功能化离子液体的设计、合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计、合成了一系列未见文献报道的功能化离子液体,用于活化的不饱和双键的还原,催化含取代基卤代苯和苯硼酸的Suzuki偶联反应,两亲性物质自组装,胶原蛋白溶解度和稳定性研究:
     1、设计、合成了一种硼氢根功能化离子液体,硼氢化3-丁基-1-甲基咪唑([bmim][BH4]),其结构经1H NMR、13C NMR及高分辨ESI确证。该功能化离子液体可在无金属催化剂存在下用于活化的不饱和共轭双键的高效还原。对于α,β,γ,δ共轭二烯,能够选择性的还原α,β位的双键,而对γ,δ位双键没有影响。还原产物经1H NMR、13C NMR以及GC-MS或HRMS鉴定。该离子液体还原剂可方便地实现再生,再生的离子液体还原剂至少可套用三次而还原产率没有明显降低。
     2、设计合成了三种功能化离子液体共聚物/聚合物,通过配位、还原的方法,成功地将Pd负载于聚合物。通过ICP-AES测定,各种聚合物的Pd上载量分别为:Pd@poly-Sty-co-CN-Cl:0.1 wt%; Pd@poly-Sty-co-diOH-Cl:0.96 wt%; Pd@poly-CN-PF6:10 wt%。发现Pd@poly-Sty-co-diOH-Cl是Suzuki反应的高效催化剂,在70℃,0.05 mol%Pd用量下,该催化剂可以有效地催化各种取代基的碘苯/溴苯与苯硼酸的Suzuki反应。通过简单的过滤,催化剂可以回收利用至少5次,催化活性没有明显降低。TEM分析得知,Pd@poly-Sty-co-diOH-Cl中Pd的分散状态良好,平均粒径约为3 nm,且套用3次后的催化剂未出现明显的聚集现象。Poly-CN-PF6可作为水溶液中Pd, Pt等重金属离子潜在的回收或清除试剂。
     3、设计、合成了25种氨基酸衍生的质子性离子液体,其结构经1H NMR、13C NMR和元素分析鉴定,系统测定了其物理化学性质和热性质,并尝试分析了结构-物性之间的关系。发现其中三种离子液体(AlaMG, ProMN和ProMG)对阳离子表面活性剂CTAB和非离子型表面活性剂Myverol 18-99K的自组装具有促进作用。
     4、合成了一系列基于直链型或环型胺的质子性离子液体,其结构经1H NMR、13C NMR鉴定。测定了胶原蛋白(鼠尾胶原蛋白typeⅢ)在这一系列质子性离子液体中的溶解度,发现胶原蛋白难溶于无水离子液体中,但在离子液体中加入一定量的水后,胶原蛋白的溶解性可获得大幅度提高。通过动态光散射法(DLS)和差热分析(DSC),讨论了胶原蛋白在这一系列离子液体水溶液中的稳定性。尝试胶原蛋白从离子液体水溶液中再生,发现胶原蛋白在PON水溶液中的再生效果和重复性好,可以得到一种线状的再生蛋白晶体。
A series of new functionalized ionic liquids were designed, synthesized and applied in the reduction of carbon-carbon double bonds in activated conjugated alkenes, catalyzing Suzuki coupling reactions of substituted halide benzenes and aryboronic acids, promoting amphipiles self-assembly. The solubility and stability of collagen in protic ionic liquids were also investigated.
     1、A novel ionic reducing reagent,3-butyl-l-methylimidazolium borohydride ([bmim][BH4]), was synthesized and identified by 1H NMR、13C NMR and HRMS, and then successfully applied in the selective reduction of carbon-carbon double bonds in conjugated alkenes as well as theα,β-carbon-carbon double bonds in highly activatedα,β,γ,δ-unsaturated alkenes. The reagent can be regenerated and reused at least 3 times without losing its activity.
     2、Three ionic liquid copolymer/polymer were designed and synthesized to disperse and immobilize Pd nanoparticles by coordination. The loading amounts of Pd on poly-Sty-co-CN-Cl, poly-Sty-co-diOH-Cl and poly-CN-PF6 were 0.1 wt%,0.96 wt% and 10 wt% respectively as determined by ICP-AES. Pd@poly-Sty-co-diOH-Cl was found to be an efficient catalyst for Suzuki coupling reactions. With only 0.05 mol% of Pd, Pd@poly-Sty-co-diOH-Cl could catalyze the coupling reactions between substituted phenyl iodides or bromide and aryboronic acids efficiently at 70℃. The catalyst could be recovered by simple filtration and reused for at least 5 times without significant lose of activity. As exhibited by TEM, the Pd nanoparticles were dispersed uniformly in copolymer with an average diameter of 3 nm. No obvious aggregation of Pd was observed Pd@poly-Sty-co-diOH-Cl catalysts either freshly prepared or after reused for three times. In addition, Poly-CN-PF6 was found to be a potential efficient regent for removing or reclaiming Pd, Pt ions from aqueous solutions.
     3、25 amino acid derived protic ionic liquids (PILs) were designed and synthesized. Their thermal and physicochemcial properties were extensively characterized, and the structure-property relationship was also discussed. Three of the PILs, namely, alanine methyl ester glycolate (AlaMG), proline methyl ester nitrate (ProMN) and proline methyl ester glycolate (ProMG) show positive effects to the amphiphile self-assembly. Lamellar or hexagonal liquid crystal phases were observed with the PILs solutions of cationic surfactant hexadecyltrimethylammonium bromide (CTAB) and the non-ionic surfactant Myverol 18-99K.
     4、A series of protic ionic liquids (PILs) derived from linear or cyclic amines were prepared. The solubilities of collagen (rat tail collagen type III) in neat PIL solutions were quite poor, while increased dramatically when small amount of water was added into.The stablility of collagen in aqueous PIL solutions was also evaluated by Dynamic Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). Wirelike crystals were observed when regenerating collagen in aqueous PON (2-oxopyrrolidinium nitrate) solutions. Good reproducibility was also achieved.
引文
[1]Anastas, P. T.; Warner, J. C., Green Chemistry:Theory and Practive. Oxiford University Press:Oxford,1998.
    [2]Sheldon, R. A. Green solvents for sustainable organic synthesis:state of the art. Green Chem.2005,7 (5):267-278.
    [3]Davis, J. H. J. Task-Specific Ionic Liquids. Chem. Lett.2004,33 (9):1072-1077.
    [4]Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids:Properties and Applications. Chem. Rev.2008,108(1):206-237.
    [5]Angell, C. A.; Byrne, N.; Belieres, J.-P. Parallel Developments in Aprotic and Protic Ionic Liquids:Physical Chemistry and Applications. Acc. Chem. Res.2007,40 (11):1228-1236.
    [6]Weingartner, H. Understanding Ionic Liquids at the Molecular Level:Facts, Problems, and Controversies. Angew. Chem. Int. Ed.2008,47 (4):654-670.
    [7]Dupont, J.; Souza, R. F. d.; Suarez, P. A. Z. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chem. Rev.2002,102 (10):3667-3692.
