纳米/微米薄水铝石自组装及其生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装已成为合成纳米材料的一种有效且有发展前景的方法。近年来,利用自组装技术已制备出许多零维、一维、二维和三维结构的纳米/微米材料,并且提出了各种关于自组装合成纳米材料的反应机理。本论文采用自组装技术,通过水热方法合成了几种三维海胆状和花状的纳米/微米薄水铝石和氧化铝,系统研究了制备工艺参数对产物形貌的影响,在实验结果的基础上,详细分析了薄水铝石三维结构的形成机理,建立了晶体的生长模型。本论文的主要内容概括如下:
     在乙醇—水溶液体系中,利用结晶氯化铝作为反应物,水热合成三维海胆状薄水铝石,经过高温焙烧得到γ-Al2O3,采用一系列手段对产物进行表征,考察了不同铝盐前体、不同醇种类、水醇比例、反应温度及反应时间等因素对三维海胆状薄水铝石形貌的影响。在上述实验结果的基础上推断了海胆状薄水铝石的形成机理,在整个晶体生长过程中,表面自由能F与自组装自由能△G互相竞争和酸侵蚀协同作用机理起到关键作用。起始阶段,由薄水铝石的层状晶体结构决定首先形成不规则片状结构,为了降低表面自由能,片状结构通过氢键聚集形成块体,此阶段表面自由能F占主导地位;随着反应时间的延长,不规则的片状结构在盐酸作用下逐步进化为规则均匀的棒状结构,并且自组装形成海胆状结构,纳米棒之间通过氢键连接,此阶段自组装自由能占主导地位。最后运用此机理解释了各种反应因素对产物形貌的影响。
     在水溶液体系中,利用阳离子表面活性剂辅助水热合成三维花状薄水铝石,经过高温焙烧得到γ-Al2O3,采用一系列手段对产物进行表征,考察了加料顺序、铝盐与尿素摩尔比、CTAB摩尔数、填充度、反应温度及反应时间等因素对三维花状薄水铝石形貌的影响。在实验结果基础上,推断了花状薄水铝石的形成机理,并运用其形成机理阐释了各种反应因素对产物形貌的影响。在花状薄水铝石的生长过程中,模板剂CTAB起到关键作用,通过CTAB与铝离子的有机—无机协同作用,CTAB形成三维花状胶束,随反应时间的延长,铝离子直接在花状胶束内沉积,最终形成三维花状结构。
     在水溶液体系中,利用偏铝酸钠和尿素为反应物,采用种分—水热耦合法合成三维花状薄水铝石,经过高温焙烧得到y-Al2O3,采用一系列手段对产物进行表征,考察了偏铝酸钠与尿素摩尔比、反应温度及反应时间等因素对花状薄水铝石形貌的影响。在三维花状薄水铝石的生长过程中,定向附着和碱侵蚀协同作用决定了产物的形貌,运用此机理解释了反应因素对产物形貌的影响。起始阶段,薄水铝石形成的片状结构通过晶间融合自组装形成不规则棒状结构,棒状结构在碱侵蚀作用下逐渐规则均匀,随着反应时间的延长,棒状结构通过氢键定向附着自组装行成花状结构。
Self-assembly is becoming an efficient and promising method to obtain nanomaterials. In present years, nano/micro materials with zero dimensional, one dimensional, two dimensional and three dimensional structures have been synthesized by self-assembly and their formation mechanisms have been brought out. In the dissertation, nano/micro boehmite and alumina with three dimensional urchin-like and flowerlike structures were synthesized hydrothermally by self-assembly. The influences of preparation parameters on the morphologies were investigated. The formation mechanisms and growing models of three dimensional boehmite structures are proposed and established on the basis of experimental results. The main points are summarized as follows:
     Three dimensional urchin-like boehmite structures were synthesized hydrothermally with AlCl3·6H2O serving as the precursor in an ethanol-water mixed solution system. Gamma-alumina with the same morphology was obtained when the samples were calcined at 600℃. The samples were characterized by a series of methods and the influence of precursor type, alcohol type, volume ratio of EtOH/H2O, reaction temperature and reaction time on the final morphologies of boehmite were investigated. The formation mechanism was proposed on the basis of experimental results. The cooperative mechanism between the competition between the surface free energy (F) and the self-assembly free energy (△G) and acid erosion plays a key role. In the beginning, the boehmite nanoplates were obtained resulted with the crystal layer structure of boehmite. Then the nanoplates aggregated into blocks via hydrogen bonds to minimize the surface free energy. The surface free energy was dominant in the stage. The irregular nanoplates evolved uniform nanorods on the effect of hydrochloric acid with increasing time. Finally, the urchin-like AlOOH structures consisting of nanorods were prepared. The nanorods contacted each other via hydrogen bonds. The self-assembly free energy was dominant in the stage. The reason·of the effect of the reaction factors on the final morphologies was explained by the mechanism.
