Bi属半导体纳米材料的调控合成及强磁场诱导生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的调控合成是纳米科技发展的重要组成部分,是研究纳米结构性能及其应用的基础。本论文围绕Bi属半导体纳米材料的液相调控合成进行研究,探讨了外加强磁场作用于抗磁性物质生长习性的影响;利用单源前驱体手段,调控合成了晶形可控的Bi2S3纳米晶和Sb2S3微米晶,考察了产物性能与尺寸和形状的依互性关系;通过模板法辅助合成,获得大量Bi2Te3纳米片,研究其晶体二维生长特性与晶体结构的内在联系;此外,还发展了低温湿化学合成Bi2Te3基n/p位掺杂固溶体技术,合成结晶性较好的Bi2(Te,Se)3和(Bi,Sb)2Te3纳米晶。论文主要内容归纳如下:
     1.强磁场诱导Bi纳米结构的生长。通过将强磁场引入反应体系,诱导Bi纳米结构的一维生长,考察了不同合成条件对产物形貌的影响。并进一步将该思路拓展到一维Te微米结构的合成上。从晶体学的角度出发,理论研究磁场作用非磁性低维体系材料的一维生长效应。结果显示,磁场通过延缓反应的进程,对生长晶面进行修饰,诱导纳米材料基元的一维生长。
     2.单源前驱体调控合成Bi2S3纳米结构。从单源前驱体出发,表面剂辅助调控合成Bi2S3纳米棒,通过IR谱图研究表面剂对Bi2S3生长基元的动力学调控作用。并以此为基础提出无模板调控合成手段,合成形貌可控的Bi2S3纳米结构。研究发现,溶剂的包覆效应作用于晶体的生长过程,调控产物生长形貌的变化。进一步的,将该思路拓展到形貌可控Sb2S3微米结构的合成上。合成得到的Bi2S3纳米晶具有宽化的带隙宽度。Bi2S3纳米晶和Sb2S3微米晶的荧光性能显示具有典型的形状依互关系。
     3.模板法调控合成Bi2Te3纳米片。利用表面剂辅助水热、溶剂热法调控合成形貌均一的Bi2Te3纳米片。研究表明,Bi2Te3内部复杂键合结构作用于晶体生长过程中的裂解,而表面剂分子(PVP, CTAB)对生长晶面的吸附和解吸附,作用于裂解晶面,动态调控晶体生长过程,获得沿垂直于c轴方向生长的Bi2Te3纳米片。进一步的,人为构造层状结构,利用混合溶剂作用反应过程,大规模合成Bi2Te3纳米片。层状前驱体的引入,首次在酸性条件下合成纯物相的Bi2Te3纳米晶。推翻了仅能在碱性体系中合成Bi2Te3晶体的认识。
     4.低温湿化学合成Bi2Te3基n/p位掺杂固溶体。利用低温湿化学手段,大规模合成结晶性较好的Bi2(Te,Se)3和(Bi,Sb)2Te3纳米晶。结果表明, Se位掺杂作用于晶体结构的层间解理,诱导晶体沿垂直于c轴方向生长,获得二维Bi2(Te,Se)3纳米晶。而Sb位掺杂并没有改变晶胞中的键合作用,对产物形貌没有影响。进一步的,反应过程中Sb源的选择是合成(Bi,Sb)2Te3固溶体的关键。
Controlled synthesis of nanomaterials is one of the most important sections of nanoscience and nanotechnology, and also the base to investigate the distinctive properties and applications of nanostructures. This thesis studied solution-based controlled synthesis of Bi-related semiconductor nanomaterials, emphasizing on the effect of high magnetic field on the growth of diamagnetic materials, controlled synthesis of Bi2S3 nanocrystals and Sb2S3 microcrystals via a single precursor route, the relationship between the properties and size/shape of the nanocrystals, manipulated growth of Bi2Te3 nanoplates by surfactant assisted route, the dependent connection between crystal structure and the two dimensional (2D) growth trade and the controlled growth of Bi2(Te,Se)3 and (Bi,Sb)2Te3 solid solution through a simple aqueous chemical method at low temperature. The major contents of this dissertation are epitomized as follows:
     1. High magnetic field induced growth of Bi nanostructures. With the introduction of high magnetic field, one dimensional Bi nanostructure could be obtained. The effect of synthetic conditions on the shape of the nanocrystals was studied. Furthermore, the synthetic notion was extended to the growth of Te microrods. Besides, the effect of magnetic field on the one dimensional (1D) growth of diamagnetic materials was discussed. The results showed that when the magnetic field was introduced, the reaction process was slowed down, the crystal face was modified and the 1D growth trade was induced.
     2. Controlled synthesis of Bi2S3 nanocrystals via a single precursor route. With the help of surfactant, monodisperse Bi2S3 nanorods were obtained. Based on the IR observation, the effect of surfactant on the growth nucleus was discussed. Furthermore, a simple single precursor route without surfactant was issued, and the Bi2S3 nanocrystals with controlled shapes could be synthesized. The solvent effect held an important role during the crystal growth, which would induce the shape changes. Moreover, the novel idea was extended to the growth of Sb2S3 microrods with controllable shapes. The results showed that the band gap of Bi2S3 nanocrystals was larger than that in bulk materials. The PL performance of Bi2S3 nanocrystals and Sb2S3 microcrystals showed typical shape dependence.
     3. Manipulated growth of Bi2Te3 nanoplates by surfactant assisted route. Under the condition of surfactant assisted hydrothermal or solvothermal route, large amount of Bi2Te3 nanoplates were obtained. It showed that the crystal structure could act on the split process during the crystal growth. The surfactant molecules (PVP, CTAB) could adsorb to the crystal face, manipulate the growth process. The Bi2Te3 nanoplates with the growth direction perpendicular to c axis could be synthesized. Furthermore, an artificial lamellar structure has been adopted during the growth of Bi2Te3 nanoplates. With the help of lamellar precursor, pure Bi2Te3 nanocrystals could be prepared in an acidic reaction system, and the cognition that Bi2Te3 should be synthesized in an alkaline reaction system was overthrown.