    [8]Peter, W.; Wilhelm, K. Ionic Liquids - New "Solutions" for Transition Metal Catalyst. Angew. Chem. Int. Ed. 2000,39 (21):3772-3789.
    [9]Rantwijk, F. v.; Sheldon, R. A. Biocatalysis in Ionic Liquids. Chem. Rev.2007,107 (6): 2757-2785.
    [10]Prvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev.2007,107 (6): 2615-2665.
    [11]Walden, P. Bull. Acad. Imp. Sci.1914,1:1800-1801.
    [12]Hurley, F. H. U.S. Patent 2,446,331; 1948.
    [13]Hurley, F. H.; Wier, T. P. J. Electrochem. Soc.1951,98:207-212.
    [14]Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryoung, R. A. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc.1975,97 (11):3264-3265.
    [15]Robinson, J.; Osteryoung, R. A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J. Am. Chem. Soc.1979,101 (2):323-327.
    [16]Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem.1982,21, (3):1263-1264.
    [17]Appleby, D.; Hussey, C. L.; Seddon, K. R.; Turp, J. E. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature 1986,323 (16):614-616.
    [18]Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage, P. D. Molybdenum Chloro Complexes in Room-Temperature Chloroaluminate Ionic Liquids:Stabilization of [MoCl6]2- and [MoCl6]2- Inorg.Chem,1983,22 (15):2099-2100.
    [19]Chauvin, Y.; Gilbert, B.; Guibard, I. Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. J.Chem. Soc. Chem. Commun.1990, 23:1715-1716.
    [20]Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun.1992,13:965-967.
    [21]Smiglak, M.; Metlen, A.; Rogers, R. D. The Second Evolution of Ionic Liquids:From Solvents and Separations to Advanced Materials-Energetic Examples from the Ionic Liquid Cookbook. Acc. Chem. Res.2007,40 (11):1182-1192.
    [22]Bonbote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem.1996, 35(5):1168-1178.
    [23]Zhao, H. Methods for stabilizing and activating enzymes in ionic liquids - a review. J Chem. Tech. Biotech.2010,85 (7):891-907.
    [24]Odinets, I. L.; Matveeva, E. V. Ionic Liquids and Water as "Green" Solvents in Organophosphorus Synthesis. Current Organic Chemistry 2010,14 (12):1171-1184.
    [25]Hajipour, A. R.; Rafiee, F. Basic Ionic Liquids. A Short Review. J Iran Chem. Soc.2009, 6 (4):647-678.
    [26]Sledz, P.; Mauduit, M.; Grela, K. Olefin metathesis in ionic liquids. Chem. Soc. Rev. 2008,37 (11):2433-2442.
    [27]Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid:A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules 2005,38, (20):8272-8277.
    [28]Wu, J.; Zhang, J.; Zhang, H.; He, J.; Ren, Q.; Guo, M. Homogeneous Acetylation of Cellulose in a New Ionic Liquid. Biomacromolecules 2004,5, (2):266-268.
    [29]Shimojo, K.; Nakashima, K.; Kamiya, N.; Goto, M. Crown Ether-Mediated Extraction and Functional Conversion of Cytochrome c in Ionic Liquids. Biomacromolecules 2006,7 (1):2-5.
    [30]Pusey, M. L.; Paley, M. S.; Turner, M. B.; Rogers, R. D. Protein Crystallization Using Room Temperature Ionic Liquids. Crystal Growth & Design 2007,7, (4):787-793.
    [31]Byrne, N.; Wang, L.-M.; Belieres, J.-P.; Angell, A. Reversible folding-unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids. Chem. Commun.2007 (26):2714-2716.
    [32]Byrne, N.; Angell, C. A. Protein Unfolding, and the "Tuning In" of Reversible Intermediate States, in Protic Ionic Liquid Media. J. Mol. Biol 2008,378 (3):707-714.
    [33]Fujita, K.; MacFarlane, D. R.; Forsyth, M. Protein solubilising and stabilising ionic liquids. Chem. Commun.2005 (38):4804-4806.
    [34]Fujita, K.; MacFarlane, D. R.; Forsyth, M.; Yoshizawa-Fujita, M.; Murata, K.; Nakamura, N.; Ohno, H. Solubility and Stability of Cytochrome c in Hydrated Ionic Liquids:Effect of Oxo Acid Residues and Kosmotropicity. Biomacromolecules 2007,8 (7): 2080-2086.
    [35]Kramer, R. M.; Crookes-Gppdson, W. J.; Nalk, R. R. The self-organizing properties of squid reflectin protein. Nature Materials 2007,6 (7):533-538.
    [36]Nicholas, G.; Peter, J. S. Design and Preparation of Room-Temperature Ionic Liquids Containing Biodegradable Side Chains. Aust. J. Chem.2002,55 (9):557-560.
    [37]Nicholas, G.; Teresa, M. G.; Peter J. S. Biodegradable ionic liquids:Part Ⅰ. Concept, preliminary targets and evaluation. Green Chem.2004,6 (2):166-175.
    [38]Teresa, M. G.; Nicholas, G.; Peter J. S. Biodegradable ionic liquids Part Ⅱ. Effect of the anion and toxicology. Green Chem.2005,7 (1):9-14.
    [39]Nicholas, G.; Peter J. S.; Teresa, M. G. Biodegradable ionic liquids Part III. The first readily biodegradable ionic liquids. Green Chem.2006,8 (2):156-160.
    [40]Davis, J. H. Jr; Forrester, K. J. Thiazolium-ion based organic ionic liquids (OILs). OILs with promote the benzoin condensation. Tetrahedron Lett.1999,40 (9):1621-1622.
    [41]Ranu, B. C.; Banerjee, S. Ionic Liquid as Reagent. A Green Procedure for the Regioselective Conversion of Epoxides to Vicinal-Halohydrins Using [AcMIm]X under Catalyst-and Solvent-Free Conditions. J. Org. Chem.2005,70, (11):4517-4519.
    [42]Ranu, B. C.; Banerjee, S. Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmIm]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles. Org. Lett. 2005,7,(14):3049-3052.
    [43]Ranu, B. C.; Banerjee, S.; Jana, R. Ionic liquid as catalyst and solvent:the remarkable effect of a basic ionic liquid, [bmIm]OH on Michael addition and alkylation of active methylene compounds. Tetrahedron 2007,63 (3):776-782.
    [45]Jiang, T.; Ma, X.; Zhou, Y.; Liang, S.; Zhang, J.; Han, B. Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chem.2008,10 (4):465-469.
    [46]Xu, J. M.; Liu, B. K.; Wu, W. B.; Qian, C.; Wu, Q.; Lin, X. F. Basic Ionic Liquid as Catalysis and Reaction Medium:A Novel and Green Protocol for the Markovnikov Addition of N-Heterocycles to Vinyl Esters, Using a Task-Specific Ionic Liquid, [bmIm]OH. J. Org. Chem.2006,71, (10):3991-3993.