     Three dimensional flowerlike AlOOH structures were obtained with cetyl trimethyl ammonium bromide (CTAB) serving as the template via a hydrothermal method in a water solution system. After calcination, the boehmite structures could be transformed into gamma-alumina nanostructures while keeping their morphology. The samples were characterized by a series of methods and the influence of mixing sequence, molar ratio of aluminum salts to urea, molar amount of CTAB, reaction temperature and reaction time on the final morphologies of boehmite were investigated. The formation mechanism was proposed on the basis of experimental results and explained the reason of the influence of the reaction factors on the morphologies. The template reagent CTAB plays a crucial role on the formation of the flowerlike boehmite.
     The novel three dimensional boehmite structures were prepared with sodium aluminate and urea serving as precursors via a seed separation and hydrothermal reaction coupling method in a water solution system. Gamma-alumina with the same morphology was obtained when the samples were calcined at 600℃. The samples were characterized by a series of methods. The influences of molar ratio of sodium aluminate to urea, reaction temperature and reaction time on the final morphologies of boehmite were investigated. The cooperative mechanism between the oriented attachment and base erosion is responsible for the morphology of boehmite and explain the reason of the effect of reaction factors on the morphology of boehmite. In the beginning, the formed nanosheets self-attached through stacking by lattice fusion to generate irregular nanorods. Then the boehmite nanorods became uniform and self-assembled the flowerlike structures via hydrogen bonds by an oriented attachment mechanism with increasing time.
引文
[1]Mokari T, Rothenberg E, Popov I, et al. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science,2004,304:1787-1790
    [2]Kong X Y, Ding Y, Yang R, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science,2004,303:1348-1352
    [3]Yan D, Zhou Y F, Hou J. Supramolecular self-assembly of macroscopic tubes. Science,2004,303: 65-67
    [4]张金中,王中林,刘俊,等著,曹茂盛,曹传宝译。自组装纳米结构。 北京:化学工业出版社,2005: 6-10
    [5]Overbeek J T G. Recent development in the understanding of colloidal stability. J. Colloid. Interface Sci.,1977,58:408-422
    [6]Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277:1078-1081
    [7]Musick M D, Pena D J, Botsko S L, et al. Electrochemical properties of colloidal Au-based surfaces: multilayer assemblies and seeded colloid films. Langmuir,1999,15(9):844-850
    [8]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271:933-937
    [9]Kiely C J, Fink J, Zheng J G, et al. Ordered colloidal nanoalloys. Adv. Mater.,2000,12(9):640-643
    [10]Kim B, Tripp S L, Wei A. Self-organization of large gold nanoparticle arrays. J. Am. Chem. Soc.,2001, 123:7955-7956
    [11]Zamborini F P, Hicks J F, Murray R W. Quantized double layer charging of nanoparticle films assembled using carboxylate/(Cu2+ or Zn2+)/carboxylate bridges. J. Am. Chem. Soc.,2000,122: 4514-4515
    [12]Hostetler M J, Templeton A C, Murray R W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir,1999,15:3782-3789
    [13]Shon Y S, Mazzitelli C, Murray R W. Unsymmetrical disulfides and thiol mixtures produce different mixed monolayer-protected gold clusters. Langmuir,2001,17:7735-7741
    [14]Redl F X, Cho K S, Murray C B, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature,2003,423:968-971
    [15]Maye M M, Chun S C, Han L, et al. Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether. J. Am. Chem. Soc.,2002,124; 4958-4959
    [16]Tripp S L, Pusztay S V, Ribbe A E, et al. Self-assembly of cobalt nanoparticle rings. J. Am. Chem. Soc., 2002,124:7914-7915
    [17]Jin J, lyoda T, Cao C, et al. Self-assembly of uniform spherical aggregates of magnetic nanoparticles through π-π interactions. Angew. Chem. Int. Ed.,2001,40:2135-2138
