灰葡萄孢拮抗细菌种类鉴定、生长条件及在番茄体表定殖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对灰葡萄孢等病菌拮抗能力强、防病效果好的3株细菌,经形态、培养性状观察和生理生化测定,鉴定为2属2种,即W10为地衣芽孢杆菌[Bacillus licheniformis(weigmann)Chester];W3和Y2-11-1为多粘类芽孢杆菌[Paenibacillus polymyxa(Prazmowski)Ash et al]。这两种对蔬菜灰霉病的高效拮抗细菌为国内首次报道和应用。
     3株拮抗细菌的生长条件研究表明,通常菌量达到最大时的培养时间为24~72h;生长温度为27~30℃;培养液pH值为7~8。
     根据试验结果及经济因素,拮抗细菌的最佳营养发酵配方是:W10菌株为1%麦芽糖,4%黄豆饼粉,0.2%硝酸钠,0.02%磷酸氢二钾和0.05%酵母膏:W3菌株为2%蔗糖,4%黄豆饼粉,0.4%酵母膏;Y2-11-1菌株为1%麦芽糖,2%黄豆饼粉,0.2%硝酸钠,0.02%磷酸氢二钾以及0.2%酵母膏。
     3株拮抗细菌通过抗药性诱导,获得抗利福平350μg/ml的标记菌株,并用于检测在番茄植株体表的定殖能力。拮抗细菌在番茄植物体表的定殖与定殖部位、引进浓度、接种灰霉病菌时间和环境因子有关。在番茄叶表拮抗细菌处理后10~15d仍可检测到一定的菌量。拮抗细菌在番茄果表的定殖能力与最初引进的细菌浓度呈正相关,即引进的浓度越高,定殖时间越长,定殖的菌量也越大。除W10菌株外,在高浓度(10~9cfu/ml)下,拮抗细菌处理后10~15d也能检测到少量细菌。
     与对照相比,接种灰霉病菌对拮抗细菌的定殖有一定的影响。但是,先接种拮抗细菌后接种灰霉病菌(间隔1d)要比拮抗细菌与灰霉病菌同时接种、先接种灰霉病菌后接种拮抗细菌影响小。这表明灰霉病菌与拮抗细菌间存在营养、空间的竞争,也显示拮抗细菌在灰霉病害发生前使用要比发生后使用效果好。
     温度、湿度、光照等环境因子对拮抗细菌的定殖均有影响。拮抗细菌定殖的最佳条件一般为:高湿(RH 95~100%)、光照12h和温度25~35℃。在一定的温度
    
    扬州大学硕士学位论文
    范围内(15一35℃),温度愈高,越有利于拮抗细菌的生长和定殖。光照对拮抗细
    菌的定殖也影响很大,黑暗或持续光照24h条件下,拮抗细菌的定殖要比光照12h
    差。一般来说,拮抗细菌的生长和定殖需要高湿(RH 95一10俄)条件,湿度越高,
    定殖越好。
Three strains of bacteria antagonistic highly against Botrytis cinerea Per. were isolated from tomato leaves and soil. According to the morphological. physiological and biochemical features, the isolate W10 was identified as Bacillus licheniformis (Weigmann) Chester and the isolates W3 and Y2-11-1 belonged to Paenibacillus polymyxa (Prazmowski) Ash et al. It is first reported that these bacterial species had antagonism to B. cinerea on vegetables in China. The growth conditions of these antagonistic bacteria had been studied. The optimum culture time for antibiotic bacteria ranged from 24 to 72 hours. The optimum growth temperature was from 27 to 30癈. The optimum growth pH values in the media was from 7 to 8.
    According to the experimental results and economical factors, the best commercial production medium of strain W10 was made up of maltose 1%. soybean cake powder 4%. NaNO3 0.2%, K2HPO4 0.02% and yeast extract 0.05%; that of W3 consisted of sucrose 2%, soybean cake powder 4% and yeast extract 0.4%; that of Y2-11-1 was composed of maltose 1%, soybean cake powder 2%, NaNO3 0.2%, K2HPO40.02% and yeast extract 0.2%.