    [47]Sun, H.; Zhang, D.; Wang, F.; Liu, C. Theoretical Study of the Mechanism for the Markovnikov Addition of Imidazole to Vinyl Acetate Catalyzed by the Ionic Liquid [bmIm]OH. J. Phys. Chem. A,2007,111 (20):4535-4541.
    [48]Ranu, B. C.; Banerjee, S.; Gupta, J. Ionic Liquid-Promoted Stereoselective Synthesis of (Z)-Vinyl Bromides by [bmIm]OH under Organic Solvent-Free Conditions:A Green Approach. Syn. Commun.2007,37, (17):2869-2876.
    [49]Xu, J. M.; Qian, C.; Liu, B. K.; Wu, Q.; Lin, X. F. A fast and highly efficient protocol for Michael addition of N-heterocycles to alpha, beta-unsaturated compound using basic ionic liquid [bmIm]OH as catalyst and green solvent. Tetrahedron 2007,63 (4):986-990.
    [50]Zang, H. J.; Wang, M. L.; Cheng, B. W.; Song, J. Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm]OH. Ultrasonics Sonochemistry 2009,16 (3):301-303.
    [51]Cai, Y.; Peng, Y.; Song, G. Amino-functionalized ionic liquid as an efficient and recyclable catalyst for Knoevenagel reactions in water. Catal. Lett.2006,109 (1-2): 61-64.
    [52]Peng, Y.; Song, G. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal. Commun.2007,8 (2):111-114.
    [53]Mi, X.; Luo, S.; Cheng, J.-P. Ionic Liquid-Immobilized Quinuclidine-Catalyzed Morita-Baylis-Hillman Reactions. J. Org. Chem.2005,70, (6):2338-2341.
    [54]Luo, S. Z.; Mi, X. L.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Functionalized Chiral Ionic Liquids as Highly Efficient Asymmetric Organocatalysts for Michael Addition to Nitroolefins. Angew. Chem. Int. Ed.2006,45 (19):3093-3097.
    [55]Maria, P. D. Dr. "Nonsolvent" Applications of Ionic Liquids in Biotransformations and Organocatalysis. Angew. Chem. Int. Ed.2008,47 (37):6960-6968.
    [56]Bica, K.; Gaertner, P. Applications of Chiral Ionic Liquids. Eur. J. Org. Chem.2008,19: 3235-3250.
    [57]Miao, W.; Chan, T. H. Ionic-Liquid-Supported Synthesis:A Novel Liquid-Phase Strategy for Organic Synthesis. Acc. Chem. Res.2006.39, (12):897-908.
    [58]Handy, S. T.; Okello, M. Fructose-derived ionic liquids:recyclable homogeneous supports. Tetrahedron Lett.2003,44 (46):8399-8402.
    [59]Miao, W.; Chan, T. H. Ionic-Liquid-Supported Peptide Synthesis Demonstrated by the Synthesis of Leu5-enkephalin. J. Org. Chem.2005,70, (8):3251-3255.
    [60]Yi, F.; Peng, Y; Song, G. Microwave-assisted liquid-phase synthesis of methyl 6-amino-5-cyano-4-aryl-2-methyl-4H-pyran-3-carboxylate using functional ionic liquid as soluble support. Tetrahedron Lett.2005,46 (22):3931-3933.
    [61]Peng, Y.; Yi, F.; Song, G.; Zhang, Y. Solution Phase Parallel Synthesis of 4-Aminophenyl Ethers Using a Carboxyl-Functionalized Ionic Liquid as Support. Monatsh. Chem.2005,136(10):1751-1755.
    [62]Song, G.; Cai, Y.; Peng, Y Amino-Functionalized Ionic Liquid as A Nucleophilic Scavenger in Solution Phase Combinatorial Synthesis. J. Comb. Chem.2005,7 (4): 561-566.
    [63]Cai, Y.; Zhang, Y.; Peng, Y.; Lu, F.; Huang, X.; Song, G. Carboxyl-Functional Ionic Liquids as Scavengers:Case Studies on Benzyl Chloride, Amines, and Methanesulfonyl Chloride. J. Comb. Chem.2006,8, (5):636-638.
    [64]蔡月琴,基于功能化离子液体的新型平行纯化策略与可循环催化剂的设计及应用[D].[博士学位论文].上海:华东理工大学2005.
    [65]章瑛,含羧基功能化离子液体在水-有机两相催化和作为清除剂在液相平行合成产物纯化中的应用[M].[硕士学位论文].上海:华东理工大学2005.
    [66]Audic, N.; Clavier, H.; Mauduit, M.; Guillemin, J. C. An Ionic Liquid-Supported Ruthenium Carbene Complex:A Robust and Recyclable Catalyst for Ring-Closing Olefin Metathesis in Ionic Liquids. J. Am. Chem. Soc.2003,125, (31):9248-9249.
    [67]Consorti, C. S.; Aydos, G. L. P.; Ebeling, G.; Dupont, J. Ionophilic Phosphines:Versatile Ligands for Ionic Liquid Biphasic Catalysis. Org. Lett.2008,10, (2):237-240.
    [68]Lombardo, M.; Chiarucci, M.; Trombini, C. A recyclable triethylammonium ion-tagged diphenylphosphine palladium complex for the Suzuki-Miyaura reaction in ionic liquids. Green Chem.2009,11 (4):574-579.
    [69]Fei, Z.; Zhao, D.; Pieraccini, D.; Ang, W. H.; Geldbach, T. J.; Scopelliti, R.; Chiappe, C.; Dyson, J. Development of Nitrile-Functionalized Ionic Liquids for C-C Coupling Reactions:Implication of Carbene and Nanoparticle Catalysts. Organometallics 2007,26, (7):1588-1598.
    [70]Zhao, D.; Fei, Z.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. Nitrile-Functionalized Pyridinium Ionic Liquids:Synthesis, Characterization, and Their Application in Carbon-Carbon Coupling Reactions. J. Am. Chem. Soc.2004,126, (48):15876-15882.
    [71]Hu, Y.; Yu, Y.; Hou, Z.; Li, H.; Zhao, X.; Fenga, B. Biphasic Hydrogenation of Olefins by Functionalized Ionic Liquid-Stabilized Palladium Nanoparticles. Adv. Synth. Catal. 2008,350 (13):2077-2085.
    [72]Mu, X. D.; Meng, J. Q.; Li, Z. C.; Kou, Y. Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids:Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation. J. Am. Chem. Soc.2005,127 (27):9694-9695.
    [73]Yang, X.; Fei, Z.; Zhao, D.; Ang, W. H.; Li, Y.; Dyson, P. J. Palladium Nanoparticles Stabilized by an Ionic Polymer and Ionic Liquid:A Versatile System for C-C Cross-Coupling Reactions. Inorg. Chem.2008,47, (8):3292-3297.
    [74]Yamaguchi, K.; Yoshida, C.; Uchida, S.; Mizuno, N. Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide. J. Am. Chem. Soc.2005,127, (2):530-531.
    [75]Jin, M. J.; Taher, A.; Kang, H. J.; Choib, M.; Ryoo, R. Palladium acetate immobilized in a hierarchical MFI zeolite-supported ionic liquid:a highly active and recyclable catalyst for Suzuki reaction in water. Green Chem.2009,11 (3):309-313.