    [18]Li X H, Li Y C, Tan Y W, et al. Self-assembly of gold nanoparticles prepared with 3,4-ethylenedioxythiophene as reductant. J.Phys. Chem. B,2004,108:5192-5199
    [19]Hou Y, Kondoh H, ShimojoM, et al. Inorganic nanocrystal self-assembly via the inclusion interaction ofβ-cyclodextrins:toward 3D spherical magnetite. J. Phys. Chem. B,2005,109:4845-4852
    [20]Lin Y, Skaff H, Emrick T, Dinsmore A. D, et al. Nanoparticle assembly and transport at liquid-liquid interfaces. Science,2003,299:226-229
    [21]Lin Y, Skaff H. B, Ker A, et al. Ultrathin cross-linked nanoparticle membranes. J. Am. Chem. Soc., 2003,125:12690-12691
    [22]Reincke F, Hickey S, Kegel W, et al. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chem. Int. Ed.,2004,43:458-462
    [23]Boal A K, Ilhan F, Derouchey J E, et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature,2000,404:746-748
    [24]Carroll J B, Frankamp B L, Rotello V M. Self-assembly of gold nanoparticles through tandem hydrogen bonding and polyoligosilsequioxane recognition processes. Chem. Commun.,2002: 1892-1893
    [25]Whang D, Jin S, Wu Y, et al. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett.,2003,3:1255-1259
    [26]Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc.,2001,123: 4360-4361
    [27]Shevchenko E V, Talapin D V, Rogach A L, et al. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J. Am. Chem. Soc.,2002,124:11480-11485
    [28]Nguyen C V, Delzeit L, Cassell A M, et al. Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett.,2002,2:1079-1081
    [29]Lau K S, Bico J, Teo K. B. K, et al. Superhydrophobic carbon nanotube forests. Nano Lett.,2003,3: 1701-1705
    [30]Liu H, Li S, Zhai J, et al. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angew. Chem. Int. Ed.,2004,43:1146-1149
    [31]Park S, Lim J H, Chung S W, et al. Self-assembly of mesoscopic metal-polymer amphiphiles. Science, 2004,303:348-351
    [32]Sano M, Kamino A, Okamura J, et al. Noncovalent self-assembly of carbon nanotubes for construction of "cages". Nano Lett.,2002,2:531-533
    [33]Cao A M, Hu J S, Liang H P, et al. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed.,2005,44: 4391-4395
    [34]Rao S G, Huang L, Setyawan W, et al. Nanotube electronics:large-scale assembly of carbon nanotubes. Nature,2003,425:36-37
    [35]Liu Z, Shen Z, Zhu T, et al. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir,2000,16(8):3569-3573
    [36]Wu B, Zhang J, Wei Z, et al. Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface. J. Phys. Chem.B,2001,105(22):5075-5078
    [37]Cai L T, Bahr J L, Yao Y X,et al. Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers. Chem. Mater.,2002,14(10):4235-4231
    [38]Shimoda H, Oh S J, Geng H Z, et al. Self-assembly of carbon nanotubes. Adv. Mater.,2002,14(12): 899-901
    [39]Salarian M, Solati-Hashjin M, Shafiei S S, et al. Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol. Ceramics International,2009,35:2563-2569
    [40]Dong L, Chu Y, Zhang W. A very simple and low cost route to Bi2S3 nanorods bundles and dandelion-like nanostructures. Mater. Lett.,2008,62:4269-4272
    [41]Pan Q, Cheng Y. Superhydrophobic surfaces based on dandelion-like ZnO microspheres. Appl. Surface Sci.,2009,255:3904-3907
    [42]Bai X, Xie B, Pan N, et al. Novel three-dimensional dandelion-like TiO2 structure with high photocatalytic activity. J. Solid State Chem.,2008,181:450-456
    [43]Zhang H, Yang D, Ji Y, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B,2004,108 (13): 3955-3958
    [44]Pal U, Santiago P. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B,2005,109:15317-15321
    [45]Zhang J, Sun L, Yin J, et al. Control of ZnO morphology via a simple solution route. Chem. Mater., 2002,14:4172-4177
    [46]Du G H, Xu F, Yuan Z Y, et al. Flowerlike ZnO nanocones and nanowires:preparation, structure, and luminescence. Appl. Phys. Lett.,2006,88:243101
    [47]Fang Z., Tang K., Shen G., et al. Self-assembled ZnO 3D flowerlike nanostructures. Mater. Lett.,2006, 60:2530-2533
    [48]Ni Y., Wu G., Zhang X., et al. Hydrothermal preparation, characterization and property research of flowerlike ZnO nanocrystals built up by nanoflakes. Mater. Research Bull.,2008,43:2919-2928