    Three antagonistic bacteria were induced to be resistant to rifampicin and used to study the colonization on the surface of tomato plants. The colonizing ability of antagonistic bacteria was related to plant parts, introduced bacterial concentration and environmental factors. About 10-15 days after introducing antagonistic bacteria, they could be detected from tomato phylloplane. The colonizing capacity of antagonistic bacteria on tomato fruit surface had positive Riationship to the introduced bacterial concentration. The higher bacterial concentration introduced, the bigger population and
    
    
    the longer time of bacterial colonization. Except strain W10, other antagonistic bacteria could be detected from 10 to 15 days after introduction at high concentration (109cfu/ml).
    Contrasted with inoculating antagonistic bacteria only, inoculation of Botrytis cinerea had some influence on the colonization of antagonistic bacteria. But the effect of inoculating antagonistic bacteria before B.cinerea was smaller than that of inoculating B.cinerea and bacteria together and inoculating antagonistic bacteria after B.cinerea. This showed that there were competitions in nutrition and space between antagonistic bacteria and B.cinerea. It also indicated that the prevention of antagonistic bacteria was better than their cure for grey mould.
    Temperature, relative humidity and illumination had significant effects on the colonization of antagonistic bacteria. The optimum conditions of three strains were consistent as a whole. The optimum relative humidity was from 95% to 100%. The optimum light time was 12 hours for each day. The optimum temperature ranged from 25℃ to 35℃. In lower temperature the bacteria could not grow and colonize well on tomato plant. In the condition of continuous darkness or illumination, the colonization of bacteria was weaker than that of light for 12 hours a day. In general, the growth and colonization of antagonistic bacteria required high humidity. The higher relative humidity, the better colonization of antagonistic bacteria.
引文
[1] 鲁素云.植物病害生物防治学.北京:农业大学出版社,1993.
    [2] Baker,K.F.植物病原的生物防治.北京:农业出版社,1984.
    [3] Wilson,C.L., Wisniewski,M.E., Droby,S., and Chlutz, E. A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Scientia-Horticulturae. 1993,53(3):183~189.
    [4] 中国农业百科全书编辑部.中国农业百科全书-植物病理学卷.北京.农业出版社,1996.
    [5] D'Ercole, N.Biological control of grey mould (Botrytis cinerea)of strawberry by application of Trichoderma viride, lnformator Fitopatologico. 1985,35:25~38.
    [6] Elad,Y., Kohl,J., and Fokkema, N.J.Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. European-Journal-of-Plant-Pathology. 1994,100(5):315~336.
    [7] Janisiewicz, W.J. Postharvest biological control of blue mold on apples. Phytopathology. 1987, 77:481~485.
    [8] Janisiewicz, W.J., and Roitma. J. Biolological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology. 1988,78:1697~1700.
    [9] Janisiewicz, W.J.Biocontrol of postharvest diseases of apple with antagonistic mixtures. Phytopathology.1988,78:194~198.
    [10] 韩召军主编,徐敬友副主编.植物保护学通论.高等教育出版社,2001.
    [11] Elad,Y., Kohl, J., and Fokkema, N.J.Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology. 1994, 84(10):1193~1200.
    [12] 陈利锋,徐敬友主编.农业植物病理学.中国农业出版社,2001.
    [13] 刘显达.草莓灰霉病之拮抗菌筛选与室内生物防治效果.植物保护学会会刊.1993,35:105-115.
    [14] Zimand, G., Elad,Y., Chet, I. Biological control of Botrytis cinerea by Trichoderma spp. Phytoparasitica.1991,19:252-253.
    [15] Neison, M.E.,and Powelson, M.L.Biological control of gray mold of snap beans by Trichoderma homatum.Plant Dis.1988,72:727~729.
    [16] Elad,Y.,Malathrakis,N.E.,Dik, A.J.Biological control of Botrytis-incited disease and powdery mildews in greenhouse crops. Crop Protection. 1996,15(3):229~240.
    [17] Redmond,J.C.,Marois,J.J.,and MacDonald J.D.Bilogical control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Dis.1987,71:799~802.
    [18] Roberts,R.G.Postharvest biological control of gray mold apple of by Cryptococcus laurentii. Phytopathology. 1990,80:526~530.
    
    
    [19] Gabriel,G.J.,et al.Biological Control of Plant Pathogens. FAO plant protection Bulletin. 1990, 38(2):95~99.
    [20] 马辉刚,李瑞明,胡水秀.番茄灰霉病化学防治试验报告.江西农业科技,1997,第2期:41~42.
    [21] Wilson,C.L.,and Pusey,P.L.Potential for biological control of postharvest plant diseases.Plant Dis. 1985,69:375~378.