     4. Controlled growth of Bi2(Te,Se)3 and Bi2(Te,Se)3 through a simple aqueous chemical method at low temperature. Large amount of Bi2(Te,Se)3 and (Bi,Sb)2Te3 nanocrystals could be synthesized via a chemical route. It showed that once Se doped into the lattice, it held the effect on the crystal split process, induced the two dimensional (2D) growth trade, and 2D Bi2(Te,Se)3 nanocrystals could be finally obtained. While Sb doped into the lattice, it did not show this effect. Furthermore, the Sb source is the key to synthesize pure Bi2(Te,Se)3 solid solution
引文
【1】. Feynman R P. There’s plenty of room at the bottom [J], Engineering and Science, 1960; 23: 22
    【2】. Liu D S, Balasubramanian S. A proton-fuelled DNA nanomachine [J], Angew. Chem. Int. Ed., 2003; 42: 5734-5736
    【3】. McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisk lasers [J], Appl. Phys. Lett., 1992; 60: 289-291
    【4】. Mohideen U, Hobson W S, Pearton S J, Ren F, Slusher R E. GaAs/AlGaAs microdisk lasers [J], Appl. Phys. Lett., 1994; 64: 1911-1913
    【5】. Service R F. Assembling nanocircuits from the bottom up [J], Science, 2001; 293: 782-785
    【6】. Mahmoodi N M, Arami M, Limaee N Y, Gharanjig K, Nourmohammadian F. Nanophotocatalysis using immobilized titanium dioxide nanoparticle Degradation and mineralization of water containing organic pollutant: Case study of Butachlor [J], Mater. Res. Bull., 2007; 42: 797-806
    【7】. Marzin J Y, Gérard J M, Izra?l A, Barrier D, Bastard G. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs [J], Phys. Rev. Lett., 1994; 73: 716-719
    【8】. Cao Y, Parker I D, Yu G, Zhang C, Heeger A J. Improved quantum efficiency for electroluminescence in semiconducting polymers [J], Nature, 1999; 397: 414-417
    【9】. Wang Z S, Li F Y, Huang C H, Wang L, Wei M, Jin L P, Li N Q. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives [J], J. Phys. Chem. B, 2000; 104: 9676-9682
    【10】. Kahn O. Chemistry and physics of supramolecular magnetic materials [J], Acc. Chem. Res., 2000; 33: 647-657
    【11】. Gao E Q, Cheng A L, Xu Y X, He M Y, Yan C H. From low-dimensional manganese(II) azido motifs to higher-dimensional materials: structure and magnetic properties [J], Inorg. Chem., 2005; 44: 8822-8835
    【12】. Parada C, Morán E, Microwave-assisted synthesis and magnetic study of nanosized Ni-NiO materials [J], Chem. Mater., 2006; 18: 2719-2725
    【13】. So H M, Won K, Kim Y H, Kim B Y, Ryu B H, Na P S, Kim H, Lee J O. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements [J], J. Am. Chem. Soc., 2005; 127: 11906-11907
    【14】. Soltanian S, Qin M J, Keshavarzi S, Wang X L, Dou S X. Effect of sample size on the magnetic critical current density in nano-SiC doped MgB2 superconductors [J], Phys. Rev. B, 2003; 68: 134509
    【15】. Dou S X, Soltanian S, Horvat J, Wang X L, Zhou S H, Ionescu M, Liu H K, Munroe P, Tomsic M. Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping [J], Appl. Phys. Lett., 2002; 81: 3419-3421
    【16】. Tour J M, Cheng L, Nackashi D P, Yao Y X, Flatt A K, Angelo S K, Mallouk T E, Franzon P. D. NanoCell electronic memories [J], J. Am. Chem. Soc., 2003; 125: 13279-13283
    【17】. Okamoto M, Nam P H, Maiti P, Kotaka T, Nakayama T, Takada M, Oshima M, Usuki A, Hasegawa N, Okamoto H. Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite Foam [J], Nano Lett., 2001; 1: 503-505
    【18】. Robello D R, Yamaguchi N, Blanton T, Barnes C. Spontaneous formation of an exfoliated polystyrene-clay nanocomposite using a star-shaped polymer [J], J. Am. Chem. Soc., 2004; 126: 8118-8119
    【19】. Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes [J], Acc. Chem. Res., 1999; 32: 435-445
    【20】. Pérez-Ramírez J, Vigeland B. Perovskite membranes in ammonia oxidation: towards process intensification in nitric acid manufacture [J], Angew. Chem. Int. Ed., 2005; 44: 1112-1115
    【21】. Patzke G R, Krumeich F, Nesper R. Oxidic nanotubes and nanorods - anisotropic modules for a future nanotechnology [J], Angew. Chem. Int. Ed., 2002; 41: 2446-2461
    【22】. Fang X S, Ye C H, Zhang L D, Xie T. Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses [J], Adv. Mater., 2005; 17: 1661-1665
    【23】. Otobe K, Nakao H, Hayashi H, Nihey F, Yudasaka M, Iijima S. Fluorescence visualization of carbon nanotubes by modification with silicon-based polymer [J], Nano Lett., 2002; 2: 1157-1160
    【24】. Hooker J M, Kovacs E W, Francis M B. Interior surface modification of bacteriophage MS2 [J], J. Am. Chem. Soc., 2004; 126: 3718-3719
    【25】. Pastine S J, Okawa D, Kessler B, Rolandi M, Llorente M, Zettl A, Fréchet J M J. A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides [J], J. Am. Chem. Soc., 2008; 130: 4238-4239
    【26】. Hazani M, Naaman R, Hennrich F, Kappes M M. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes [J], Nano Lett., 2003; 3: 153-155
    【27】. Dyke C A, Tour J M. Unbundled and highly functionalized carbon nanotubes from aqueous reactions [J], Nano Lett., 2003; 3: 1215-1218
    【28】. Fan H Y, Chen Z, Brinker C J, Clawson J, Alam T, Synthesis of organo-silane functionalized nanocrystal micelles and their self-assembly [J], J. Am. Chem. Soc., 2005; 127: 13746-13747
    【29】. MafunéF, Kohno J Y, Takeda Y, Kondow T. Nanoscale soldering of metal nanoparticles for construction of higher-order structures [J], J. Am. Chem. Soc., 2003; 125: 1686-1687
    【30】. Dittmer W U, Simmel F C. Transcriptional control of DNA-based nanomachines [J], Nano Lett., 2004; 4: 689-691
    【31】. Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowires arrays [J], Science, 2006; 312: 242-246
    【32】. Wang X D, Song J H, Liu J, Wang Z L. Direct-current nanogenerator driven by ultrasonic waves [J], Science, 2007; 316: 102-105
    【33】. Liu J, Fei P, Song J H, Wang X D, Lao C S, Tummala R, Wang Z L. Carrier density and schottky barrier on the performance of DC nanogenerator [J], Nano Lett., 2008; 8: 328-332
    【34】. Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J], Chem. Rev., 1989; 89: 1861-1873
    【35】. Steigerwald M L, Brus L E. Semiconductor crystallites: a class of large molecules [J], Acc. Chem. Res., 1990; 23: 183-188
    【36】. Wang Y, Suna A, Mahler W, Kasowski R. PbS in polymers. from molecules to bulk solids [J], J. Chem. Phys., 1987; 87: 7315-7322
    【37】. Buffat P, Borel J P. Size effect on the melting temperature of gold particles [J], Phys. Rev. A, 1976; 13: 2287-2298
    【38】. Ishikawa K, Yoshikawa K, Okada N. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles [J], Phys. Rev. B, 1988; 37: 5852-5855
    【39】. Mills D L. Surface effects in magnetic crystals near the ordering temperature [J], Phys. Rev. B, 1971; 3: 3887-3895
    【40】. Binder K, Hohenberg P C. Surface effects on magnetic phase transitions [J], Phys. Rev. B, 1974; 9: 2194-2214