    [49]Li X., Duan T., Zhu X., et al. Long-chain polymer-assisted hydrothermal route to synthesize flowerlike ZnO nanostructures. Mater. Lett.,2006,60:3350-3353
    [50]Xia X., Ye Z., Yuan G., et al. Rapid synthesis of novel flowerlike ZnO structures by thermolysis of zinc acetate. Appl. Sur. Science,2006,253:909-914
    [51]江浩,胡俊青,顾锋,等。花状ZnO超细结构的水热自组装。无机材料学报,2009,24(1):69-72
    [52]李平,许方香,郭海容,等。无模板合成三维花状氧化锌微晶及其形成机理。现代化工, 2007,27(2):31-35
    [53]Zhu Y, Hsu W, Terrones M, et al. Microscopy study of the growth process and structural features of silicon oxide nanoflowers. Chem. Mater.,1999,11:2709-2715
    [54]Zhong L, Hu J, Cao A M, et al.3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem. Mater.,2007,19:1648-1655
    [55]Sun C, Sun J, Xiao G, et al. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres. J. Phys. Chem. B,2006,110:13445-13452
    [56]陈惠敏,郭福强,张保花。低温水热合成由纳米颗粒自组装而成的CdS亚微米和微米球。材料群学与工程学报,2009,27(5):752-780
    [57]王汝娜,李群艳,王志宏,等。无模板剂液相合成Ni(OH)2花状微球。高等学校化学学报,2008,29(1):18-22
    [58]吴正翠,朱熹,潘铖,等。花状p-氢氧化镍的合成和表征。无机化学学报,2006,22(8):1371-1374
    [59]黄祥平,于昭,张昌远,等。二氧化钛纳米棒自组装微米球的制备、性能及其生长机理。材料科学与工程学报,2009,27(5):709-712
    [60]Zhang Y, Liu Y, Fu S, et al. Morphology-controlled synthesis of Co3O4 crystals by soft chemical method. Mater. Chem. Phys.,2007,104:166-171
    [61]Zhang X, Zhang Z, Yan Y. A facile surfactant-assisted approach to the synthesis of urchin-shaped aragonite micropatterns. J. Cryst. Growth,2005,274:550-554
    [62]Yang M, Yao X, Wang G, et al. A simple method to synthesize sea urchin-like polyaniline hollow spheres. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,324:113-116
    [63]Wang J, Wang J, Wang Z, et al. A template-free method toward urchin-like polyaniline microspheres. Macromol. Rapid Commun.,2009,30:604-608
    [64]Chen L, Liang Y, Zhang Z D. Corundum-type In2O3 urchin-like nanostructures:synthesis derived from orthorhombic InOOH and application in photocatalysis. Eur. J. Inorg. Chem.,2009,903-909
    [65]Shen G, Chen D, Tang K, et al. Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorods through a rapid polyol process. Chem. Phys. Lett.,2003,370:334-337
    [66]Ma F, Li Q, Huang J, et al. Morphology control and characterizations of nickel sea-urchin-like and chain-like nanostructures. J. Cryst.l Growth,2008,310:3522-3527
    [67]Liang J J, Yang L B, Shen Y H, et al. Synthesis of novel urchin-like architecture Au by self-assembly coupled without template. Mater. Research Bull.,2008,43:1074-1078
    [68]Tang B, Wang G, Zhuo L H, et al. Novel dandelion-like beta-manganese dioxide microstructures and their magnetic properties. Nanotechnology,2006,17:947-951
    [69]Liu B, Zeng H C. Fabrication of ZnO "dandelions" via a modified Kirkendall process. J. Am. Chem. Soc.,2004,126:16744-16746
    [70]Guo S, Wang L, Wang E. Templateless, surfactantless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with "clean" surface. Chem. Commun.,2007, 3163-3165
    [71]Zhong L S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater.,2006,18:2426-2431
    [72]Zhang N, Bu W, Xu Y, et al. Self-assembled flowerlike Europium-doped lanthanide molybdate microarchitectures and their photoluminescence properties. J. Phys. Chem. C,2007,111:5014-5019
    [73]Zhu L P, Xiao H M, Liu X M, et al. Template-free synthesis and characterization of novel 3D urchin-like α-Fe2O3 superstructures. J. Mater. Chem.,2006,16:1794-1797
    [74]Xie Q, Dai Z, Liang J, et al. Synthesis of ZnO three-dimensional architectures and their optical properties. Solid State Communications,2005,136:304-307
    [75]Liu X. A facile route to preparation of sea-urchinlike cadmium sulfide nanorod-based materials. Mater. Chem. Phys.,2005,91:212-216
    [76]Bai L, Yuan F, Hu P, et al. A facile route to sea urchin-like NiO architectures. Mater. Lett.,2007,61: 1698-1700
    [77]W. Ostwald. Lehrbruck der Allgemeinen Chemie. Leipzig,1896, vol.2, part 1
    [78]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359:710