    [76]Zhou, Y.; Antonietti, M. Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates. J. Am. Chem. Soc.2003,125, (49),14960-14961.
    [77]Zhu, H.; Huang, J. F.; Pan, Z.; Dai, S. Ionothermal Synthesis of Hierarchical ZnO Nanostructures from Ionic-Liquid Precursors. Chem. Mater.2006,18 (18):4473-4477.
    [78]Choi, H.; Kim, Y. J.; Varma, R. S.; Dionysiou, D. D. Thermally Stable Nanocrystalline TiO2 Photocatalysts Synthesized via Sol-Gel Methods Modified with Ionic Liquid and Surfactant Molecules. Chem. Mater.2006,18, (22):5377-5384.
    [79]Itoh, H.; Naka, K.; Chujo, Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation. J. Am. Chem. Soc.2004,126, (10):3026-3027.
    [80]Ding, K.; Miao, Z.; Liu, Z.; Zhang, Z.; Han, B.; An, G.; Miao, S.; Xie, Y. Facile Synthesis of High Quality TiO2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process. J. Am. Chem. Soc.2007,129, (20):6362-6363.
    [81]Wang, T.; Kaper, H.; Antonietti, M.; Smarsly, B. Templating Behavior of a Long-Chain Ionic Liquid in the Hydrothermal Synthesis of Mesoporous Silica. Langmuir 2007,23, (3): 1489-1495.
    [82]Zhao, X.-L.; Wang, C.-X.; Hao, X.-P.; Yang, J.-X.; Wu, Y.-Z.; Tian, Y.-P.; Tao, X.-T.; Jiang, M.-H. Synthesis of PbS nanocubes using an ionic liquid as the solvent. Mater. Lett. 2007,61 (26):4791-479.
    [83]Gabriel, S., S. Ber.1888,21:2669.
    [84]Shetty, P. H.; Poole, S. K.; Poole, C. F. Applications of ethylammonium and propylammonium nitrate solvents in liquid-liquid extraction and chromatography. Anal Chim.Acta 1990,236:51-61.
    [85]Evans, D. F.; Yamauchi, A.; Roman, R.; Casassa, E. Z. Micelle formation in ethylammonium nitrate, a low-melting fused salt. J. Colloid Interface Sci.1982,88 (1): 89-96.
    [1]Basu, B.; Bhuiyan, M. M. H.; Das, P.; Hossain, I. Catalytic transfer reduction of conjugated alkenes and an imine using polymer-supported formates. Tetrahedron Lette. 2003,44 (50):8931-8934.
    [2]Basu, B.; Das, S.; Das, P.; Nanda, A. K. Co-immobilized formate anion and palladium on a polymer surface:a novel heterogeneous combination for transfer hydrogenation. Tetrahedron Lett.2005,46 (49):8591-8593.
    [3]Ranu, B. C.; Dutta, J.; Guchhait, S. K. Indium Metal as a Reducing Agent. Selective Reduction of the Carbon-Carbon Double Bond in Highly Activated Conjugated Alkenes. Org. Lett.2001,3, (16):2603-2605.
    [4]Ranu, B. C.; Samanta, S. Remarkably Selective Reduction of the α,β-Carbon-Carbon Double Bond in Highly Activated α,β,γ,δ-Unsaturated Alkenes by the InCl3-NaBH4 Reagent System. J. Org. Chem.2003,68, (18):7130-7132.
    [5]Ranu, B. C.; Samanta, S., Reduction of activated conjugated alkenes by the InCl3-NaBH4 reagent system. Tetrahedron 2003,59 (40):7901-7906.
    [6]Ranu, B. C.; Samanta, S. Use of indium hydride (C12InH) for chemoselective reduction of the carbon-carbon double bond in conjugated alkenes. Tetrahedron Lett.2002,43 (41): 7405-7407.
    [7]Xue, D.; Chen, Y.-C.; Cui, X.; Wang, Q.-W.; Zhu, J.; Deng, J.-G. Transfer Hydrogenation of Activated CdC Bonds Catalyzed by Ruthenium Amido Complexes:Reaction Scope, Limitation, and Enantioselectivity. J. Org. Chem.2005,70, (9):3584-3591.
    [8]Liu, W.; Cui, X.; Cun, L.; Zhua, J.; Deng, J. Tunable dendritic ligands of chiral 1,2-diamine and their application in asymmetric transfer hydrogenation. Tetrahedron: Asymmetry 2005,16 (15):2525-2530.
    [9]Chen, Y.-C.; Xue, D.; Deng, J.-G.; Cui, X.; Zhu, J.; Jiang, Y.-Z. Efficient asymmetric transfer hydrogenation of activated olefins catalyzed by ruthenium amido complexes. Tetrahedron Lett.2004,45 (7):1555-1558.
    [10]Adair, G. R. A.; Kapoor, K. K.; Scolan, A. L. B.; Williams, J. M. J. Ruthenium catalysed reduction of alkenes using sodium borohydride. Tetrahedron Lett.2006,47 (50): 8943-8944.
    [11]Ren, Y.; Xu, X.; Sun, K.; Xu, J. A new and effective method for providing optically active monosubstituted malononitriles:selective reduction of alpha, beta-unsaturated dinitriles catalyzed by copper hydride complexes. Tetrahedron:Asymmetry 2005,16 (24): 4010-4014.
    [12]Faliz, A. Chiral Semicorrins and Related Nitrogen Heterocycles as Ligands in Asymmetric Catalysis. Acc. Chem. Res.1993,26 (6):339-345.
    [13]Salomon, R. G.; Sachinvala, N. D. Stereocontrol of Michael Hydride Reduction by a Remote Hydroxyl Group. A Strategy for Stereorational Total Synthesis of Spatane Diterpenes. J. Am. Chem. Soc.1984,106, (7):2211-2213.
    [14]Garden, S. J.; Guimaras, C. R. W.; Correa, M. B.; Oliveira, C. A. F. d.; Pinto, A. d. C.; Alencastro, R. B. Synthetic and Theoretical Studies on the Reduction of Electron Withdrawing Group Conjugated Olefins Using the Hantzsch 1,4-Dihydropyridine Ester. J. Org Chem.2003,68, (23):8815-8822.
    [15]Jiang, B.; Feng, Y.; Zheng, J. Highly enantioselective reduction of achiral ketones with NaBH4:Me3SiCl catalyzed by (S)-a,a-diphenylpyrrolidinemethanol. Tetrahedron Lett. 2000,41,(52):10281-10283.
    [16]Suri, J. T.; Vu, T.; Hernandez, A.; Congdon, J.; Singaram, B. Enantioselective reduction of aryl ketones using LiBH4 and TarB-X:a chiral Lewis acid. Tetrahedron Lett.2002,43, (20):3649-3652.