    【41】. DeMaggio G B, Frieze W E, Gidley D W, Zhu M, Hristov H A, Yee A F. Interface and surface effects on the glass transition in thin polystyrene films [J], Phys. Rev. Lett., 1997; 78: 1524-1527
    【42】. Caldeira A O, Leggett A. J. Influence of dissipation on quantum tunneling in macroscopic systems [J], Phys. Rev. Lett., 1981; 46: 211-214
    【43】. Maity D K, Bell R L, Truong T N. Mechanism and quantum mechanical tunneling effects on inner hydrogen atom transfer in free base porphyrin: a direct ab initio dynamics study [J], J. Am. Chem. Soc., 2000;, 122: 897-906
    【44】. Hong X, Ishihara T, Nurmikko A V. Dielectric confinement effect on excitons inPbI4-based layered semiconductors [J], Phys. Rev. B, 1992; 45: 6961-6964
    【45】. Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J], Phys. Rev. B, 1993; 47: 4569-4584
    【46】. Gusev A I, Rempel A A.“Nanocrystalline Materials”[M]. Cambridge: Cambridge International Science Publishing, 2004: 1-347
    【47】. Kim B N, Hiraga K, Morita K, Sakka Y. A high-strain-rate superplastic ceramic [J], Nature, 2001; 413: 288-291
    【48】. Zhang G D, Garay J E, Mukherjee A K. Ultralow-temperature superplasticity in nanoceramic composites [J], Nano Lett., 2005; 5: 2593-2597
    【49】. Domínguez-Quintero O, Martínez S, Henríquez Y, D’Ornelas L, Krentzien H, Osuna J. Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity [J], J. Mol. Catal. A: Chem., 2003; 197: 185-191
    【50】. Thomas J M, Johnson B F G, Raja R, Sankar G, Midgley P A. High-performance nanocatalysts for single-step hydrogenations [J], Acc. Chem. Res., 2003; 36: 20-30
    【51】. Prabhuram J, Wang X, Hui C L, Hsing I M. Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications [J], J. Phys. Chem. B, 2003; 107: 11057-11064
    【52】. Leatherdale C A, Kagan C R, Morgan N Y, Empedocles S A, Kastner M A, Bawendi M G. Photoconductivity in CdSe quantum dot solids [J], Phys. Rev. B, 2000; 62: 2669-2680
    【53】. Jarosz M V, Porter V J, Fisher B R, Kastner M A, Bawendi M G. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency [J], Phys. Rev. B, 2004; 70: 195327
    【54】. Zhang L M, Zeng T Y, Claus R O, Cooper K L. Orientationally enhanced photocurrent and electrooptic modulation effects in bacteriorhodopsin/polyvinyl alcohol thin films [J], J. Phys. Chem. B, 2002; 106: 2996-3000
    【55】. Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection [J], Science, 1998; 281: 2016-2018
    【56】. Ring T A.“Fundamentals of Ceramic Powder Processing and Synthesis”[M]. California: Academic Press, 1996: 179-249
    【57】. Kolthoff I M.“Theory of coprecipitation.”the formation and properties of crystalline precipitates [J], J. Phys. Chem., 1932; 36: 860-881
    【58】. Vaslow F. Boyd G E. Thermodynamics of coprecipitation: dilute solid solutions of AgBr in AgCl [J], J. Am. Chem. Soc., 1952; 42: 4691-4695
    【59】. Cameir?o A, David R, Espitalier F, Gruy F. Effect of precipitation conditions on the morphology of strontium molybdate agglomerates [J], J. Cryst. Growth, 2008; 310: 4152-4162
    【60】. Albuquerque A S, Ardisson J D, Macedo W A A, Alves M C M. Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism [J], J. Appl. Phys., 2000; 87: 4352-4357
    【61】. Chen Q, Rondinone A J, Chakoumakos B C, Zhang Z J. Synthesis of Superparamagnetic MgFe2O4 nanoparticles by coprecipitation [J], J. Mag. Mag. Mater., 1999; 194: 1-7
    【62】. Wang J F, Ponton C, Harris I R. Ultrafine SrM particles with high coercivity by chemical coprecipitation [J], J. Mag. Mag. Mater., 2002; 242-245: 1464-1467
    【63】. Gu Y F, Li G, Meng G Y, Peng D K. Sintering and electrical properties of coprecipitation prepared Ce0.8Y0.2O1.9 ceramics [J], Mater. Res. Bull., 2000; 35: 297-304
    【64】. Li J G, Ikegami T, Wang Y R, Mori T. Reactive Ceria nanopowders via carbonate precipitation [J], J. Am. Ceram. Soc., 2002; 85: 2376-2378
    【65】. Xiang L, Deng X Y, Jin Y. Experimental study on synthesis of NiO nano-particles [J], Script. Mater., 2002; 47: 219-224
    【66】. Kawamura T, Makidera M, Okada S, Koga K, Miura N, Yamaki J I. Effect on nano-size LiCo2 cathode powder on Li-ion cells [J], J. Powder Sources, 2005; 146: 27-32
    【67】. Chen H L, Qiu X P, Zhu W T, Hagenmuller P. Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery [J], Electrochem. Comm., 2002; 4: 488-491
    【68】. Roucoux A, Schulz J, Patin H. Reduced transition metal colloids: A novel family of reusable catalysts? [J], Chem. Rev., 2002; 102: 3757-3778
    【69】. Enüstün B V, Turkevich J. Coagulation of colloidal gold [J], J. Am. Chem. Soc., 1963; 85: 3317-3328
    【70】. Keating C D, Musick M D, Keefe M H, Natan M J. Kinetics and thermodynamics of Au colloid monolayer self-assembly: undergraduate experiments in surface and nanomaterials chemistry [J], J. Chem. Edu., 1999; 76: 949-955
    【71】. Hench L L, West J K. The sol-gel process [J], Chem. Rev., 1990; 90: 33-72
    【72】. Smith D D, Snow L A, Sibille L, Ignont E. Tunable optical properties of metal nanoparticle sol-gel composites [J], J. Non-Cryst. Solids, 2001; 285: 256-263
    【73】. Anderson M L, Morris C A, Stroud R M, Merzbacher C I, Rolison D R. Colloidal gold aerogels: preparation, properties, and characterization [J], Langmuir, 1999; 15: 674-681
    【74】. Morris C A, Anderson M L, Stroud R M, Merzbacher C I, Rolison D R. Silica sol as a nanoglue: flexible synthesis of composite aerogels [J], Science, 1999; 284, 622-624
    【75】. Kuzuka H, Sakka S. Preparation of gold colloid-dispersed silica-coating films by the sol-gel method [J], Chem. Mater., 1993; 5: 222-228
    【76】. Liz-Marzán L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles [J], Langmuir, 1996; 12: 4329-4335
    【77】. Lu Y, Yin Y D, Li Z Y, Xia Y N. Synthesis and self-assembly of Au@SiO2 core-shell colloids [J], Nano Lett., 2002; 2: 785-788
    【78】. Bharathi S, Lev O. Direct synthesis of gold nanodispersions in sol–gel derived silicate sols, gels and films [J], Chem. Comm., 1997; 2303-2304
    【79】. Xing G J, Chen G H, Song X M, Yuan X M, Yao W, Yan H. ZnO and TiO2nanoparticles encapsulated in boron nitride nanocages [J], Microelectro. Eng., 2003; 66: 70-76
    【80】. Tom R T, Nair A S, Singh N, Aslam M, Nagendra C L, Philip R, Vijayamohanan K, Pradeep T. Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: one-step synthesis, characterization, spectroscopy, and optical limiting properties [J], Langmuir, 2003; 19: 3439-3445
    【81】. Hoar T P, Schulman J H. Transparent water-in-oil dispersions: the oleopathic hydro-micelle [J], Nature, 1943; 152: 102-103
    【82】. Fendler J H. Interactions and reactions in reversed micellar systems [J], Acc. Chem. Res., 1976; 9: 153-161
    【83】. Silber J J, Biasutti A, Abuin E, Lissi E. Interaction of small molecules with reverse micelles [J], Adv. Colloid Interface Sci., 1999; 82: 189-252