    [79]Chen C Y, Burkett S L, Li H X, et al. Studies on mesoporous materialsⅡ. synthesis mechanism of MCM-41. Micropor. Mater.,1993,2:27
    [80]Cai Q, Luo Z, Pang W, et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem. Mater.,2001,13:258
    [81]Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science,1995,267:1138
    [82]Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater.,1996,8:1147
    [83]Chen C Y, Li H X, Davis M E. Studies on mesoporous materials. I. synthesis and characterization of MCM-41. Micropor. Mater.,1993,2:17
    [84]Huo Q S, Margolese D I, Ciesla U. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays. Chem. Mater.,1994,6:1176
    [85]Stucky G D, Monnier A, Schuth F, et al. Molecular and atomic arrays in nano-and mesoporous materials synthesis. Mol. Cryst. Liq. Cryst.,1994,240:187
    [86]Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science,1993,261:1299
    [87]尹衍升,张景德。氧化铝陶瓷及其复合材料。北京:化学工业出版社,2001
    [88]Tsukada T, Segawa H, Yasumori A, et al. Crystallinity of boehmite and its effect on the phase transition temperature of alumina. J. Mater. Chem.,1999,9(2):549-553
    [89]Trawczynski J T. Effect of aluminum hydroxide precipitation conditions on the alumina surface acidity. Ind. Eng. Chem. Res.,1996,35(1):241-244
    [90]Levin I, Brandon D. Metastable alumina polymorphs.cyrstal structure and transition sequences. J. Am. Cream. Soc.,1998,81(8):1995-2012
    [91]减希文,汤卡罗。无机化学丛书(第二卷)第一版。 北京:北京科学出版社,1990
    [92]Krokidis X, Raybaud P, Gobichon A E, et al. Theoretical study of the dehydration process of boehmite to γ-alumina. J. Phys. Chem.,2001,105(22):5121-5130
    [93]Lippens B C, Steggerda J J. Physical and Chemical aspects of Adsorbents and Catalysts. Academic Press, London,1970:171
    [94]Nortier P, Fourre P, Saad A B, et al. Effects of crystallinity and morphology on the surface properties of alumina.Appl. Catal.,1990,61(1):141-160
    [95]Paglia G, Buckley C E, Rohl A L, et al. Boehmite derived y-alumina system.1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, y-alumina. Chem. Mater.,2004,16(2):220-236
    [96]Paglia G, Buckley C E, Udovic T J, et al. Boehmite derived y-alumina system.2. Considering of hydrogen and surface effects. Chem. Mater.,2004,16(10):1914-1923
    [97]Suh D J, Park T J, Kim J H, et al. Fast sol-gel synthetic route to high-surface-area alumina aerogels. Chem. Mater.,1997,9(9):1903-1905
    [98]Tanaka K, Imai T, Murakami Y, et al. Microporous structure of alumina prepared by a salt catalytic sol-gel process. Chem. Lett.,2002,31(1):110-111
    [99]Hwang N M, Cheong W S, Yoon D Y, et al. Silicon nanowires can be grown by chemical vapor deposition. J. Cryst. Growth,2000,218:33
    [100]Robin H A, Marianna K, Joost de W, et al. Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates. Adv. Mater.,2007,19:102-106
    [101]Hu Y J, Li C Z, Gu F. Preparation and formation mechanism of alumina hollow nanospheres via high-speed jet flame combustion. Ind. Eng. Chem. Res.,2007,46:8004-8008
    [102]Jacquier C, Ferro G, Cauwet F. SiC homoepitaxial growth at low temperature by vapor-liquid-solid mechanism in Al-Si melt. Cryst. Growth Des.,2003,3(3):285-287
    [103]Wang H, Zhang X, Lee C S, et al. Oxide shell assisted vapor-liquid-solid growth of periodic composite nanowires-a case of Si/Sn. Chem. Mater.,2007,19(23):5598-5601
    [104]Sutter E, Sutter P. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires. Nano Lett.,2008,8(2):411-414
    [105]Peng X S, Zhang L D, Meng G W. Photoluminescence and infrared properties of α-Al2O3 nanowires and nanobelts. J. Phys. Chem. B,2002,106:11163-11167
    [106]李洪桂。湿法冶金学。长沙:中南大学出版社,2002:1-14
    [107]陈家镛,杨守志,柯加俊等。湿法冶金的研究与发展。北京:冶金工业出版社,1998:1-616
    [108]Mech A, Karbowiak M, Kepinski L, et al. Structural and luminescent properties of nano-sized NaGdF4:Eu3+ synthesised by wet-chemistry route. J. Alloys Compd.,2004,380 (1-2):315-320
    [109]Zhong W, Wu X L, Tang N J, et al. Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry. Eur. Phys. J. B,2004,41(2):213-217