    [22] 刘书晓.大棚番茄灰霉病的发生及防治.吉林蔬菜.2000,第2期:30~31.
    [23] 童蕴慧,徐敬友,陈夕军,等.番茄灰霉病菌拮抗细菌的筛选.中国植物病害化学防治研究(第一卷),1998,278~281.
    [24] 童蕴慧,徐敬友,陈夕军.灰葡萄孢拮抗细菌的筛选.中国生物防治,2000,16(3):123~126.
    [25] 童蕴慧,徐敬友,陈夕军,等.番茄灰霉病拮抗细菌的筛选和应用.江苏农业研究,2001,22 (4):25~28.
    [26] 张玉勋,李光,张光明.拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果.植物病理学报,2000,30(1):42.
    [27] 赵蕾.绿色木霉对灰霉病菌拮抗机制的初步研究.植物保护,1998,24(2):36~37.
    [28] 赵蕾,宋家华,杨合同,等.一种农用拮抗链霉素的初步研究.中国生物防治,1998,14(1):18~20.
    [29] 田连生,王伟华,石万龙,等.利用木霉防治大棚草莓灰霉病.植物保护,2000,26(2):47~48.
    [30] 沈寅初.农用抗生素研究开发新进展.植保技术与推广,1997,17(6):35~37.
    [31] 赵蕾,杨合同.蔬菜灰霉病生防菌的筛选与防效试验初报.应用与环境生物学报,1999,5(1):85~88.
    [32] Bollen,G.J..and Scholten,G.Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Neth.J. Plant Pathol.1971,77: 83~90.
    [33] Dennis,C.,and Davis,R.P.Tolerance of Botrylis cinerea to iprodione and vinclozolin. Plant Pathol.1979,28:131~133.
    [34] Pappas,A.C.,Cook, B.K.,and Tordan,V.W.L.Insensitivity of Botrytis cinerea to iprodione. procymidone, and vinclozolin and their uptake by the fungus. Plant Pathol. 1979, 28:71~76.
    [35] 张红.温室番茄灰霉病的综合防治.吉林蔬菜,2000,第1期:32.
    [36] 包建中,张乃鑫.美国生物防治的科研与应用.世界农业,1981(1):26~29.
    [37] Walker,-R.;Powell,-A.A.;Seddon,-B.Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J-appl-microbiol. Oxford, U.K.: Blackwell Science Ltd.1998,84(5):791~801.
    [38] Elad,Y.,Zimand,G.Experience in integrated chemical-biological control of grey mould (Botrytis cinerea). WPRS Bull. 1991, 14, 195~199.
    
    
    [39] 葛毅强,张维一.果蔬采后病害的生物防治.世界农业,1997,7(总219):37~38.
    [40] 易齐.无公害蔬菜病虫防治技术 第二讲 生物防治及物理防治直接取代部分化学农药的应用.植保技术与推广,1998,18(3):44~45.
    [41] 易齐.我国保护地蔬菜病虫害发生概况及其防治技术措施.植保技术与推广,1997,17(5):36~38.
    [42] 黄仲生.日光温室主要蔬病虫害防治技术(三)灰霉病的发生与防治.蔬菜,1999(3):23.
    [43] Elad, Y., Zimand,G.Integration of biological and chemical control for grey mould. In: Recent Advances in Botrytis Reseatch. (Ed. By K.Verhoeff, N.E.Malathrakis and B.Williamson). Pudoc. Wageningen,1992,272~276.
    [44] 阎愫,朴永范.中国蔬菜病虫害的发生特点及综合治理.世界农业,1998,8(总232):24~25.
    [45] Leibing Wolfgang.;Breuker Barbara.;Hahn Matthias.Mendgen kun.Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology.1997,87(11):1103~1110.
    [46] Elad,Y.Trichoderma harzianum T39 preparation for biocontrol of plant diseases:control of Botrytis cinerea, Sclerotinia sclerotium and Cladosporium fulvum. Biocontrol science & technology. 2000, 10(4):499~507.
    [47] Kohl,J.,Gerlagh, M.Biological control of Botrytis cinerea in roses by the antagonist Ulocladium atrum. Mededelingen faculteit landbouwkumdige en toegepaste biologische wetenschappen universiteit gent. 1999,64(3b):441~445.
    [48] Masih Emmamuel Isaac.; Alie Isabelle.;Paul Bernard. Can the grey mould disease of the grape-vine be controlled by yeast? FEMS microbiology letters. 2000,189(2): 233~237.