    【84】. Lisiecki I, Pileni M P. Copper metallic particles synthesized "in situ" in reverse micelles: influence of various parameters on the size of the particles [J], J. Phys. Chem., 1995; 99: 5077-5082
    【85】. Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors [J], J. Am. Chem. Soc., 1993; 115: 3887-3896
    【86】. Carpenter E E, Sims J A, Wienmann J A, Zhou W L, O’Connor C J. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques [J], J. Appl. Phys., 2000; 87: 5615-5617
    【87】. Carpenter E E, Kumbhar A, Wiemann J A, Srikanth H, Wiggins J, Zhou W L, O’Connor C J. Synthesis and magnetic properties of gold-iron-gold nanocomposites [J], Mater. Sci. Eng. A, 2000; 286: 81-86
    【88】. Kumar P, Pillai V, Bates S R, Shah D O. Preparation of YBa2Cu3O7-x superconductor by coprecipitation of nanosized oxalate precursor powder in microemulsions [J], Mater. Lett., 1993; 16: 68-74
    【89】. Pang Y X, Bao X J. Aluminium oxide nanoparticles prepared by water-in-oil microemulsions [J], J. Mater. Chem., 2002; 12: 3699-3704
    【90】. Zhang J, Ju X, Wu Z Y, Liu T, Hu T D, Xie Y N, Zhang Z L. Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method [J], Chem. Mater., 2001; 13: 4192-4197
    【91】. Xiang J H, Yu S H, Geng X, Liu B H, Xu Y. Growth of PbSO4 single-crystal nanorods and optical properties by a microemulsion approach [J], Cryst. Growth Des., 2005; 5: 1157-1161
    【92】. Chen M, Wu Y F, Zhou S X, Wu L M. Shape-controllable synthesis of crystalline Ni complex particles via AOT-based microemulsions [J], J. Phys. Chem. B, 2008; 112: 6536-6541
    【93】. Palla B J, Shah D O, Garcia-Casillas P, Matutes-Aquino J. Preparation of nanoparticles of barium ferrite from precipitation in micromulsions [J], J. Nanoparticle. Res., 1999; 1: 215-221
    【94】. Araki K, Tanaka T. Piezoelectric and elastic properties of single crystalline Se-Te alloys [J], Jpn. J. Appl. Phys., 1972; 11: 472-479
    【95】. Mo M S, Zeng J H, Liu X M, Yu W C, Zhang S Y, Qian Y T. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes [J], Adv. Mater., 2002; 14: 1658-1662
    【96】. Xi G C, Peng Y Y, Yu W C, Qian Y T. Synthesis, characterization, and growth mechanism of tellurium nanotubes [J], Cryst. Growth Des., 2005; 5: 325-328
    【97】. Song J M, Lin Y Z, Zhan Y J, Tian Y C, Liu G, Yu S H. Superlong high-quality tellurium nanotubes: synthesis, characterization, and optical property [J], Cryst. Growth Des., 2008; 8: 1902-1908
    【98】. Qian H S, Yu S H, Gong J Y, Luo L B, Fei L F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process [J], Langmuir, 2006; 22: 3830-3835
    【99】. Lan W J, Yu S H, Qian H S, Wan Y. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone- morphology change,crystallization, and transformation into TeO2 in different solvents [J], Langmuir, 2007; 23: 3409-3417
    【100】. Xi G C, Xiong K, Zhao Q B, Zhang R, Zhang H B, Qian Y T. Nucleation-dissolution-recrystallization: a new growth mechanism for t-selenium nanotubes [J], Cryst. Growth Des., 2006; 6: 577-582
    【101】. Mondal K, Roy P, Srivastava S K, Facile biomolecule-assisted hydrothermal synthesis of trigonal selenium microrods [J], Cryst. Growth Des., 2008; 8: 1580-1584
    【102】. Tang K, Yu D B, Wang F, Wang Z R. Controlled growth of hexagonal trigonal selenium microtubes [J], Cryst. Growth Des., 2006; 6: 2195-2162
    【103】. Zhang B, Dai W, Ye X C, Hou W Y, Xie Y. Solution-phase synthesis and electrochemical hydrogen storage of ultra-long single-crystal selenium submicrotubes [J], J. Phys. Chem. B, 2005; 109: 22830-22835
    【104】. Song J M, Zhan Y J, Xu A W, Yu S H. Cellulose acetate-directed growth of bamboo-raft-like single-crystalline selenium superstructures: high-yield synthesis, characterization, and formation mechanism [J], Langmuir, 2007; 23: 7321-7327
    【105】. Rogacheva E I, Grigorov S N, Nashchekina O N, Lyubchenko S, Dresselhaus M S. Quantum-size effects in n-type bismuth thin films [J], Appl. Phys. Lett., 2003; 82: 2628-2630
    【106】. Li Y D, Wang J W, Deng Z X, Wu Y Y, Sun X M, Yu D P, Yang P D. Bismuth nanotubes: a rational low-temperature synthetic route [J], J. Am. Chem. Soc., 2001; 123: 9904-9905
    【107】. Wang J W, Li Y D. Rational synthesis of metal nanotubes and nanowires from lamellar structures [J], Adv. Mater., 2003; 15: 445-447
    【108】. Gao Y H, Niu H L, Zeng C, Chen Q W. Preparation and characterization of single-crystalline bismuth nanowires by a low-temperature solvothermal process [J], Chem. Phys. Lett., 2003; 367: 141-144
    【109】. Liu X Y, Zeng J H, Zhang S Y, Zheng R B, Liu X M, Qian Y T. Novel bismuthnanotube arrays synthesized by solvothermal method [J], Chem. Phys. Lett., 2003; 374: 348-352
    【110】. Wang J W, Wang X, Peng Q, Li Y D. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres [J], Inorg. Chem., 2004; 43: 7552-7556
    【111】. Wang W Z, Poudel B, Ma Y, Ren Z F. Shape control of single crystalline bismuth nanostructures [J], J. Phys. Chem. B, 2006; 110: 25702-25706
    【112】. Liu H, Wang Z L. Bismuth spheres grown in self-nested cavities in a silicon wafer [J], J. Am. Chem. Soc., 2005; 127: 15322-15326
    【113】. Liu H M, Liu S X, Huang K X. Low-temperature chemical route to bismuth-doped tellurium single-crystalline nanorods [J], Mater. Lett., 2008; 62: 1983-1985
    【114】. Jiang C L, Zhang W Q, Liu Y K, Qian Y T. Self-assembly copper nanowalls into microstructures with different shapes: a facile aqueous approach [J], Cryst. Growth Des., 2006; 6: 2603-2606
    【115】. Liu Z P, Yang Y, Liang J B, Hu Z K, Li S, Peng S, Qian Y T. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process [J], J. Phys. Chem. B, 2003; 107: 12658-12661
    【116】. Zhang X J, Wang G F, Liu X W, Wu H Q, Fang B. Copper dendrites: synthesis, mechanism discussion, and application in determination of L-tyrosine [J], Cryst. Growth Des., 2008; 8: 1430-1434
    【117】. Iijima S. Helical microtubules of graphitic carbon [J], Nature, 1991; 354: 56-58
    【118】. Jiang Y, Wu Y, Zhang S Y, Xu C Y, Yu W C, Xie Y, Qian Y T. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature [J], J. Am. Chem. Soc., 2000; 122: 12383-12384
    【119】. Hu G, Cheng M J, Ma D, Bao X H. Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route [J], Chem. Mater., 2003; 15: 1470-1473
    【120】. Moreno J M C, Yoshimura M. Hydrothermal processing of high-quality multiwallnanotubes from amorphous carbon [J], J. Am. Chem. Soc., 2001; 123: 741-742
    【121】. Kang Z H, Wang E B, Mao B D, Su Z M, Gao L, Lian S Y, Xu L. Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process [J], J. Am. Chem. Soc., 2005; 127: 6534-6535
    【122】. Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm [J], J. Am. Chem. Soc., 2003; 125: 4430-4431