    [110]Munoz A, Alonso J A, Martinez-Lope M J, et al. Synthesis, structural, and magnetic characterization of a new ferrimagnetic oxide:YFeMnO5. Chem. Mater.,2004,16(21):4087-4094
    [111]Chow G M. Chemical synthesis and processing of nanostructured particles and coatings. In:Chow G M, Noskova N I, eds. Nanostructured Materials Science&Technology. Dordrecht/Boston/London: Kluwer Academic Publishers,1998:31-46
    [112]Chow G M, Kurihara L K. Chemical Synthesis and Processing of Nanostructured Powders and Films. In:Koch C C, eds. Nanostructured Materials:Processing, properties and potential applications. New York:Noys Publications/William Andrew Publishing,2002:3-50
    [113]Mews A, Kadavanich A V, Banin U, et al. Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells. Phys. Rev. B,1996,53(20):13242-13245
    [114]Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005,105:1025-1102
    [115]李小兵,刘竞超。纳米粒子与纳米材料。塑料,1999,28(1):19-22
    [116]张泰。纳米材料的制备技术及进展。辽宁化工,1999,28(1):3-8
    [117]Han W S, Kang Y, Lee S J, Lee H, et al. Fabrication of color-tunable luminescent silica nanotubes loaded with functional dyes using a sol-gel cocondensation method.J. Phys. Chem. B,2005,109(44): 20661-20664
    [118]Yan W, Chen B, Mahurin S M, et al. Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. J. Phys. Chem. B,2004,108(9): 2793-2796
    [119]Hamza K, Abu-Reziq R, Avnir D, et al. Heck vinylation of aryl iodides by a silica sol-gel entrapped Pd(II) catalyst and its combination with a photocyclization process. Org. Lett.,2004,6(6): 925-927
    [120]Wu J, Coffer J L. Strongly emissive erbium-doped tin oxide nanofibers derived from sol/gel electrospinning methods. J. Phys. Chem. C,2007,111(44):16088-16091
    [121]Yan Q Z, Su X T, Zhou Y P, et al. Controlled synthesis of TiO2 nanometer powders by sol-gel auto-igniting process and their structural property. Acta Phys-Chim. Sinica,2005,21 (1):57-62
    [122]Xie X H, Dong Y M, Chen C J, et al. Nonhydrolytic sol-gel synthesis of Bai.xSrxTiO3 nanopowder. Ind. Eng. Chem. Res.,2005,44(4):811-815
    [123]Dhanaraj J, Jagannathan R, Kutty T R N, et al. Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis. J. Phys. Chem. B,2001,105(45):11098-1110
    [124]张良苗,冯永利,陆文聪,等。溶胶—凝胶法制备纳米氢氧化铝溶胶。物埋化学学报,2007,23(5):728-732
    [125]Morales D, Gutierrez J M, Garcia-Celma M J, et al. A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir,2003,19(18):7196-7200
    [126]Izquierdo P, Esquena J, Tadros T F, et al. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir,2004,20(16):6594-6598
    [127]Zhang X, Chan K Y, Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem. Mater.,2003,15(2):451-459
    [128]Wang X, Rodriguez J A, Hanson J C, et al. Unusual physical and chemical properties of Cu in Ce1-xCuxO2 oxides. J. Phys. Chem. B,2005,109(42):19595-19603
    [129]Zhang J, Ju X, Wu Z Y, et al. Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method. Chem. Mater.,2001,13(11):4192-4197
    [130]Roth M, Hempelmann R. Synthesis of nanocrystalline NH4MnF3. A preparation route to produce size-controlled precipitates via microemulsion systems. Chem. Mater.,1998,10(1):78-82
    [131]Yoon H, Chang M, Jang J. Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions:effects of transducer size and transduction mechanism. J. Phys. Chem. B,2006, 110(29):14074-14077
    [132]Wang H, Schaefer K, Moeller M. In situ immobilization of gold nanoparticle dimers in silica nanoshell by microemulsion coalescence.J.Phys. Chem. C,2008,112(9):3175-3178
    [133]Agostiano A, Catalano M, Curri M L, et al. Synthesis and structural characterization of CdS nanoparticles prepared in a four-component water-in-oil microemulsion. Micron,2000,31(3):253-258
    [134]Guo L, Wu Z H, Liu T, et al. Synthesis of novel Sb2O3 and Sb2O5 nanorods. Chem. Phys. Lett., 2000,318(1-3):49-52
    [135]Naskar M K, Chatterjee M. Boehmite nanoparticles by the two-reverse emulsion technique. J. Am. Cream. Soc.,2005,88(12):3322-3326
    [136]Daniel H M, Claus F. Nanoscale γ-AlO(OH) hollow spheres:synthesis and container-type functionality. Nano Lett.,2007,7(11):3489-3492