    [49] Kang Jae Gon.; Kim Keum Ki.; Kang Kyu Young. Antagaonism and structural identification of antifungal comoumd from Chaetomium cochliodes against phytopathogens fungi. Agricultural chemistry & biotechnology. 1999,42(3):146~150.
    [50] Kohl,J.,Gerlagh,M.,Grit,G.Biocontrol of Botrytis cinerea by Ulocladium atrum in different production systems of cyclamen. Plant disease. 2000,84(5):569~573.
    [51] Sesan,Tatiana Eugenia.;Oprea Maria.;Cristesu Aurel Podosu.;Tica Costel.;Oancea Florin. Biocontrol of Botrytis cinerea on grapevine with Trichoderma spp. and Saccharomyces chevalieri. Bulletin of the polish academy of sciences biological sciences. 1999,47(2-4):197~205.
    [52] 郭坚华,孙平华,吴云波,等.植物细菌性青枯病的生物防治机制和途径.中国生物防治,1997,13(1):42~46.
    [53] Pristchepa Ludmila I.;Voitka Dmitry V. Effectiveness of Trichodermin in protection of tomato and cucumber against disease. Bulletin of the polish academy of sciences biological sciences. c1999,47(2-4):179~182.
    [54] Agarwl Abha.;Tripathi H.S. Biological and chemical control of botrytis gray mould of
    
    chickpea.Journal of mycology & plant pathology, 1999,29(1):52~56.
    [55] Bryk Hanna.; Dyki Barbara. Sobiczewski Piotr. Antagonistic effect of Erwinia herbicola on vitro spore germination and germ tube elongation of Botrytis cinerea and Penicillium expansum. Biocontrol. 1998,43(1):97~106.
    [56] Paul Bernard. Suppression of Botrytis cinerea causing the gray mould disease of grape-vine by an aggressive mycoparasite Pythium radiosum. FEMS Microbiology Letters. 1999, 176 (1): 25~30.
    [57] Dik,A.J.;Elad,Y.Comparison of antagonists of Botrytis cinerea in greenhouse-grown cucumber and tomato under different climatic conditions. European journal of plant pathology. 1999,105(2):123~137.
    [58] Lennartz, B.;Schoene,P.;Oerke,E.C.Biocontrol of Botrytis cinerea on grapevine and Septoria spp. on wheat.Mededelingen faculteit landbouwkundige en toegepaste biologische wetenschappen universiteit gent. 1998,63(3B):963~970.
    [59] Whiteman,S.A.;Stewart, A.Suppression of Botrytis cinerea sporulation on irradiated grape leaf tissue by the antagonistic bacterium Serratia liquefaciens. New zealand journal of crop & horticultural Science. 1998,26(4):325~330.
    [60] Swadling lain R.;Jeffries Peter. Antagonistic properties of two bacterial biocontrol agents of grey mould disease.Biocontrol science & technology. 1998,8(3):439~448.
    [61] Peng, G.; Sutton, J.C.Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Canadian Journal of Plant Pathology. 1991,13(3):247~257
    [62] Kohl,J.,Van der Plas,C.H.,Molhoek, W.M.L.& Fokkema, N.J.Effect of interrupted leaf wetness periods on supprssion of sporulation of Botrytis allii and B.cinerea by antagonists on dead onion leaves. Eur.J.Pl.Path., 1995b, 101,627~637.
    [63] Kohl.J., Molhoek, W.M.k.,Van der Plas,C.H. & Fokkema.N.J. Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology.1995c,85,393~401.
    [64] Janisiewicz,W.J.,Yourman,L.,Roitman,J.,et al.Postharvest control of blue mold and gray mold of apple and pears by dip treatment with pyrrolnitrin, a metabolite of Pseudomonas cepacia. Plant Disease. 1991,75(5):490~494.
    [65] Newhook, F.J. Microbiological control of Botrytris cinerea Pers. Ⅱ.Antagonism by fungi and actinomycetes. Ann.Appl.Biol.1951,35,185~202
    [66] Wood,R.K.S.The control of diseases of lettuce by use of antagonistic microorganisms, Ⅰ. The control of Botrytis cinerea Pers. Ann.appl.Biol.1951,38,203~216.
    [67] Bhatt,D.D.and Vaughan,E.K.Preliminary investigations on biological control of grey mould (Botrytis cinerea) of stawberries. Plant Dis.Rept. 1962,46,342~345.