    【123】. Shen L M, Bao N Z, Yanagisawa K, Gupta A, Domen K, Grimes C A. Controlled synthesis and assembly of nanostructured ZnO architectures by a solvothermal soft chemistry process [J], Cryst. Growth Des., 2007; 7: 2742-2748
    【124】. Zhang H, Yang D R, Ji Y J, Ma X Y, Xu J, Que D L. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process [J], J. Phys. Chem. B, 2004; 108: 3955-3958
    【125】. Pal U, Santiago P. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process [J], J. Phys. Chem. B, 2005; 109: 15317-15321
    【126】. Shen L M, Bao N Z, Yanagisawa K, Domen K, Grimes C A, Gupta A. Organic molecule-assisted hydrothermal self-assembly of size-controlled tubular ZnO nanostructures [J], J. Phys. Chem. C, 2007; 111: 7280-7287
    【127】. Ayudhya S K N, Tonto P, Mekasuwandumrong O, Pavarajarn V, Praserthdam P. Solvothermal synthesis of ZnO with various aspect ratios using organic solvents [J], Cryst. Growth Des., 2006; 6: 2446-2450
    【128】. Kar S, Dev A. Chaudhuri S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays [J], J. Phys. Chem. B, 2006; 110: 17848-17853
    【129】. Wen B M, Huang Y Z, Boland J J. Controllable growth of ZnO nanostructures by a simple solvothermal process [J], J. Phys. Chem. C, 2008; 112: 106-111
    【130】. Gao S Y, Zhang H J, Wang X M, Deng R P, Sun D H, Zheng G L. ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods [J], J.Phys. Chem. B, 2006; 110: 15847-15852
    【131】. Zhang W X, Yanagisawa K. Hydrothermal synthesis of zinc hydroxide chloride sheets and their conversion to ZnO [J], Chem. Mater., 2007, 19: 2329-2334
    【132】. Oguri Y, Riman R E, Bowen H K. Processing of anatase prepared from hydrothermally treated alkoxy-derived hydrous titania [J], J. Mater. Sci., 1988; 23: 2897-2904
    【133】. Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening [J], J. Phys. Chem. B, 2004; 108: 3492-3495
    【134】. Li X X, Xiong Y J, Li Z Q, Xie Y. Large-scale fabrication of TiO2 hierarchical hollow spheres [J], Inorg. Chem., 2006; 45: 3493-3495
    【135】. Kim Y J, Chai S Y, Lee W I. Control of TiO2 structures from robust hollow microspheres to highly dispersible nanoparticles in a tetrabutylammonium hydroxide solution [J], Langmuir, 2007; 23: 9567-9571
    【136】. Tian Z R R, Voigt J A, Liu J, Mckenzie B, Xu H F. Large oriented arrays and continuous films of TiO2-based nanotubes [J], J. Am. Chem. Soc., 2003; 125: 12384-12385
    【137】. Wang Q, Wen Z H, Li J H. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures [J], Inorg. Chem., 2006; 45: 6944-6949
    【138】. Kim J Y, Choi S B, Kim D W, Lee S W, Jung H S, Lee J K, Hong K S. Surfactant-assisted shape evolution of thermally synthesized TiO2 nanocrystals and their applications to efficient photoelectrodes [J], Langmuir, 2008; 24: 4316-4319
    【139】. Jeon S, Braun P V. Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles [J], Chem. Mater., 2003; 15: 1256-1263
    【140】. Wen B M, Liu C Y, Liu Y. Bamboo-shaped Ag-doped TiO2 nanowires with heterojunctions [J], Inorg. Chem., 2005; 44: 6503-6505
    【141】. Wu G S, Wang J P, Thomas D F, Chen A C. Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity [J], Langmuir, 2008; 24:3503-3509
    【142】. Zhang D F, Sun L D, Yin J L, Yan C H. Low-temperature fabrication of highly crystalline SnO2 nanorods [J], Adv. Mater., 2003; 15: 1022-1025
    【143】. Cheng B, Russell J M, Shi W S, Zhang L, Samulski E T. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods [J], J. Am. Chem. Soc., 2004; 126: 5972-5973
    【144】. Yang H G, Zeng H C. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites [J], Angew. Chem. Int. Ed., 2004; 43: 5930-5933
    【145】. Du F L, Guo Z Y, Li G C. Hydrothermal synthesis of SnO2 hollow microspheres [J], Mater. Lett., 2005; 59: 2563-2565
    【146】. Demir-Cakan R, Hu Y S, Antonietti M, Maier J, Titirici M M. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties [J], Chem. Mater., 2008; 20: 1227-1229
    【147】. Wang X, Li Y D. Selected-control hydrothermal synthesis ofα- andβ-MnO2 single crystal nanowires [J], J. Am. Chem. Soc., 2002; 124: 2880-2881
    【148】. Wang X, Li Y D. Rational synthesis ofα-MnO2 single-crystal nanorods [J], Chem. Comm., 2002; 764-765
    【149】. Lin Y, Chu Y, Zhuo Y J, Li M Y, Li L L, Dong L H. Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils [J], Cryst. Growth Des., 2007; 7: 467-470
    【150】. Wang X Q, Xi G C, Xiong S L, Liu Y K, Xi B J, Yu W C, Qian Y T. Solution-phase synthesis of single-crystal CuO nanoribbons and nanorings [J], Cryst. Growth Des., 2007; 7: 930-934
    【151】. Wang Q, Sun X, Luo S J, Sun L N, Wu X L, Cao M H, Hu C W, Controllable synthesis of PbO nano-microstructures using a porous alumina template [J], Cryst. Growth Des., 2007; 7: 2665-2669
    【152】. Cao M H, Hu C W, Peng G, Qi Y J, Wang E B. Selected-control synthesis of PbO2and Pb3O4 single-crystalline nanorods [J], J. Am. Chem. Soc., 2003; 125: 4982-4983
    【153】. Zhu Y F, Zhao W R, Chen H R, Shi J L. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property [J], J. Phys. Chem. C, 2007; 111: 5281-5282
    【154】. Masui T, Hirai H, Hamada R, Imanaka N, Adachi G Y, Sakata T, Mori H. Synthesis and characterization of cerium oxide nanoparticles coated with turbostratic boron nitride [J], J. Mater. Chem., 2003; 13:622-627
    【155】. Guo Z Y, Du F L, Li G C, Cui Z L. Synthesis and characterization of single-crystal Ce(OH)CO3 and CeO2 triangular microplates [J], Inorg. Chem., 2006; 45: 4167-4169
    【156】. Peng Q, Dong Y J, Deng Z X, Sun X M, Li Y D. Low-temperature elemental-direct-reaction route to II-VI semiconductor nanocrystalline ZnSe and CdSe [J], Inorg. Chem., 2001; 40: 3840-3841
    【157】. Li Y D, Ding Y, Qian Y T, Zhang Y, Yang L. A solvothermal elemental reaction to produce nanocrystalline ZnSe [J], Inorg. Chem., 1998; 37: 2844-2845
    【158】. Deng Z X, Wang C, Sun X M, Li Y D. Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route [J], Inorg. Chem., 2002; 41: 869-873
    【159】. Wang J L, Yang Q. One-dimensional angle-shaped ZnSe nanostructures: synthesis and formation mechanism [J], Cryst. Growth Des., 2008; 8: 660-664
    【160】. Hu Z S, Li L Y, Zhou X D, Fu X, Gu G H. Solvothermal synthesis of hollow ZnS spheres [J], J. Colloid Interface Sci., 2006; 294: 328-333
    【161】. Shao H F, Qian X F, Zhu Z K. The synthesis of ZnS hollow nanospheres with nanoporous shell [J], J. Solid State Chem., 2005; 178: 3522-3528
    【162】. Xi B J, Xu D C, Xiong S L, Wang C M, Feng X M, Zhou H Y, Qian Y T. Preparation and characterization of cubic and hexagonal polytypes of ZnSe:Cu2+ one-dimensional nanostructures [J], J. Phys. Chem. C, 2008; 112: 5333-5338
    【163】. Luo X X, Cao W H, Zhou L X. Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method [J], J. Lumin., 2007; 122-123: 812-815