    [17]Fu, X.; McAllister, T. L.; Thiruvengadam, T. K.; Tann, C.-H.; Su, D. Process for preparing Ezetimibe intermediate by an acid enhanced chemo-and enantioselective CBS catalyzed ketone reduction. Tetrahedron Lett.2003,44 (4):801-804.
    [18]Kokura, A.; Tanaka, S.; Ikeno, T.; Yamada, T. Catalytic Enantioselective Borohydride Reduction of Ortho-Fluorinated Benzophenones. Org. Lett.2006,8, (14):3025-3027.
    [19]Williams, D. R.; Benbow, J. W.; Sattleberg, T. R.; Ihle, D. C. Zirconium cation coordination in the borohydride-mediated synthesis of beta-hydroxy-N-alkoxylamines. Tetrahedron Lett.2001,42 (49):8597-8601.
    [20]Sharma, P. K.; Kumar, S.; Kumara, P.; Nielsen, P. Selective reduction of mono- and disubstituted olefins by NaBH4 and catalytic RuCl3. Tetrahedron Lett.2007,48 (49): 8704-8708.
    [21]Boechat, N.; Costa, J. C. S.; Mendonca, J. S.; Santos, P.; Oliveira, M.; Souza, M. V. N. D. A simple reduction of methyl aromatic esters to alcohols using sodium borohydride-methanol system. Tetrahedron Lett.2004,45 (31):6021-6022.
    [22]Periasamy, M.; Muthukumaragopal, G. P.; Sanjeevakumar, N. A simple and convenient method for the preparation of diborane from tetrabutylammonium borohydride and benzyl chloride for application in organic synthesis. Tetrahedron Lett.2007,48 (39):6966-6969.
    [23]Papavassilopoulou, E.; Christofis, P.; Terzoglou, D.; Moutevelis-Minakakis, P. Reduction of pentafluorophenyl esters to the corresponding primary alcohols using sodium borohydride. Tetrahedron Lett.2007,48 (47):8323-8325.
    [24]Tudge, M.; Mashima, H.; Savarin, C.; Humphrey, G.; Davies, I. Facile reduction of malonate derivatives using NaBH4/Br2:an efficient route to 1,3-diols. Tetrahedron Lett. 2008,49(6):1041-1044.
    [25]Kanth, J. V. B.; Periasamy, M. Selective reduction of carboxylic acids into alcohols using sodium borohydride and iodine. J. Org. Chem.1991,56, (20):5964-5965.
    [26]Falorni, M.; Porcheddu, A.; Taddei, M. Mild Reduction of Carboxylic Acids to Alcohols Using Cyanuric Chloride and Sodium Borohydride. Tetrahedron Lett.1999,40 (23): 4395-4396.
    [27]Tale, R. H.; Patil, K. M.; Dapurkar, S. E. An extremely simple, convenient and mild one-pot reduction of carboxylic acids to alcohols using 3,4,5-trifluorophenylboronic acid and sodium borohydride. Tetrahedron Lett.2003,44 (16):3427-3428.
    [28]Haldar, P.; Guin, J.; Ray, J. K. Sodium borohydride-iodine mediated reduction of gamma-lactam carboxylic acids followed by DDQ mediated oxidative aromatisation:a facile entry to N-aryl-formylpyrroles. Tetrahedron Lett.2005,46 (7):1071-1074.
    [29]Zhou, Y.; Gao, G.; Li, H.; Qu, J. A convenient method to reduce hydroxyl-substituted aromatic carboxylic acid with NaBH4/Me2SO4/B(OMe)3. Tetrahedron Lett.2008,49 (20): 3260-3263.
    [30]Takeuchi, M.; Kano, K. (σ-Alkyl) iron Complexes as Intermediates in (Porphinat) iron-Mediated Reduction of Alkenes and Alkynes with Sodium Borohydride. Organometallics 1993,12, (6):2059-2064.
    [31]Bandgar, B. P.; Nikat, S. M.; Wadgaonkar, P. P. The Reduction of Aromatic Oximes to Amines with Borohydride Exchange Resin-Nickel Acetate System Synth. Commun.1995, 25, (6):863-869.
    [32]Dosa, P.; Kronish, I.; McCallum, J.; Schwartz, J.; Barden, M. C. Titanium Complex-Catalyzed Borohydride Reduction of Azobenzenes. J. Org. Chem.1996,61,(15): 4886-4887.
    [33]Ranu, B. C.; Banerjee, S.; Gupta, J. Ionic Liquid-Promoted Stereoselective Synthesis of (Z)-Vinyl Bromides by [bmIm]OH under Organic Solvent-Free Conditions:A Green Approach. Syn. Commun.2007,37, (17):2869-2876.
    [1]Stevens, P. D.; Fan, J.; Gardimalla, H. M. R.; Yen, M.; Gao, Y. Superparamagnetic Nanoparticle-Supported Catalysis of Suzuki Cross-Coupling Reactions. Org. Lett.2005,7, (11):2085-2088.
    [2]Wang, Z.; Xiao, P.; Shen, B.; Hea, N. Synthesis of palladium-coated magnetic nanoparticle and its application in Heck reaction. Colloids and Surfaces A:Physicochem. Eng. Aspects 2006,276 (1-3):116-121.
    [3]Amali, A. J.; Rana, R. K. Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles:magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki-Miyaura reactions. Green Chem.2009,11 (11):1781-1786.
    [4]Polshettiwar, V.; Baruwati, B.; Varma, R. S. Nanoparticle-supported and magnetically recoverable nickel catalyst:a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem.2009,11 (1):127-131.
    [5]Polshettiwar, V.; Varma, R. S. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst:a selective and sustainable oxidation protocol with high turnover number. Org. Biomol. Chem.2009,7(1):37-40.
    [6]Yuan, D.; Zhang, Q.; Dou, J. Supported nanosized palladium on superparamagnetic composite microspheres as an efficient catalyst for Heck reaction. Catal. Commun.2010, 11:606-610.
    [7]Zhou, S.; Johnson, M.; Veinot, J. G. C. Iron/iron oxide nanoparticles:a versatile support for catalytic metals and their application in Suzuki-Miyaura cross-coupling reactions. Chem. Commun.2010,46 (14):2411-2413.
    [8]Zhang, Y.-Q.; Wei, X.-W.; Yu, R. Fe3O4 Nanoparticles-Supported Palladium-Bipyridine Complex:Effective Catalyst for Suzuki Coupling Reaction. Catal. Lett.2010,135, (3-4): 256-262.
    [9]Yi, S.-S.; Lee, D.-H.; Sin, E.; Lee, Y.-S. Chitosan-supported palladium(0) catalyst for microwave-prompted Suzuki cross-coupling reaction in water. Tetrahedron Lett.2007,48 (38):6771-6775.
    [10]Qiao, K.; Sugimura, R.; Bao, Q.; Tomida, D.; Yokoyama, C. An efficient Heck reaction in water catalyzed by palladium nanoparticles immobilized on imidazolium-styrene copolymers. Catal. Commun.2008,9 (15):2470-2474.
