In State of the Art report, Eurographics,2005,21-51
    [44]Fedkiw R, Osher S. Level Set Methods and Dynamic Implicit Surfaces, Springer,2002.
    [45]Sethian J A. Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry, Fluid
    [46]Gowda C K, Krishna G. Agglomerative clustering using the concept of nearest neighborhood. Pattern Recognition,1978,10(2):105-112
    [47]Jain D, Dubes R C. Algorithms for Clustering Data. Prentice-Hall Advanced Reference Series, 1988.
    [48]赵伟.基于蚁群算法的三维地震断层识别方法研究.南京理工大学硕士论文,2009
    [49]Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies. Proceedings of the 1st European Conference on Artificial Life,1991,134-142
    [50]Dorigo M, Optimization, Learning and natural algorithms. Ph. D. Thesis, Department of Electronics, Politecnico dimilano, Italy,1992
    [51]Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents. IEEE Transaction on Systems, Man and Cybernetics-Part B,1996,26(1):29-41
    [52]Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behavior. Nature,2000,406(6):39-42
    [53]Michael J B K, Jean-Bernard B, Laurent K. Ant-like task and recruitment in cooperative robots, Nature,2000,406(31):992-995
    [54]Jackson D E, Holcombe M, Ratnieks F L W. Trail geometry gibes polarity to ant foraging network, Nature,2004,432(7019):907-909
    [55]Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy. Future Generation Computer System,2000,16(8):851-871
    [56]Dorigo M, Di Caro G, Gambardella L M. Ant algorithms for discrete optimization. Artificial Life,1999,5(2):137-172
    [57]Dorigo M, Di Caro G. The ant colony optimization meta-heuristic. New Ideas in Optimization, London:McGraw-Hill,1999
    [58]Goss S, Aron S, Deneubourg J L, et al. Self-organized shortcuts in the argentine ant. Naturwissenschaften,1989,76:579-581
    [59]秦玲.蚁群算法的改进与应用.扬州大学硕士学位论文,2004
    [60]Merkle D, Middendorf M. Modeling the dynamics of ant colony optimization. Evolutionary Computation,2002,10(3):235-262
    [61]Gambardella L M, Dorigo M. Ant-Q:a reinforcement learning approach to the traveling salesman problem. Proceedings of the 12th International Conference on Machine Learning, 1995,252-260
    [62]Dorigo M, Gambardella L M. Ant colonies for the traveling salesman problem. Bio System, 1997,43:73-81
    [63]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies. Proceeding of the IEEE Conference on Evolutionary Computation,1996,622-627
    [64]Kaji T. Approach by ant tabu agents for traveling salesman problem. Proceeding of the IEEE international Conference on Systems, Man, and Cybernetics,2001,5:3429-3434
    [65]李士勇.蚁群算法及其应用.2004,哈尔滨工业大学出版社
    [66]Bullnheimer B, Hartl R F, Strauss C. A new rank-based version of the ant system:a computational study. Technical Report POM-3/97, Institute of Management Science, University of Vienna, Austria,1997
    [67]Bullnheimer B, Hartl R F, Strauss C. A new rank-based version of the ant system:a computational study. Central European Journal of Operations Research and Economics,1999, 7(1):25-38
    [68]Dorigo M, Gambardella L M. Ant colony system:a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation,1997, 1(1):53-66
    [69]Stiitzle T, Hoos H. The Max-Min ant system and local search for the traveling salesman problem. Proceedings of the IEEE International Conference on Evolutionary Computation and Evolutionary Programming Conference,1997,309-314
    [70]Stutzle T, Hoos H. Improvement on the ant system:introducing MAX-MIN ant system. Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms,1998,245-249
    [71]Stutzle T, Hoos H. MAX-MIN ant system. Future Generation Computer Systems,2000,16(8): 889-914
    [72]Cordon, Fernandez de Viana I, Herrera F, et al. A new ACO model integrating evolutionary computation concept:the best-worst ant system. Proceedings of 2nd InternationalWorkshop on Ant Algorithms/ANTS2000, Lecture Notes in Computer Science,2000,22-29
    [73]Blum C, Dorigo M. The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics Part-B,2004,34(2):1161-1172
    [74]Blum C, Roli A, Dorigo M. HC-ACO:the hyper-cube framework for ant colony optimization. The 4th Metaheuristics International Conference,2001,399-403
    [75]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法.计算机研究与发展,1999,36(10):1240-1245
    [76]吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法.计算机学报,2001,24(12):1328-1333