    【164】. Zhao P T, Wang J M, Chen G E, Huang K X. Fabrication of symmetric hierarchical hollow PbS microcrystals via a facile solvothermal process [J], J. Phys. Chem. B, 2006; 110: 22400-22406
    【165】. Zhang C, Kang Z H, Shen E H, Wang E B, Gao L, Luo F, Tian C G, Wang C L, Lan Y, Li J X, Cao X J. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route [J], J. Phys. Chem. B, 2006; 110: 184-189
    【166】. Xiong S L, Xi B J, Xu D C, Wang C M, Feng X M, Zhou H Y, Qian Y T. L-cysteine-assisted tunable synthesis of PbS of various morphologies [J], J. Phys. Chem. C, 2007; 111: 16761-16767
    【167】. Wang N, Cao X, Guo L, Yang S H, Wu Z Y. Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route [J], ACS Nano, 2008; 2: 184-190
    【168】. Zhang J, Wang Y H, Zheng J S, Huang F, Chen D G, Lan Y B, Ren G Q, Lin Z, Wang C. Oriented attachment kinetics for ligand capped nanocrystals: coarsening of thiol-PbS nanoparticles [J], J. Phys. Chem. B, 2007; 111: 1449-1454
    【169】. Yong K T, Sahoo Y, Choudhury K R, Swihart M T, Minter J R, Prasad P N. Control of the morphology and size of PbS nanowires using gold nanoparticles [J], Chem. Mater., 2006; 18: 5965-5972
    【170】. Gu Y L, Guo F, Qian Y T, Zheng H G, Yang Z P. A benzene-thermal synthesis of powdered cubic zirconium nitride [J], Mater. Lett., 2003; 57: 1679-1682
    【171】. Chen L Y, Gu Y L, Li Z F, Qian Y T, Yang Z H, Ma J H. Low-temperature synthesis and benzene-thermal growth of nanocrystalline boron nitride [J], J. Cryst. Growth, 2005; 273: 646-650
    【172】. Hou L, Gao F M, Sun G F, Gou H Tian Y M. Synthesis of high-purity boron nitride nanocrystal at low temperatures [J], Cryst. Growth Des., 2007; 7: 535-540
    【173】. Xu F, Xie Y, Zhang X, Zhang S Y, Liu X M, Tian X B. Synergic nitrogen source route to inorganic fullerene-like boron nitride with vessel, hollow sphere, onion, and peanut nanostructures [J], Inorg. Chem., 2004; 43: 822-829
    【174】. Collado C, Goglio G, Demazeau G, Barrière A S, Hirsch L, Leroux M. Photoluminescence of GaN microcrystallites prepared by a new solvothermal process [J], Mater. Res. Bull., 2002; 37: 841-848
    【175】. Sardar K, Rao C N R. AlN nanocrystals by new chemical routes [J], Solid State Sci., 2005; 7: 217-220
    【176】. Choi J, Gillan E G. Solvothermal synthesis of nanocrystalline copper nitride from an energetically unstable copper azide precursor [J], Inorg. Chem., 2005; 44: 7385-7393
    【177】. Dutta P K, Gregg J R. Hydrothermal synthesis of tetragonal barium titanate [J], Chem. Mater., 1992; 4: 843-846
    【178】. Oledzka M, Brese N E, Riman R E. Hydrothermal synthesis of BaTiO3 on a titanium-loaded polymer support [J], Chem. Mater., 1999; 11: 1931-1935
    【179】. Feng Q, Hirasawa M, Yanagisawa K. Synthesis of crystal-axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process [J], Chem. Mater., 2001; 13: 290-296
    【180】. Testino A, Buscaglia V, Buscaglia M T, Viviani M, Nanni P. Kinetic modeling of aqueous and hydrothermal synthesis of barium titanate (BaTiO3) [J], Chem. Mater., 2005; 17: 5346-5356
    【181】. Sun W A, Peng Y, Li J Q, Ao W Q. Particle coarsening II: growth kinetics of hydrothermal BaTiO3 [J], Chem. Mater., 2007; 19: 1772-1779
    【182】. Wang Y W, Xu H, Wang X B, Zhang X, Jia H M, Zhang L Z, Qiu J R. A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres [J], J. Phys. Chem. B, 2006; 110: 13835-13840
    【183】. Fu Z L, Moon B K, Yang H K, Jeong J H. Synthesis, characterization, and luminescent properties of Pr3+ doped bulk and nanocrystalline BaTiO3 phosphors[J], J. Phys. Chem. C, 2008; 112: 5724-5728
    【184】. Sun X M, Chen X, Li Y D. Large-scale synthesis of sodium and potassium titanate nanobelts [J], Inorg. Chem., 2002; 41: 4996-4998
    【185】. Liang J H, Li Y D. Synthesis and characterization of lead chromate uniform nanorods [J], J. Cryst. Growth, 2004; 261: 577-580
    【186】. Liang J H, Peng Q, Wang X, Zheng X, Wang R J, Qiu X P, Nan C W, Li Y D. Chromate nanorods/nanobelts: general synthesis, characterization, and properties [J], Inorg. Chem., 2005; 44: 9405-9415
    【187】. Liang X, Wang X, Zhuang J, Peng Q, Li Y D. Branched NaYF4 nanocrystals with luminescent properties [J], Inorg. Chem., 2007; 46: 6050-6055
    【188】. Contescu C I, Putyera K.“Dekker Encyclopedia of Nanoscience and Nanotechnology”[M]. 2nd Ed. London: CRC Press, 2008: 1787-1795
    【189】. Basset D, Matteazzi P, Miani F. Designing a high energy ball-mill for synthesis of nanophase materials in large quantities [J], Mater. Sci. Eng. A, 1993; 168: 149-152
    【190】. Miani F, Fecht H J. Evaluating the mechanochemical power transfer in the mechanosynthesis of nanophase Fe–C and Fe–Cu powders [J], Int’l J. Refra. Mater. Hard Mater., 1999; 17: 133-139
    【191】. Kong L B, Zhang T S, Ma J, Boey F. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique [J], Prog. Mater. Sci., 2008; 53: 207-322
    【192】. Xu C K, Xu G D, Liu Y K, Wang G H. A simple and novel route for the preparation of ZnO nanorods [J], Solid State Comm., 2002; 122: 175-179
    【193】. Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J], Science, 2001; 291: 1947-1949
    【194】. Pan Z W, Dai Z R, Wang Z L. Lead oxide nanobelts and phase transformation induced by electron beam irradiation [J], Appl. Phys. Lett., 2002; 80: 309-311
    【195】. Dai Z R, Pan Z W, Wang Z L. Gallium oxide nanoribbons and Nanosheets [J], J. Phys. Chem. B, 2002; 106: 902-904
    【196】. Kong X Y, Ding Y, Yang R S, Wang Z L. Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts [J], Science, 2004; 303: 1348-1351
    【197】. Zheng B, Lu C G, Gu G, Makarovski A, Finkelstein G, Liu J. Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor [J], Nano Lett., 2002; 2: 895-898
    【198】. Li Y M, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D W, Yenilmez E, Wang Q, Gibbons J F, Nishi Y, Dai H J, Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method [J], Nano Lett., 2004; 4: 317-321
    【199】. Yang Z X, Xia Y D, Mokaya R. Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates [J], Chem. Mater., 2005; 17: 4502-4508
    【200】. Rümmeli M H, Sch?ffel F, Kramberger C, Gemming T, Bachmatiuk A, Kalenczuk R J, Rellinghaus B, Büchner B, Pichler T. Oxide-driven carbon nanotube growth in supported catalyst CVD [J], J. Am. Chem. Soc., 2007; 129: 15772-15773
    【201】. Hobbs K L, Larson P R, Lian G D, Keay J C, Johnson M B. Fabrication of nanoring arrays by sputter redeposition using porous alumina templates [J], Nano Lett., 2004; 4: 167-171
    【202】. Xiu Y H, Zhu L B, Hess D W, Wong C P. Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition [J], Langmuir, 2006; 22: 9676-9681
    【203】. Wang J, Chen Q W, Zeng C, Hou B Y. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires [J], Adv. Mater., 2004; 16: 137-140