    [11]Ohtaka, A.; Teratani, T.; Fujii, R.; Ikeshita, K.; Shimomuraa, O.; Nomura, R. Facile preparation of linear polystyrene-stabilized Pd nanoparticles in water. Chem. Commun. 2009,46:7188-7190.
    [12]Sobjerg, L. S.; Gauthier, D.; Lindhardt, A. T.; Bunge, M.; Finster, K.; Meyer, R. L.; Skrydstrup, T. Bio-supported palladium nanoparticles as a catalyst for Suzuki-Miyaura and Mizoroki-Heck reactions. Green Chem.2009,11 (12):2041-2046.
    [13]Connolly, D.; TwamLey, B.; Paull, B. High-capacity gold nanoparticle functionalised polymer monoliths. Chem. Commun.2010,46:2109-2111.
    [14]Li, S.; Wang, J.; Kou, Y.; Zhang, S. Ionic-Liquid-Grafted Rigid Poly(p-Phenylene) Microspheres:Efficient Heterogeneous Media for Metal Scavenging and Catalysis. Chem. Eur.J.2010,16:1812-1818.
    [15]Schweizer, S.; Becht, J. M.; Drian, C. L. Highly efficient reusable polymer-supported Pd catalysts of general use for the Suzuki reaction. Tetrahedron 2010,66 (3):765-772.
    [16]Yang, H.; Han, X.; Ma, Z.; Wang, R.; Liu, J.; Ji, X. Palladium-guanidine complex immobilized on SBA-16:a highly active and recyclable catalyst for Suzuki coupling and alcohol oxidation. Green Chem.2010,12 (3):441-451.
    [17]Taher, A.; Kim, J.-B.; Jung, J.-Y.; Ahn, W.-S.; Jin, M.-J. Highly Active and Magnetically Recoverable Pd-NHC Catalyst Immobilized on Fe3O4 Nanoparticle-Ionic Liquid Matrix for Suzuki Reaction in Water. Synlett.2009,15:2477-2482.
    [18]Byun, J.-W.; Lee, Y.-S. Preparation of polymer-supported palladium/N-heterocyclic carbene complex for Suzuki cross-coupling reactions. Tetrahedron Lett.2004,45 (9): 1837-1840.
    [19]Kim, J.-H.; Jun, B.-H.; Byun, J.-W.; Lee, Y.-S. N-Heterocyclic carbene-palladium complex on polystyrene resin surface as polymer-supported catalyst and its application in Suzuki cross-coupling reaction. Tetrahedron Lett.2004,45 (30):5827-5831.
    [20]Michrowska, A.; Mennecke, K.; Kunz, U.; Kirschning, A.; Grela, K. A New Concept for the Noncovalent Binding of a Ruthenium-Based Olefin Metathesis Catalyst to Polymeric Phases:Preparation of a Catalyst on Raschig Rings. J. Am. Chem. Soc.2006,128, (40): 13261-13267.
    [21]Kim, J.-H.; Kim, J.-W.; Shokouhimehr, M.; Lee, Y.-S. Polymer-Supported N-Heterocyclic Carbene-Palladium Complex for Heterogeneous Suzuki Cross-Coupling Reaction.J. Org. Chem.2005,70 (17):6714-6720.
    [22]Lee, D.-H.; Kim, J.-H.; Jun, B.-H.; Homan Kang; Park, J.; Lee, Y.-S. Macroporous Polystyrene-Supported Palladium Catalyst Containing a Bulky N-Heterocyclic Carbene Ligand for Suzuki Reaction of Aryl Chlorides. Org. Lett.2008,10, (8):1609-1612.
    [23]Lombardo, M.; Chiarucci, M.; Trombini, C. A recyclable triethylammonium ion-tagged diphenylphosphine palladium complex for the Suzuki-Miyaura reaction in ionic liquids. Green Chem.2009,11 (4):574-579.
    [24]Phan, N. T. S.; Brown, D. H.; Styring, P. A polymer-supported salen-type palladium complex as a catalyst for the Suzuki-Miyaura cross-coupling reaction. Tetrahedron Lett. 2004,45 (42):7915-7919.
    [25]Baan, Z.; Finta, Z.; Keglevich, G.; Hermecz, I. Unexpected chemoselectivity in the rhodium-catalyzed transfer hydrogenation of alpha, beta-unsaturated ketones in ionic liquids. Green Chem.2009,11 (12):1937-1940.
    [26]Mu, X. D.; Meng, J. Q.; Li, Z. C.; Kou, Y. Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids:Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation.J. Am. Chem. Soc.2005,127 (27):9694-9695.
    [27]Yang, X.; Yan, N.; Fei, Z.; Crespo-Quesada, R. M.; Laurenczy, G.; Kiwi-Minsker, L.; Kou, Y.; Li, Y.; Dyson, P. J. Biphasic Hydrogenation over PVP Stabilized Rh Nanoparticles in Hydroxyl Functionalized Ionic Liquids.Inorg. Chem.2008,47 (17): 7444-7446.
    [28]Yuan, X.; Yan, N.; Xiao, C.; Li, C.; Fei, Z.; Cai, Z.; Kou, Y.; Dyson, P. J. Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids. Green Chem.2010,12 (2):228-233.
    [29]Qiao, K.; Sugimura, R.; Bao, Q.; Tomida, D.; Yokoyama, C. An efficient Heck reaction in water catalyzed by palladium nanoparticles immobilized on imidazolium-styrene copolymers. Catal. Commun.2008,9 (15):2470-2474.
    [30]Liu, G.; Hou, M.; Song, J.; Jiang, T.; Fan, H.; Zhang, Z.; Han, B. Immobilization of Pd nanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free Heck reaction. Green Chem.2010,12 (1):65-69.
    [31]Li, S.; Wang, J.; Kou, Y.; Zhang, S. Ionic-Liquid-Grafted Rigid Poly(p-Phenylene) Microspheres:Efficient Heterogeneous Media for Metal Scavenging and Catalysis Chem. Eur. J.2010,16:1812-1818.
    [32]Namboodiri, V. V.; Varma, R. S. Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chem.2001,3 (3):146-148.
    [33]Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Copper-Catalyzed Coupling of Alkylamines and Aryl Iodides:An Efficient System Even in an Air Atmosphere. Org. Lett.2002,4, (4): 581-584.
    [34]Cassez, A.; Ponchel, A.; Hapiot, F. Dr.; Monflier, E. Unexpected Multifunctional Effects of Methylated Cyclodextrins in a Palladium Charcoal-Catalyzed Suzuki-Miyaura Reaction. Org. Lett.2006,8, (21):4823-4826.
    [35]Han, W.; Liu, C.; Jin, Z.-L. In Situ Generation of Palladium Nanoparticles:A Simple and Highly Active Protocol for Oxygen-Promoted Ligand-Free Suzuki Coupling Reaction of Aryl Chlorides. Org. Lett.2007,9, (20):4005-4007.
    [36]Cai, Y.; Lu, Y.; Liu, Y.; He, M.; Wan, Q. Efficient Heck reactions catalyzed by a palladium/diol-imidazolium salt in aerial atmosphere. Catal. Commun.2008,9 (6): 1209-1213.