    [77]王颖,谢剑英.一种自适应蚁群算法及其仿真研究.系统仿真学报,2002,14(1):32-33
    [78]覃刚力,杨家本.自适应调整信息素的蚁群算法.信息与控制,2002,31(13):198-201
    [79]Maniezzo V, Colorni A, Dorigo M. The ant system applied to the quadratic assignment problem. Technical Report IRIDIA/94-28,1994
    [80]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for QAP. Technical Report IDSIA-4-97, IDSIA, Lugano, Switzerland,1997
    [81]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society,1999,50(2):167-176
    [82]Stiitzle T, Hoos H. MAX-MIN ant system for the quadratic assignment problem. Technical report AIDA-97-4, FG Intellektik, TH Darmstadt, July,1997
    [83]Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem. IEEE transactions on Knowledge and Data Engineering,1999,11(5):769-778
    [84]Colorni A, Dorigo M, Maniezzo V, et al. Ant system for job-shop scheduling. Belgian J. Oper. Res. Statist. Comput. Sci.1994,34:39-53
    [85]Stutzle T. An ant approach to the flow shop problem. Technical report AIDA-97-7, TH Darmstadt, September,1997
    [86]Costa D, Hertz A. Ants can colour graphs. Journal of Operational Research Society,1997, 48(3):295-305
    [87]Ahn S H, Lee S G, Chung T C. Modified ant colony system for coloring graphs. Proceedings of the 2003 Joint Conference of the 4th International Conference on Information, Communications and Signal Processing and 4th Pacific Rim Conference on Multimedia,2003, 3:1849-1853
    [88]Schoonderwoerd R, Holland O, Bruten J. Ant-like agents for load balancing in telecommunications networks. Proceedings of 1st International Conference on Autonomous Agents,1997,209-216
    [89]Schoonderwoerd R, Holland O, Bruten J, et al. Ant-based load balancing in telecommunications networks. Adaptive Behavior,1996,5(2):169-207
    [90]White T, Pagurek B, Oppacher F. Connection management using adaptive mobile agents. Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Application,1998,802-809
    [91]Di Caro G, Dorigo M. Extending AntNet for best-effort quality-of-service routing. Proceedings of 1st International Workshop on Ant Colony Optimization,1998
    [92]Di Caro G, Dorigo M. AntNet:distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research,1998,9(2):317-365
    [93]Di Caro G, Dorigo M. Two ant colony algorithms for best-effort routing in datagram network. Proceedings of the 10th IASTED International Conference on Parallel and Distributed Computing and Systems,1998,541-546
    [94]Subramanian D, Druschel P, Chen J. Ants and reinforcement learning:a case study in routing in dynamic networks. Proceedings of the International Joint Conference on Artificial Intelligence,1997,832-838
    [95]Heusse M, Guerin S, Snyers D, et al. Adaptive agent-driven routing and load balancing in communication networks. Advances in Complex Systems,1998,1,234-257
    [96]Bullnheimer B, Hartl R F, Strauss C. Applying the ant system to the vehicle routing problem. Metaheuristics:Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academic Publishers, Boston, MA,1999,285-296
    [97]Gambardella L M, Taillard E, Agazzi G. MACS-VRPTW:a multiple ant colony system for vehicle routing problems with time windows. New Ideas in Optimization, McGraw-Hill, London, UK,1999,63-76
    [98]Reimann M, Doerner K, Hartl R F. D-Ants:savings based ants divide and conquer the vehicle routing problem. Computers and Operations Research,2004,31(5):563-591
    [99]Lin W D, Cai T X. Ant colony optimization for VRP and Mail Delivery Problems. IEEE international Conference on Industrial Informatics,2006,1143-1148
    [100]Pelli R S, Lopes H S, Freitas A A. Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation,2002,6(4):321-332
    [101]Tsai C F, Tsai C W, Wu H C, et al. ACODF:a novel data clustering approach for data mining in large databases. Journal of Systems and Software,2004,73(1):133-145
    [102]Meshoul S, Batouche M. Ant colony system with extremal dynamics for point matching and pose estimation. Proceedings of the 16th International Conference on Pattern Recognition, 2002,3:823-826
    [103]Zheng H, Wong A, Nahavandi S. Hybrid ant colony algorithm for texture classification. Proceedings of the 2003 Congress on Evolutionary Computation,2003,4:2648-2652