    【204】. Wang J, Peng Z M, Huang Y J, Chen Q W. Growth of magnetite nanorods along its easy-magnetization axis of [1 1 0] [J], J. Cryst. Growth, 2004; 263: 616-619
    【205】. Zhang J G, Chen J F, Wang Z X. Surfactant-assisted preparation of single-crystalline Fe3O4 nanowires under low magnetic field [J], Mater. Lett., 2007; 61: 1629-1632
    【206】. Wang J, Wu Y J, Zhu Y J. Fabrication of complex of Fe3O4 nanorods bymagnetic-field-assisted solvothermal process [J], Mater. Chem. Phys., 2007; 106: 1-4
    【207】. Wang J, Zhang K, Peng Z M, Chen Q W. Magnetic properties improvement in Fe3O4 nanoparticles grown under magnetic fields [J], J. Cryst. Growth, 2004; 266: 500-504
    【208】. Sahoo Y, Cheon M, Wang S, Luo H, Furlani E P, Prasad P N. Field-directed self-assembly of magnetic nanoparticles [J], J. Phys. Chem. B, 2004; 108: 3380-3383
    【209】. Pol S V, Pol V G, Gedanken A, Felner I, Sung M G, Asai S. External magnetic field-induced mesoscopic organization of Fe3O4 pyramids and carbon sheets [J], Inorg. Chem., 2007; 46: 4951-4959
    【210】. Vereda F, Vicente J D, Hidalgo-álvarez R. Influence of a magnetic field on the formation of magnetite particles via two precipitation methods [J], Langmuir, 2007; 23: 3581-3589
    【211】. Bizdoaca E L, Spasova M, Farle M, Hilgendorff M, Caruso F. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell [J], J. Mag. Mag. Mater., 2002; 240: 44-46
    【212】. Jia B P, Gao L. Silica shell cemented anisotropic architecture of Fe3O4 beads via magnetic-field-induced self-assembly [J], Script. Mater., 2007; 56: 677-680
    【213】. Wang J H, Ma Y W, Watanabe K. Magnetic-field-induced synthesis of magnetic γ-Fe2O3 nanotubes [J], Chem. Mater., 2008; 20: 20-22
    【214】. Sun J F, Zhang Y, Chen Z P, Zhou J, Gu N. Fibrous aggregation of magnetite nanoparticles induced by a time-varied magnetic field [J], Angew. Chem. Int. Ed., 2007; 46: 4767-4770
    【215】. Beecher P, Shevchenko E V, Weller H, Quinn A J, Redmond G. Magnetic-field-directed growth of CoPt3 nanocrystal microwires [J], Adv. Mater., 2005; 17: 1080-1083
    【216】. Zhang G Q, Zhang T, Lu X L, Wang W, Qu J F, Li X G. Controlled synthesis of 3Dand 1D nickel nanostructures using an external magnetic field assisted solution-phase approach [J], J. Phys. Chem. C, 2007; 111: 12663-12668
    【217】. Xie S L, Xu L N, Gu N. Fabrication of one-dimensional magnetic particles chain of polycrystalline nickel under magnetic field [J], Solid State Phenomena, 2007; 121: 743-746
    【218】. Xiong Y, Chen Q W, Tao N, Ye J, Tang Y, Feng J S, Gu X Y. The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly [J], Nanotechnology, 2007; 18: 345301
    【219】. Yokomichi H, Sakima H, Ichihara M, Sakai F, Itoh K, Kishimoto N. Effects of high magnetic field on the morphology of carbon nanotubes and selective synthesis of fullerenes [J], Appl. Phys. Lett., 1999; 74: 1827-1829
    【220】. Pol V G, Pol S V, Gedanken A, Sung M G, Asai S. Magnetic field guided formation of long carbon filaments (sausages) [J], Carbon, 2004; 42: 2735-2777
    【221】. Pol V G, Pol S V, Calderon-Moreno J M, Sung M G, Asai S, Gedanken A. The dependence of the oriented growth of carbon filaments on the intensity of a magnetic field [J], Carbon, 2006; 44: 1913-1918
    【222】. Walters D A, Casavant M J, Qin X C, Huffman C B, Boul P J, Ericson L M, Haroz E H, O’Connell M J, Smith K, Colbert D T, Smalley R E. In-plane-aligned membranes of carbon nanotubes [J], Chem. Phys. Lett., 2001; 338: 14-20
    【223】. Kimura T, Ago H, Tobita M, Ohshima S, Kyotani M, Yumura M. Polymer composites of carbon nanotubes aligned by a magnetic field [J], Adv. Mater., 2002; 14: 1380-1383
    【224】. Sazaki G, Yoshida E, Komatsu H, Nakada T, Miyashita S, Watanabe K. Effects of a magnetic field on the nucleation and growth of protein crystals [J], J. Cryst. Growth, 1997; 173: 231-234
    【225】. Mwaba M G, Gu J J, Golriz M R. Effect of magnetic field on calcium sulfate crystal morphology [J], J. Cryst. Growth, 2007; 303: 381-386
    【226】. Heremans J, Thrush C M. Thermoelectric power of bismuth nanowires [J], Phys.Rev. B, 1999; 59: 12579-12583
    【227】. Lin Y M, Cronin S B, Ying J Y, Dresselhaus M S, Heremans J P. Transport properties of Bi nanowires arrays [J], Appl. Phys. Lett., 2000; 76: 3944-3946
    【228】. Wang X F, Zhang J, Shi H Z, Wang Y W, Meng G W, Peng X S, Zhang L D, Fang J. Fabrication and temperature dependence of the resistance of single-crystalline Bi nanowires [J], J. Appl. Phys., 2001; 89: 3847-3851
    【229】. Yang F Y, Liu K, Chien C L, Searson P C. Large magnetoresistance and finite-size effects in electrodeposited single-crystal Bi thin films [J], Phys. Rev. Lett., 1999; 82: 3328-3331
    【230】. Heremans J P, Thrush C M, Morelli D T, Wu M C. Thermoelectric power of bismuth nanocomposites [J], Phys. Rev. Lett., 2002; 88: 216801
    【231】. Foos E E, Stroud R M, Berry A D, Snow A W, Armistead J P. Synthesis of nanocrystalline bismuth in reverse micelles [J], J. Am. Chem. Soc., 2000; 122: 7114-7115
    【232】. Gutiérrez M, Henglein A. Nanometer-sized Bi particles in aqueous solution: absorption spectrum and some chemical properties [J], J Phys. Chem., 1996; 100: 7656-7661
    【233】. Fang J Y, Stokes K L, Zhou W L, Wang W D, Lin J. Self-assembled bismuth nanocrystallines [J], Chem. Comm., 2001; 1872-1873
    【234】. Wang Y W, Hong B H, Kim K S. Size control of semimetal bismuth nanoparticles and the UV?visible and IR absorption Spectra [J], J. Phys. Chem. B, 2005; 109: 7067-7072
    【235】. Fu R L, Xu S, Lu Y N, Zhu J J. Synthesis and characterization of triangular bismuth nanoplates [J], Cryst. Growth Des., 2005; 5: 1379-1385
    【236】. Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fievet-Vincent F, Fievet F. CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties [J], J. Mater. Sci., 2000; 35: 3767-3784
    【237】. Li X, Fautrelle Y, Ren Z M. Influence of an axial high magnetic field on the liquid–solid transformation in Al–Cu hypoeutectic alloys and on the microstructure of the solid [J], Acta Mater., 2007; 55: 1377-1386
    【238】. Roosen A R, Carter W C. Simulations of microstructural evolution: anisotropic growth and coarsening [J], Phys. A, 1998; 261: 232-247
    【239】. Asai A, Sassa K S, Tahashi M. Crystal orientation of non-magnetic materials by imposition of a high magnetic field [J], Sci. Tech. Adv. Mater., 2003; 4: 455-460
    【240】. Black M R, Lin Y M, Cronin S B, Rabin O, Dresselhaus M S. Infrared absorption in bismuth nanowires resulting from quantum confinement [J], Phys. Rev. B, 2002; 65: 195417
    【241】. Black M R, Hagelstein P L, Cronin S B, Lin Y M, Dresselhaus M S. Optical absorption from an indirect transition in bismuth nanowires [J], Phys. Rev. B, 2003; 68: 235417
    【242】.施尔畏,陈之战,元如林,郑燕青.《水热结晶学》[M],北京:科学出版社,2004:1-37.