    [37]Cai, Y.; Liu, Y. Efficient palladium-catalyzed Heck reactions mediated by the diol-functionalized imidazolium ionic liquids. Catal. Commun.2009,10(10):1390-1393.
    [38]Yan, N.; Xue Yang; Fei, Z.; Li, Y.; Kou, Y.; Dyson, P. J. Solvent-Enhanced Coupling of Sterically Hindered Reagents and Aryl Chlorides using Functionalized Ionic Liquids. Organometallics 2009,28, (4):937-939.
    [39]Zhao, D.; Fei, Z.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. Nitrile-Functionalized Pyridinium Ionic Liquids:Synthesis, Characterization, and Their Application in Carbon-Carbon Coupling Reactions. J. Am. Chem. Soc.2004,126 (48):15876-15882.
    [40]Zhao, D.; Fei, Z.; Scopelliti, R.; Dyson, P. J. Synthesis and Characterization of Ionic Liquids Incorporating the Nitrile Functionality. Inorg. Chem.2004,43, (6):2197-2205.
    [41]Fei, Z.; Zhao, D.; Pieraccini, D.; Ang, W. H.; Geldbach, T. J.; Scopelliti, R.; Cinzia Chiappe; Dyson, P. J. Development of Nitrile-Functionalized Ionic Liquids for C-C Coupling Reactions:Implication of Carbene and Nanoparticle Catalysts. Organometallics 2007,26, (7):1588-1598.
    [42]Xin, B.; Zhang, Y.; Liu, L.; Wang, Y Water-Promoted Suzuki Reaction in Room Temperature Ionic Liquids. Synlett.2005,20:3083-3086.
    [43]Liu, L.; Zhang, Y.; Xin, B. Synthesis of Biaryls and Polyaryls by Ligand-Free Suzuki Reaction in Aqueous Phase. J. Org. Chem.2006,71(10):3994-3997.
    [44]Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. Computational Characterization of the Role of the Base in the Suzuki-Miyaura Cross-Coupling Reaction. J. Am. Chem. Soc.2005,127 (25):9298-9307.
    [45]Yin, L.; Liebscher, J. Carbon-Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev.2007,107, (1):133-173.
    [1]Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids:Properties and Applications. Chem. Rev.2008,108 (1):206-237.
    [2]Fumino, K.; Wulf, A.; Ludwig, R. Hydrogen Bonding in Protic Ionic Liquids: Reminiscent of Water. Angew. Chem. Int. Ed.2009,48 (17):3184-3186.
    [3]Greaves, T. L.; Drummond, C. J. Ionic liquids as amphiphile self-assembly media. Chem. Soc. Rev.2008,37 (8):1709-1726.
    [4]Byrne, N.; Angell, C. A. Protein Unfolding, and the "Tuning In" of Reversible Intermediate States, in Protic Ionic Liquid Media. J. Mol. Biol.2008,378 (3):707-714.
    [5]Johansson, K. M.; Izgorodina, E. I.; Forsyth, M.; MacFarlane, D. R.; Seddon, K. R. Protic ionic liquids based on the dimeric and oligomeric anions:[(AcO)xHx-1]-.Phys. Chem. Chem. Phys.2008 10 (20):2972-2978.
    [6]Zhao, C.; Burrell, G.; Torriero, A. A. J.; Separovic, F.; Dunlop, N. F.; MacFarlane, D. R.; Bond, A. M. Electrochemistry of Room Temperature Protic Ionic Liquids. J. Phys. Chem. B2008,112 (23):6923-6936.
    [7]Atkin, R.; Fina, L.-M. D.; Kiederling, U.; Warr, G. G. Structure and Self Assembly of Pluronic Amphiphiles in Ethylammonium Nitrate and at the Silica Surface. J. Phys. Chem. B2009,113 (36):12201-12213.
    [8]Plaquevent, J. C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A. C. Ionic Liquids: New Targets and Media for a-Amino Acid and Peptide Chemistry. Chem. Rev.2008,108 (12):5035-5060.
    [9]Chen. X.; Li, X.; Hua, A.; Wang, F. Advances in chiral ionic liquids derived from natural amino acids. Tetrahedron:Asymmetry 2008,19(1):1-14.
    [10]Tao, G. H.; He, L.; Sun, N.; Kou, Y. New generation ionic liquids:cations derived from amino acids. Chem. Commun.2005,28:3562-3564.
    [11]Tao, G. H.; He, L.; Liu, W. S.; Xu, L.; Xiong, W.; Wang, T.; Kou, Y. Preparation. characterization and application of amino acid-based green ionic liquids. Green Chem. 2006,8 (7):639-646.
    [12]Bwambok, D. K.; Marwani, H. M.; Fernand, V. E.; Fakayode, S. O.; Lowry, M.; Negulescu, I.; Strongin, R. M.; Warner, I. M. Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties. Chirality 2008,20 (2):151-158.
    [13]Gao, H. S.; Hu, Z. G.; Wang, J. J.; Qiu, Z. F.; Fan, F. Q. Synthesis and Properties of Novel Chiral Ionic Liquids from L-Proline. Aust. J. Chem.2008,61 (7):521-525.
    [14]Yoshizawa, M.; Xu, W.; Angell, C. A. Ionic Liquids by Proton Transfer:Vapor Pressure, Conductivity, and the Relevance of ApKa from Aqueous Solutions. J. Am. Chem. Soc. 2003,125(50):15411-15419.
    [15]Kennedy, D. F.; Drummond, C. J. Large Aggregated Ions Found in Some Protic Ionic Liquids.J. Phys. Chem. B2009,113 (17):5690-5693.
    [16]Nuthakki, B.; Greaves, T. L.; Krodkiewska, I.; Weerawardena, A.; Burgar, M. I.; Mulder, R. J.; Drummond, C. J. Protic Ionic Liquids and Ionicity Aust. J. Chem.2007,60 (1): 21-28.
    [17]Walden, P. Uber die Molekulargroβe und elektrische Leitfahigkeit einiger geschmolzener Salze. Bull. Acad. Imp. Sci.1914,1:1800-1801.
    [18]Greaves, T. L.; Weerawardena, A.; Fong, C.; Krodkiewska, I.; Drummond, C. J. Protic Ionic Liquids:Solvents with Tunable Phase Behavior and Physicochemical Properties. J. Phys. Chem. B 2006,110 (45):22479-22487.
    [19]Greaves, T. L.; Weerawardena, A.; Krodkiewska, I.; Drummond. C. J. Protic Ionic Liquids:Physicochemical Properties and Behavior as Amphiphile Self-Assembly Solvents. J. Phys. Chem.B 2008,112 (3):896-905.
    [20]Xu, W.; Cooper, E. I.; Angell, C. A. Ionic Liquids:Ion Mobilities, Glass Temperatures, and Fragilities. J. Phys. Chem. B 2003,107 (25):6170-6178.
    [21]Evans, D. F. Self-Organization of Arnphiphiles. Langmuir 1988,4 (1):3-12.