    [68] Edwards,S.G.and Seddon,B.Bacillus breves as biocontrol agent against Botrytis cinerea on
    
    protected chinese cabbage. In: Recent Advances in Botrytis Reseatch. (Ed. By K.Verhoeff. N.E.Malathrakis and B.Williamson). Pudoc, Wageningen, 1992,267~271.
    [69] Li,H. and Leiffert, C.Development of resistance in Botrytotinia fuckeliana(de Bary), Whetzel against the biological control agent Bacillus subtillis. J.Plant Dis.Prot. 1994, 101, 414~418.
    [70] Zhang, P.G.,Surton,J.C.and Hopkins,A.A.Evaluation of microorganisms for biocontroi of Botrytis cinerea in container-grown black spruce seedlings. Can.J.For.Res.1994,24,1312~1316.
    [71] Peng, G., Sutton,J.C.and Kevan,P.G.Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Can.J.Plant Pathol. 1992,14,117~129.
    [72] White,J.G.,Linfield,C.A.,Lahdenpera,M.L.and Voti,J.Mycostop-a novel biofungicide based on Streptomyces griseoviridis. Brighton Crop Prot.Conf.Pests Diseases.1990,221~226.
    [73] Elad,Y.Biological control of grape grey mould by Trichoderma harzianum. Crop Protect.1994, 13,35~38.
    [74] Elad,Y.and Shtienberg, D.Niv.A.Trichoderma harzianum T39 integrated with fungicides: improved biocontrol of grey mould. Brighton Crop Prot.Conf Pests Dis.1994c,1109~1113.
    [75] Tronsmo,A.and Dennis,C.The use of Trichoderma species to control strawberry fruit rots. Neth.J.Plant Path. 1977,83(suppl.1),449~455.
    [76] O'Neill,T.M.,Elad,Y.,Shtienberg, D.& Cohen,A.Control of grapevine gray mould with Trichodema harzianum T39. Bioc.Sci.Tech.,1996,6:139~146.
    [77] 方中达.植病研究法.北京:农业出版社,1979.
    [78] 任欣止.植物病原细菌的分类和鉴定.农业出版社,1992.
    [79] Gordon R E,Haynes W C,Pang C H N(蔡妙英译).芽孢杆菌属.北京:农业出版社,1983.
    [80] Sheath P H A. Bergeys Manual of Systematic Bacteriology Vol 2. Baltimore: Williams & Wilkins, 1986.
    [81] Holt J G, Krieg N R, Peter H A, et al. Bergey's Manual of Determinative Bacteriology 9th ed. Baltimore: Williams & Wilkins, 1994.
    [82] 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001.
    [83] Ash C, Priest F G, Collins M D. Molecular identification of rRNA group 3 bacilli (Ash. Farrows. Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek, 1994, 64:253~260.
    [84] 盛祖嘉.微生物遗传学.第二版.北京:科学出版社,1987,139.
    [85] 黄青云,陈金顶,任涛,等.禽大肠杆菌耐药标记弱毒菌株O_2(Nor~v,Ch~s)和O_(78)(Chl~v,Nor~s)的培育.华南农业大学学报.1997,18(2):89~92.
    [86] Park Seonllee; Bac Dong Won; Lee Joon Tack,etc.Integration of biological and chemical methods for the control of pepper grey mould rot under commercial green house condition. Plant pathology Journal 1999.15(3),162~167.
    
    
    [87] Nielsen,P.; S(?)rensen,J. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology (1997),22(3).183~192.
    [88] 黄绍宁,沈华山,吴华明.应用地衣芽孢杆菌和木霉防治基质栽培黄瓜苗期猝倒病.中国生物防治,1999,15(1):45.
    [89] Islam, N.; Bora, L.C.Biological management of bacterial leaf blight of rice (Oryzae stative)with plant growth promoting rhizobacteria. Indian Journal of Agricultural Sciences. 1998,68(12), 198~800.
    [90] Korsten, L.;Jager, E.E.DE. Mode of action of Bacillus subtilis for control of avocado post-harvest pathogens. Year-book-south African Avocado Grower's Association. 1995,18,124~130.
    [91] Pabitra Kalita; Bora, L.C.Bhagabati,K.N.Phylloplane microflora of citrus and their role in management of citrus canker. Indian phytopathology.1996,49(3),234~237.