    【243】. Yamaguchi M, Tanimoto Y.“Magneto-Science”[M]. Toyoko: Springer, 2007: 1-294
    【244】. Yamaguchi M, Nomura H, Yamamoto I, Ohta T, Goto T. Effect of a strong magnetic field on the chemical equilibrium of the ferromagnetic hydride-hydrogen system [J], Phys. Lett. A, 1987; 126: 133-135
    【245】. Kakeshita T, Shimizu K, Funada S, Data M. Composition dependence of magnetic field-induced martensitic transformations in Fe-Ni alloys [J], Acta Met., 1985; 33: 1381-1389
    【246】. Ren Z M, Li X, Sun Y H, Gao Y, Deng K, Zhong Y B. Influence of high magnetic field on peritectic transformation during solidification of Bi–Mn alloy [J], Calphad, 2006; 30: 277-285
    【247】. Steiner U E, Ulrich T. Magnetic field effects in chemical kinetics and related phenomena [J], Chem. Rev., 1999; 89: 51-147
    【248】. Mullin J W.“Crystallization”[M]. 3rd. Ed. Oxford: Butterworth Heinemann, 1992: 172-263
    【249】. Nayak B B, Acharya H N, Mitra G B, Mathur B K. Structural characterization of Bi2?xSbxS3 films prepared by the dip-dry method [J], Thin Solid Films, 1983; 105: 17-24
    【250】. Pawar S H, Bhosale P N, Uplane M D, Tamhankar S. Growth of Bi2S3 film using a solution-gas interface technique [J], Thin Solid Films, 1983; 110: 165-170
    【251】. Zhao W B, Zhu J J, Xu J Z, Chen H Y. Photochemical synthesis of Bi2S3 nanoflowers on an alumina template [J], Inorg. Chem. Comm., 2004; 7: 847-850
    【252】. Zhang B, Ye X C, Hou W Y, Zhao Y, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods [J], J. Phys. Chem. B, 2006; 110: 8978-8995
    【253】. Jiang J, Yu S H, Yao W T, Ge H, Zhang G Z. Morphogenesis and crystallization of Bi2S3 nanostructures by an ionic liquid-assisted templating route: synthesis, formation mechanism, and properties [J], Chem. Mater., 2005; 17: 6094-6100
    【254】. Sigman M B, Korgel B A. Solventless synthesis of Bi2S3 (Bismuthinite) nanorods, nanowires, and nanofabric [J], Chem. Mater., 2005; 17: 1655-1660
    【255】. Monteiro O C, Trindade T. Preparation of Bi2S3 nanofibers using a single-source method [J], J. Mater. Sci. Lett., 2000; 19: 859-861
    【256】. Li Q, Shao M W, Wu J, Yu G H, Qian Y T. Synthesis of nano-fibrillar bismuth sulfide by a surfactant-assisted approach [J], Inorg. Chem. Comm., 2002; 5: 933-936
    【257】. Liu Z P, Peng S, Xie Q, Hu Z K, Yang Y, Zhang S Y, Qian Y T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process [J], Adv. Mater., 2003; 15: 936-940
    【258】. Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles [J], Science, 2002; 298: 2176-2179
    【259】. Yamaguchi A, Penland R B, Mizushima S, Lane T J, Curran C, Quagliano J V.Infrared absorption spectra of inorganic co?rdination complexes. XIV. infrared studies of some metal thiourea complexes [J], J. Am. Chem. Soc., 1958; 80: 527-529
    【260】. Rivet R. Coordination complexes of titanium (IV) halides III. Preparation and infrared spectra of the complexes of titanium tetrachloride with urea, thiourea, and some of their derivatives [J], Can. J. Chem., 1962; 40: 2234-2242
    【261】. Xie G, Qiao Z P, Zeng M H, Chen Z M, Gao S L. A single-source approach to Bi2S3 and Sb2S3 nanorods via a hydrothermal treatment [J], Cryst. Growth Des., 2004; 4: 513-516
    【262】. Ota J, Srivastava S K. Tartaric acid assisted growth of Sb2S3 nanorods by a simple wet chemical method [J], Cryst. Growth Des., 2007; 7: 343
    【263】. Ota J, Roy P, Srivastava S K, Nayak B B, Saxena A K. Morphology evolution of Sb2S3 under hydrothermal conditions: flowerlike structure to nanorods [J], Cryst. Growth Des., 2008; 8: 2019-2023
    【264】. Rowe DM.“CRC Handbook of Thermoelectrics”[M]. 2nd Ed. London: CRC Press, 2006: 1-405
    【265】. Wang J X, Wang Z H, Chen X Y, Mu L, Qian Y T. Shape-tailored photoluminescent intensity of red phosphor Y2O3:Eu3+ [J], J. Cryst. Growth, 2005; 284: 538-543
    【266】. Zhang H, Ji Y J, Ma X Y, Xu J, Yang D R. Long Bi2S3 nanowires prepared by a simple hydrothermal method [J], Nanotechnology, 2003; 14: 974-977
    【267】. Zhang H, Yang D R, Li S Z, Ji Y J, Ma X Y, Que D L. Hydrothermal synthesis of flower-like Bi2S3 with nanorods in the diameter region of 30 nm [J], Nanotechnology, 2004; 15: 1122-1125
    【268】. Wu Q S, Zhang G X, Ding Y P. Soft-template synthesis and optical Properties of Sb2S3 semiconductor quasi-nanospheres [J], J. Nanoparticle Res., 2006; 8: 737-742
    【269】. Hu H M, Liu Z P, Yang B J, Mo M S, Li Q W, Yu W C, Qian Y T. Solvothermalgrowth of Sb2S3 microcrystallites with novel morphologies [J], J. Cryst. Growth, 2004; 262: 375-382
    【270】. Lu Q F, Zeng H B, Wang Z Y, Cao X L, Zhang L D. Design of Sb2S3 nanorod-bundles: imperfect oriented attachment [J], Nanotechnology, 2006; 17: 2098-2104
    【271】. Lieber C M, Wang Z L. Functional nanowires [J], MRS Bulletin, 2007; 32: 99-108
    【272】. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit [J], Nature, 2001; 413: 597-602
    【273】. Purkayastha A, Kim S, Gandhi D D, Ganesan P G, Borca-Tasciuc T, Ramanath G. Molecularly protected bismuth telluride nanoparticles: microemulsion synthesis and thermoelectric transport properties [J], Adv. Mater., 2006; 18: 2958-2963
    【274】. Deng Y, Zhou X S, Wei G D, Liu J, Nan C W, Zhao S J. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology [J], J. Phys. Chem. Solids, 2002; 63: 2119-2121
    【275】. Deng Y, Wei G D, Nan C W. Ligand-assisted control growth of chainlike nanocrystals [J], Chem. Phys. Lett., 2003; 368: 639-643
    【276】. Deng Y, Cui C W, Zhang N L, Ji T H, Yang Q L, Guo L. Fabrication of bismuth telluride nanotubes via a simple solvothermal process [J], Solid State Comm., 2006; 138: 111-113
    【277】. Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites [J], Appl. Phys. Lett., 2005, 86: 062111
    【278】. Li L, Yang Y W, Huang X H, Li G H, Zhang L D. Pulsed electrodeposition of single-crystalline Bi2Te3 nanowire arrays [J], Nanotechnology, 2006; 17: 1706-1712
    【279】. Xiao F, Yoo B, Lee K H, Myung N V. Synthesis of Bi2Te3 nanotubes by galvanic displacement [J], J. Am. Chem. Soc., 2007; 129: 10068-10069
    【280】. Lu W G, Ding Y, Chen Y X, Wang, Z L, Fang J Y. Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth [J], J. Am. Chem. Soc., 2005; 127: 10112-10116
    【281】. Sun T. Zhao X B, Zhu T J, Tu J P. Aqueous chemical reduction synthesis of Bi2Te3 nanowires with surfactant assistance [J], Mater. Lett., 2006; 60: 2534-2537
    【282】. Porter D P, Eastering K E.“Phase Transformations in Metals and Alloys”[M]. 2nd Ed. London: Chapman & Hall. 1992: 199-200
    【283】. Wang W Z, Poudel B, Yang J, Wang D Z, Ren Z F. High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach [J], J. Am. Chem. Soc., 2005; 127: 13792-13793
    【284】. Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals [J], Nat. Mater., 2003; 2: 145-150
    【285】. Zhao X B, Sun T, Zhu T J, Tu J P. In-situ investigation and effect of additives on low temperature aqueous chemical synthesis of Bi2Te3 nanocapsules [J], J. Mater. Chem., 2005; 15: 1621-1625
    【286】. Shi W D, Yu J B, Wang H S, Zhang H J. Hydrothermal synthesis of single-crystalline antimony telluride nanobelts [J], J. Am. Chem. Soc., 2006; 128: 16490-16491
    【287】. Li Y D, Li X L, He R R, Zhu J, Deng Z X. Artificial lamellar mesostructures to WS2 nanotubes [J], J. Am. Chem. Soc., 2002; 124: 1411-1416
    【288】. Ritter J J. A novel synthesis of polycrystalline bismuth telluride [J], Inorg. Chem., 1994; 33: 6419-6420
    【289】. Toprak M, Zhang Y, Muhammed M. Chemical alloying and characterization of nanocrystalline bismuth telluride [J], Mater. Lett., 2003; 57: 3976-3982
    【290】. Yu S H, Yang J, Wu Y S, Han Z H, Lu J, Xie Y, Qian Y T. A new low temperature one-step route to metal chalcogenide semiconductors: PbE, Bi2E3 (E=S, Se, Te) [J], J. Mater. Chem., 1998; 8: 1949-1951
    【291】. Ni H L, Zhu T J, Zhao X B. Hydrothermally synthesized and hot-pressedBi2(Te,Se)3 thermoelectric alloys [J], Phys. B, 2005; 364: 50-54
    【292】. Nakajima S. The crystal structure of Bi2Te3?xSex [J], J. Phys. Chem. Solids, 1963; 24: 479-485
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.