    [22]Greaves, T. L.; Weerawardena, A.; Fong, C.; Drummond, C. J. Formation of Amphiphile Self-Assembly Phases in Protic Ionic Liquids. J. Phys. Chem. B 2007,111 (16): 4082-4088.
    [1]Phillips, D. M.; Drummy, L. F.; Conrady, D. G.; Fox, D. M.; Naik, R. R.; Stone, M.O.; Trulove, P. C.; Long, H. C. D.; Mantz, R. A. Dissolution and Regeneration of Bombyx mori Silk Fibroin Using Ionic Liquids. J. Am. Chem. Soc.2004,126 (14):14350-14351.
    [2]Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid:A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules 2005,38, (20):8272-8277.
    [3]Phillips, D. M.; Drummy, L. F.; Naik, R. R.; Long, H. C. D.; Fox, D. M.; Trulovec, P. C.; Mantz, R. A. Regenerated silk fiber wet spinning from an ionic liquid solution. J. Mater. Chem.2005,15 (39):4206-4208.
    [4]Xie, H.; Li, S.; Zhang, S. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem.2005,7 (8):606-608.
    [5]Fujita, K.; MacFarlane, D. R.; Forsyth, M. Protein solubilising and stabilising ionic liquids. Chem. Commun.2005,38:4804-4806.
    [6]Constantinescu, D.; Weingartner, H.; Herrmann, C. Protein Denaturation by Ionic Liquids and the Hofmeister Series:A Case Study of Aqueous Solutions of Ribonuclease. A. Angew. Chem. Int. Ed.2007,46 (46):8887-8889.
    [7]Fujita, K.; MacFarlane, D. R.; Forsyth, M.; Yoshizawa-Fujita, M.; Murata, K.; Nakamura, N.; Ohno, H. Solubility and Stability of Cytochrome c in Hydrated Ionic Liquids:Effect of Oxo Acid Residues and Kosmotropicity. Biomacromolecules 2007,8 (7):2080-2086.
    [8]Gupta, M. K.; Khokhar, S. K.; Phillips, D. M.; Sowards, L. A.; Drummy, L. F.; Kadakia, M. P.; Naik, R. R. Patterned Silk Films Cast from Ionic Liquid Solubilized Fibroin as Scaffolds for Cell Growth. Langmuir 2007,23 (3):1315-1319.
    [9]Mantz, R. A.; Fox, D. M.; Green Ⅲ, J. M.; Fylstra, P. A.; Long, H. C. D.; Paul C, T. Dissolution of Biopolymers Using Ionic Liquids. Zeitschrift fur Naturforschung - Section A. Journal of Physical Sciences 2007,62 (5-6):275-280.
    [10]Rele, S.; Song, Y.; Apkarian, R. P.; Qu, Z.; Conticello, V. P.; Chaikof, E. L. D-Periodic Collagen-Mimetic Microfibers. J. Am. Chem. Soc.2007,129(47):14780-14787.
    [11]Sate, D.; Janssen, M. H. A.; Stephens, G.; Sheldon, R. A.; Seddond, K. R.; Lu, J. R. Enzyme aggregation in ionic liquids studied by dynamic light scattering and small angle neutron scattering. Green Chem.2007,9 (8):859-867.
    [12]Dipeolu,O.; Greenb, E.; Stephens, G. Effects of water-miscible ionic liquids on cell growth and nitro reduction using Clostridium sporogenes. Green Chem.2008,11 (3): 397-401.
    [13]Fujita, K.; Nakamura, N.; Igarashi, K.; Samejimab, M.; Ohno, H. Biocatalytic oxidation of cellobiose in an hydrated ionic liquid. Green Chem.2009,11 (3):351-354.
    [14]Rebros, M.; Gunaratne, H. Q. N.; Ferguson, J.; Seddonb, K. R.; Stephens, G. A high throughput screen to test the biocompatibility of water-miscible ionic liquids. Green Chem. 2009,11 (3):402-408.
    [15]Vanoye, L.; Fanselow, M.; Holbrey, J. D.; Atkins, M. P.; Seddon, K. R. Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem.2009,11 (3):390-396.
    [16]Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U. S. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem.2009,11 (3):417-424.
    [17]Baker, S. N.; McCleskey, T. M.; Pandey, S.; Baker, G. A. Fluorescence studies of protein thermostability in ionic liquids. Chem. Commun.2004,8:940-941.
    [18]Mann, J. P.; McCluskey, A.; Atkin, R. Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids-influence of cation modification. Green Chem. 2009,11 (6):785-792.
    [19]Summers, C. A.; Flowers Ⅱ, R. A. Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Science 2000,9 (10):2001-2008.
    [20]Byrne, N.; Wang, L.-M.; Belieres, J.-P.; Angell, C. A. Reversible folding-unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids. Chem. Commun.2007,26:2714-2716.
    [21]Byrne, N.; Angell, C. A. Protein Unfolding, and the "Tuning In" of Reversible Intermediate States, in Protic Ionic Liquid Media. J. Mol. Biol.2008,378 (3):707-714.
    [22]Byrne, N.; Angell, C. A. Formation and dissolution of hen egg white lysozyme amyloid fibrils in protic ionic liquids. Chem. Commun.2009,9:1046-1048.
    [23]Fumino, K.; Wulf, A.; Ludwig, R. Hydrogen Bonding in Protic Ionic Liquids: Reminiscent of Water. Angew. Chem. Int. Ed. 2009,48 (12):3184-3186.
    [24]Boedtker, H.; Doty, P. The Native and Denatured States, of Soluble Collagen. J. Am. Chem. Soc.1956,78 (17):4267-4280.
    [25]Ratanavaraporn, J.; Kanokpanont, S.; Tabata, Y.; Damrongsakkul, S. Effects of acid type on physical and biological properties of collagen scaffolds. J. Biomater. Sci. Polymer Edn 2008,19 (7):945-952.
    [26]Matthews, J. A.;. Wnek, G. E.; Simpson, D. G.; Bowlin, G. L. Electrospinning of Collagen Nanofibers. Biomacromolecules 2002,3 (2):232-238.
    [27]Buttafocoa, L.; Kolkmana, N. G.; Buijtenhuijsa, P. E.; Poota, A. A.; Dijkstraa, P. J.; Vermesa, I.; Feijen, J. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 2006,27 (5):724-734.
    [28]Casper, C. L.; Yang, W.; Farach-Carson, M. C.; Rabol, J. F. Coating Electrospun Collagen and Gelatin Fibers with Perlecan Domain I for Increased Growth Factor Binding. Biomacromolecules 2007,8 (4):1116-1123.
    [29]Yang, L.; Fitiea, C. F. C.; Werf, K.O. v. d.; Bennink, M. L.; Dijkstraa, P. J.; Feijen, J. Mechanical properties of single electrospun collagen type Ⅰ fibers. Biomaterials 2008,29 (8):955-962.
    [30]Teng, S.-H.; Lee, E.-J.; Wang, P.; Kim, H.-E. Collagen/hydroxyapatite composite nanofibers by electrospinning. Mat. Lett.2008,62 (17-18):3055-3058.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.