    [92] Villiers,E.E.DE.;Korsten,L.Biological treatment for the control of mango postharvest disease. Yearbook-south African Mango Growers' Association.1994,14,48~51.
    [93] Mavingvi, P.;Hevlini,J.Invitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus Polymyxa. Soil Biologgy & Biochemistry (1994) 26(6)801~803.
    [94] Alippi,A.M.;MONACO,C.I. In Vitro antagonism of Bacillus spp. against sclerotium rolfsii and Fusarium solani. Revista de la Facultad de Agrohomia(La Plata) 1994,70,91~95.
    [95] Yuen,G.Y.;Godoy,G.;Steadman,J.R.etc.Epiphytic colonization of dry edible bean by bactcria antagonistic to sclerotinia sclerotiorum and potential for biological control of white mold disease. Biological control, 1991, 1(4)293~301.
    [96] Oedjijono;Line,M.A.;Dragar, G.Isolation of bacteria antagonistic to a rage of plant pathogenic fungi. Soil biology &Biochemistry. 1993,25(2),247~250.
    [97] Korsten,L.;Bezuidenhout,J.J.Biocontrol of avocado postharvest disease. Yearbook-south A fican Avocado Growers' Association. 1989, 12,10~12.
    [98] Singh,R.H.;Dwivedi,R.S.Studies on biological control of sclerotium rolfsii sacc.Causing foot rot of barley. Acta Botanica India. 1987,15(2), 160~164.
    [99] Cho,E.K.Strategies for biological control of soilborne disease in economic crops in korea. Korean Journal of Plant Pathology. 1987,3(4),313~317.
    [100] Korsten,L.;Bezuidenhout,J.J.;Kotz é,J.M. Biological control of postharvest diseases of avocado.Yearbook, south African Avocado Growers' Association. 1988, 11,75~78.
    [101] Aspiras,-R.B.;De-la-Cruz,-A.R.Potential biological control of bacterial wilt in tomato and potato with Bacillus polymyxa FU6 and Pseudomonas fluorescens [Philippines]. Los Banos, Laguna(Philippines). 1985, 89~92. Received Jul 1986.
    [102] Shigemitsu, H.;Hirano,K.;Ishizaki.H.etc.Malformation of hyphae and spore germ tubes of various of fungi induced by the Bacillus licheniformis culture filtrate. Transactions of the
    
    Mycological society of Japan. 1984,25(2), 173~178.
    [103] Farag,N.S.;Bishay,F.Bacterial wilt of potato in relation to antagonistic and rhizosphere microflora. Agricultural Research Review. 1980,58(2), 185~192.
    [104] Shigemitsu, H.;Hirano,K.;Kohno,M.Effect of Bacillus licheniformis on Fusarium oxysporura f.sp.cucumerinum.Transactions of the mycological society of Japan. 1983,24(4),477~486.
    [105] 张中鸽,彭于发,张玉勋.多粘芽孢杆菌的抑菌作用.生物防治通报,1994,10(2),85~86.
    [106] Sanienska Alicja. Influence of Bacillus polymyxa on the growth and development of Fusarium oxysporum f.sp.tulipae.A cta Agrobotanica. 1999,52(1-2),5~10.
    [107] Pichard,B.;Thouvenot, D.Effect of Bacillus polymyxa seed treatments on control of black-rot and damping-off of cauliflower.Seed Science &Technology. 1999,27(2),455~465.
    [108] Scharen,-A.L.;Bryan,-M.D.A possible biological control agent Bacillus licheniformis for net blotch Pyrenophora teres of barley Abstract only. Phytopathology. 1981,71(8):902~903.
    [109] Siddiqui,-Z.A.;Mahmood,-I. Biological control of root-rot disease complex of chickpea caused by Meloidogyne incognita race 3 and Macrophomina phaseolina. Nematologia-Mediterranea (Italy). 1992,20(2):199~202.
    [110] Roncal-O,-Manuel;Fucikovsky-Zak,-Leopoldo;Khalil-Gardezi,-Abdul.Effect of two Bacillus species and garlic against Pseudomonas solanacearum on potato. Agrociencia (Mexico). Serie Protection Vegetal. 1991, 2(2):97~107.
    [111] Jee,-H.J.;Nam,-C.K.;Kim,-C.H.Studies on biological control of Phytophthora blight of red-pepper.1.Isolation of antagonists and evaluation of antagonistic activity in vitro and in greenhouse. Korean-Journal-of-Plant-Pathology (Korea R.).1988,4(4):305~312.