    [137]施尔畏,夏长泰,王步国,等。水热法的应用与发展。无机材料学报,1996,11:193-206
    [138]Byrappa K, Yoshimura M. Handbook of hydrothermal technology:a technology for crystal growth and materials processing, William Andrew Publishing, LLC Norwich. New York.2001:1-43
    [139]Yoshimura M. Importance of soft solution processing for advanced inorganic materials. T. Mater. Res.,1998,13(5):1091-1098
    [140]Murchison S R. Hydrothermal Reactions for Materials Science and Engineering. Elsevier Applied Science,1989:1
    [141]Schafthaul K F E. GelehrteAnzeigen Bayer.Akad.1845,20:557-561
    [142]Spezia G.Acad. Sci. TorinoAtt.1905,40:254
    [143]Demazeau G. Future Trends of Hydrothermal and Solvothermal Reactions in Materials Science. Proceedings of Joint ISHR&ICSTR. Edited by K.Yanagisawa and Q. Feng, Printed by Nishimura Tosha-Do Ltd., Kochi, Japan,2001:1-5
    [144]Demazeau G. Solvothermal Processes:a Route to the Stabilization of New Materials. J. Mater. Chem.,1999,9:15-18
    [145]Cao C B, Huang F L, Cao C T, et al. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem. Mater.,2004,16(25):5213-5215
    [146]Jia X, Chen D, Jiao X, He T, et al. Monodispersed Co, Ni-ferrite nanoparticles with tunable sizes: controlled synthesis, magnetic properties, and surface modification. J. Phys. Chem. C,2008,112(4): 911-917
    [147]Qian X F, Zhang X M, Wang C, et al. The preparation and phase transformation of nanocrystalline cobalt sulfides via a toluene thermal process. Inorg. Chem.,1999,38(11):2621-2623
    [148]Hu J Q, Lu Q Y, Tang K B. Synthesis and characterization of SiC nanowires through a reduction-carburization route. J. Phys. Chem. B,2000,104(22):5251-5254
    [149]Hitoshi O, Masahiro S, Yoshinobu Na, et al. Shape-controlled synthesis of ZrO2, Al2O3, and SiO2 nanotubes using carbon nanofibers as templates. Chem. Mater.,2006,18(21):535
    [150]Zhu H Y, Gao X P, Song D Y. Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles. J. Phys. Chem. B,2004,108:4245-4247
    [151]Zhao Y Y, Martens W N, Bostrom T E, et al. Synthesis, characterization, and surface properties of iron-doped boehmite nanofibers. Langmuir,2007,23:2110-2116
    [152]Li Y Y, Liu J P, Jia Z J. Fabrication of boehmite AlOOH nanofibers by a simple hydrothermal process. Mater. Lett.,2006,60:3586-3590
    [153]Park J H, Lee M K, Rhee C K, et al. Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers. Materials Science and Engineering A,2004,375-377:1263-1268
    [154]Chadradass J, Balasubramanian M, Sol-gel processing of alumina fibers. J. Mater. Processing Technology,2006,173:275-280
    [155]Zhu H Y, Riches J D, Barry J C. γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant. Chem. Mater.,2002,14:2086-2093
    [156]Zhang M, Zhang R, Xi G C, et al. From sheet to fibers:a novel approach to y-AlOOH and γ-AI2O31D nanostructures. J. Nanoscience and Nanotechnology,2006,6:1437-1440
    [157]Zhong Q Y, Chong X W, Xiao T G, et al. Photoluminescent properties of boehmite whisker prepared by sol-gel process. Journal of Luminescence,2004,106:153-157
    [158]Wei S Y, Zhang J, Elsanousi A, et al. From Al4B2O9 nanorods to AIOOH (boehmite) hierarchical nanoarchitectures. Nanotechnology,2007,18:255605
    [159]Ma M G, Zhu Y J, Xu Z L. A new route to synthesis of y-alumina nanorods. Mater. Lett.,2007,61: 1812-1815
    [160]Chen X Y, Zhang Z J, Li X L, et al. Controlled hydrothermal synthesis of colloidal boehmite (y-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals. Solid State Communications,2008,145(7-8):368-373
    [161]Chen X Y, Huh H S, Soon W Lee. Hydrothermal synthesis of boehmite (y-AlOOH) nanoplatelets and nanowires:pH-controlled morphologies. Nanotechnology,2007,18:285608
    [162]Lepot N, Van Bael M K, Van den Rul H, et al. Synthesis of platelet-shaped boehmite and y-alumina nanoparticles via an aqueous route. Ceramics International,2008,34(8):1971-1974
    [163]Music S, Dragcevic D, Povic S. Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide. Mater. Lett.,1999,40:269-274