    [104]Wang X N, Feng Y J, Feng Z R. Ant colony optimization for image segmentation. Proceedings of the International Conference on Machine Learning and Cybernetics,2005,9: 5355-5360
    [105]Han Y F, Shi P F. An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing,2007,70(4-6):665-671
    [106]Le S H M, Kallel A, Descombes X. Ant colony optimization for image regularization based on a nonstationary Markov modeling. IEEE Transactions on Image Processing,2007,16(3): 865-878
    [107]苗京,黄红星,程卫生等.基于蚁群模糊聚类算法的图像边缘检测.武汉大学学报(工学版),2005,38(5):124-127
    [108]陈昌富,谢学斌.露天采场边坡邻接滑动面搜索蚁群算法研究.湘潭矿业学院学报,2002,17(1):62-64
    [109]高玮,郑颖人.蚁群算法及其在硐群施工优化中的应用.岩石力学与工程学报,2002,21(4):471-474
    [110]于勇,郭雷.噪声图像中提取边缘的蚁群搜索算法.电子与信息学报,2008,30(6):1271-1275
    [111]Zhuang X. Edge feature extraction in digital images with the ant colony system. Proceedings of the 2004 International Conference on System, Man and Cybernetics, MA, USA,2004,7: 6354-6359
    [112]Nezamabadi-pour H, Saryazdi S, Rashedi E. Edge detection using ant algorithm. Soft Comput,2006,10(7):623-628
    [113]Canny J. A computational approach t edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698
    [114]Wang Y, Hu Jiankun, Heiko Schroder. A gradient based weighted averaging method for estimation of fingerprint orientation fields. Digital Imaging Computing:Techniques and Application, Queensland,2005
    [115]Jain A K, Hong L, Bolle R. On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(4):302-314
    [116]Bazen A M, Gerez S H. Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):905-919
    [117]梅园,孙怀江,夏德深.一种基于梯度的健壮的指纹方向场估计算法.计算机研究与发展,2007,44(6):1022-1031
    [118]Yuan Mei, Huaijiang Sun, Deshen Xia. A gradient-based combined method for the computation of fingerprints'orientation field, Image and Vision Computing,2009,27(8): 1169-1177
    [119]Wang Y, Hu Jiankun,, Han Fengling. Enhanced gradient-based algorithm for the estimation of fingerprint orientation fields. Applied Mathematics and Computation,2007,185(2):823-833
    [120]Jain A K, Prbhakar S, Hong L, A multichannel approach to fingerprint classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(4):348-359
    [121]Karu K, Jain A K. Fingerprint classification. Pattern Recognition,1996,17(3):389-404
    [122]Sherlock, Monro D M. A model for interpreting fingerprint topology. Pattern Recognition, 1993,26(7):1047-1055
    [123]Vizeaya P, Gerhardt L. A nonlinear orientation model for global description of fingerprints. Pattern Recognition,1996,29(7):1221-1231
    [124]Gu J, Zhou J, Zhang D. A combination model for orientation field of fingerprints. Pattern Recognition,2004,37(3):543-553
    [125]Jun Li, Wei-yun Yau, Han Wang. Constrained nonlinear models of fingerprint orientations with prediction. Pattern Recognition,2006,39(1):102-114
    [126]Zhou J, Gu J. A model-based method for the computation of fingerprints' rientation field. IEEE Transactions on Image Processing,2004,13(6):821-835
    [127]Kass M, Witkin A. Analyzing orientated pattern. Computer Vision Graphics Image Processing,1986,37(3):362-397
    [128]詹士昌,徐婕,吴俊.蚁群算法中有关算法参数的最优选择.科技通报,2003,19(5): 381-386
    [129]张毅,梁艳春.蚁群算法中求解参数最优选择分析.计算机应用研究,2007,24(8):70-71,83
    [130]Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics,1979,9(1):62-66
    [131]Serra J. Image Analysis and Mathematical Morphology. Vol.1 New York:Academic Press, 1982
    [132]Serra J. Image Analysis and Mathematical Morphology. Vol.2:Theoretical Advances. New York:Academic Press,1988
    [133]Serra J, Soille. Mathematical Morphology and Its Applications to Image and Signal Processing. Boston:Kluwer Academic Publishers,1996
    [134]唐常青,吕宏伯,黄铮等.数学形态学方法及其应用.北京:科学出版社,1990
    [135]龚炜,石青云,程民德.数学空间的数学形态学理论与应用.北京:科学出版社,1997
    [136]崔屹.图像处理与分析——数学形态学方法及应用.北京:科学出版社,2000
    [137]Hilditch C J. Linear skeletons from square cupboards. Machine Intelligence Ⅳ, Mertzer B and Michie D, Eds, University Press, Edinburgh,1969,403-420
    [138]Deutsch E S. Thinning algorithms on rectangular, hexagonal, and triangular arrays. Communication of the ACM,1972,15(9):827-837
    [139]Pavlidis T. A Flexible parallel thinning algorithm. Proc. IEEE Comput. Soc. Conf. on Pattern Recognition and Image Processing,1981,162-167
    [140]Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns. Communication of the ACM,1984,27(3):236-239
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.