    [112] 胡尚勤,刘天贵.地农芽孢杆菌营养要求的研究.河北省科学院学报,2000,17(4):224~227.
    [113] Opina,-N.C.;Valdez,-R.B.Evaluation of Pseudomonas flourescens and Bacillus polymyxa as biological control agents of Pseudomonas solanacearum [Philippines]. Philippine Journal of Crop Science (Philippines). Supplement no.1. 1987,12(1):29. Issued Jul 1988.
    [114] Zipagan,-F.B.Effectiveness of biological control organisms against Pseudomonas solanacearum E.F.Smith, causal agent of bacterial wilt of tomatoes. College, Laguna (Philippines). Apt 1993.113 leaves.
    [115] Orlikowski,-L.B.; Saniewska,-A.; Skrzypczak,-C.; Wojdyla,-T.Progress in biological control of plant diseases. Panstwowe Wydawnictwo Rolniczei Lesne. 1995,93~98. Distributed 1996.
    [116] Hwang-SF; Chang-KF; Howard-RJ; Deneka-BA; Yurnbull-GD. Decrease in incidence of Pythium damping-off of field pea by seed treatment with Bacillus spp. and metalaxyl. Zeitschrift-fur-Pflanzenkrankheiten-und-Pflanzenschutz.1996,103(1):31~41.
    [117] Dijks(?)erhuis,-J.: Sanders,-M.;Gorris,-L.G.M.;Smid,-E.J.Antibiosis play a role in the context
    
    of direct interaction dining antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J-appl-microbiol. Oxford, U.K.: Blackwell Science Ltd. 1999, 86(1): 13~21.
    [118] Oita,S.; Horita,M.;Yanagi,S.O.Purification properties of a new chitin-hinging antifungal CB-1 from Bacillus licheniformis. Bioscience, Biotechnology and Biochemistry. 1996, 60(3), 481-483.
    [119] Sudha,-S.N.;Jayakumar,-R.;Sekar,-V.Introduction and expression of the crylAc gene of Bacillus thuringiensis in a cereal-associated bacterium, Bacillus polymyxa. Curr-microbiol. 1999,38 (3): 163~167.
    [120] Hessenmuller-A; Zeller-W. Biological control of soil-borne Phycophthora species in strawberry with bacterial antagonists. I. Antagonistic effect and colonization of rhizoplane. Zeitschrift-fur-Pflanzenkrankheiten-und-Pflanzenschutz. 1996, 103: 6, 602~609.
    [121] Shishido,-M.;Breuil,-C.;Chanway,-C.P.Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS-microbiol-ecol.Amsterdam, The Netherlands: Elsevier Science B.V.June 1999,29(2):191~196.
    [122] 刘天贵,胡尚勤.不同基质对地衣芽孢杆菌生长曲线的影响.重庆师范学院学报(自然科学版),1998,15(4):21~23.
    [123] Fields,-M.L.;Yoa,-F.G.Nutritional improvement of corn meal by fermentation by Bacillus licheniformis and Enterobacter cloacae. J-Food-Prot. Ames, Iowa: International Association of Milk, Food, and Environmental Sanitarians. 1990, 53 (3): 245~248.
    [124] Hespell,-R.B.Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr-microbiol.1996,32(5):291~296.
    [125] Juszczak,-A.;Jaskulska,-J.; Domka,-E; Walenciak,-M.Reduction of the contents of carbon, phosphorus and nitrogen in waste products from the alcohol industry by the method ofdenitrification. Polish-Journal-of-Environmental-Studies (Poland). 1999, 8(3): 143~147.
    [126] 丁立孝,杨增军.防治烟草赤星病农用抗生素产生菌S-10菌株发酵条件的研究.莱阳农学院学报.1996,13(3):164~168.
    [127] 陈志谊,陆凡,刘春祥,等.水稻纹枯病拮抗细菌B-916培养条件与发酵配方的研究.西南农业学报,1998,12(1):76~81.
    [128] 吴继星.谢天健.陈在佴.等.苏芸金杆菌85-10-6(S)发酵培养基的筛选.微生物学通报,1988,15(6):254~256.
    [129] 向隆宽.周启.农抗SH-62的B_2-UBL-609发酵研究.云南农业大学学报,1992,7(3):150~155.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.