    [164]Liu Y, Ma D, Han X W, et al. Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina. Mater. Lett.,2008,62:1297-1301
    [165]Hou H W, Xie Y, Yang Q, et al. Preparation and characterization of y-AlOOH nanotubes and nanorods. Nanotechnology,2005,16:741-745
    [166]Kuang D B, Fang Y P, Liu H Q, et al. Fabrication of boehmite AlOOH and γ-Al2O3 nanotubes via a soft solution route. J. Mater. Chem.,2003,13:660-662
    [167]Shen S C, Ng W K, Chen Q, et al. Novel synthesis of lace-like nanoribbons of boehmite and y-alumina by dry gel conversion method. Mater. Lett.,2007,61:4280-4282
    [168]Ding X X, Gao J M, Qi S, et al. Template-free preparation of bunches of aligned boehmite nanowires. J. Phys. Chem. B,2006,110:21680-21683
    [169]Ren T Z, Yuan Z Y, Su B L. Microwave-assisted preparation of hierarchical mesoporous-macroporous boehmite AIOOH and γ-Al2O3. Langmuir,2004,20:1531-1534
    [170]Milan K N, Minati C. Boehmite nanoparticles by the two-reverse emulsion technique. J. Am. Cream. Soc.,2005,88(12):3322-3326
    [171]Zhang Z R, Hicks R W, Pauly T R. Mesostructured forms of γ-Al2O3. J. Am. Chem. Soc.,124(8): 1592-1593
    [172]Farag H K, Endres F. Studies on the synthesis of nano-alumina in air and water stable ionic liquids. J. Mater. Chem.,2008,18:442-449
    [173]Mousavand T, Ohara S, Umetsu M, et al. Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in supercritical water. Journal of Supercritical Fluids,2007,40:397-401
    [174]Zhang L, Lu W, Cui R, et al. One-pot template-free synthesis of mesoporous boehmite core-shell and hollow spheres by a simple solvothermal route. Mater. Research Bull.,2010,45:429-436
    [175]Liu Y, Li X, Xu Z, et al. Preparation of flower-like and rod-like boehmite via a hydrothermal route in a buffer solution. J. Phys. Chem. Solids,2010,71:206-209
    [176]Zanganeh S, Kajbafval A, Zanganeh N, et al. Self-assembly of boehmite nanopetals to form 3D high surface area nanoarchitectures. Appl. Phys. A,2010,99:317-321
    [177]Feng Y, Lu W, Zhang L, et al. One-step synthesis of hierarchical cantaloupe-like AIOOH superstructures via a hydrothermal route. Cryst. Growth Des.,2008,8(4):1426-1429
    [178]Arami H, Mazloumi M, Khalifehzadeh R, et al. Bundles of self-assembled boehmite nanostrips from a surfactant free hydrothermal route. J. Alloys Compd.,2008,461:551-554
    [179]Yu X, Yu J, Cheng B, et al. Synthesis of hierarchical flower-like AlOOH and Ti02/AlOOH superstructures and their enhanced photocatalytic properties. J. Phys. Chem. C,2009,113, 17527-17535
    [180]Chen Z, Gao L. A new route toward ZnO hollow spheres by a base-erosion mechanism. Cryst. Growth Des.,2008,8(2):460-464
    [181]Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons:formation of "dandelions". J. Am. Chem. Soc.,2004,126,8124-8125
    [182]Li Y, Liu J, Jia Z. Fabrication of boehmite AlOOH nanofibers by a simple hydrothermal process. Mater. Lett.,2006,600:1169-1172
    [183]You T, Cao G, Song X, et al. Alcohol-thermal synthesis of flowerlike hollow cobalt tungstate nanostructures. Mater. Lett.,2008,62(8-9):1169-1172
    [184]Zhang J, Liu S, Lin J, et al. Self-assembly of flowerlike AlOOH (boehmite) 3D nanoarchitectures. J. Phys. Chem. B,2006,110:14249-14252
    [185]Yu C, Fan J, Tian B, et al. Morphology development of mesoporous materials:a colloidal phase separation mechanism. Chem. Mater.,2004,16:889-898
    [186]施尔畏,陈之战,元如林等。水热结晶学。北京:科学出版社,2004,79-101
    [187]Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO:from nanodots to nanorods. Angew. Chem. Int. Ed.,2002,41(7):1188-1191
    [188]Penn R L, Banfield J F. Imperfect oriented attachment:dislocation generation in defect-free nanocrystals. Science,1998,281:969-971
    [189]Yang H G, Zeng H C. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angew. Chem. Int. Ed,2004,43:5930-5933
    [190]Lou X W, Zeng H C. Complex α-MoO3 nanostructures with external bonding capacity for self-assembly. J. Am. Chem. Soc.,2003,125:2697-2704
    [191]Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc.,2003,125:4430-4431
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.