mTOR抑制剂缓解比格犬蛛网膜下腔出血模型脑血管痉挛的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     蛛网膜下腔出血(subarachnoid hemorrhage, SAH)的高死亡率和高致残率主要与早期脑损伤(Early brain injury, EBI)和接下来出现的脑血管痉挛(Cerebral vasospasm, CVS)有关。尽管现在有许多针对CAS的治疗方法,但成功治疗的情况并不多见,而脑血管痉挛的发生机制仍是困扰大多数研究者的难题之一。
     哺乳动物雷帕霉素靶蛋白(Mammalian target of rapamycin, mTOR)是一种丝氨酸/苏氨酸激酶,在调节细胞的生长、增殖、存活和蛋白质合成中起着重要的作用。mTOR是PI3K/PKB (protein kinase B, PKB)信号通路下游的一个效应蛋白,包括2种下游底物蛋白:70S核糖体6激酶S6K1(p70S6kinase protein, S6K1)和4E-BP1(4E-binding protein1,4E-BP1)。
     作为一种蛋白激酶,mTOR在细胞内形成了两种主要不同的多蛋白复合物,分别为mTORCl和mTORC2。雷帕霉素(rapamycin, mTOR抑制剂)仅能抑制mTORCl。AZD8055是一种新型的mTOR抑制剂,能抑制:mTORC1和mTORC2,进而抑制mTOR的活性。但mTOR抑制剂在血管痉挛中的作用尚未见报道。
     目的:
     采用犬两次注血法制作蛛网膜下腔出血(SAH)模型,旨为研究mTOR通路蛋白在SAH后发生CVS时在血管壁,尤其在血管平滑肌细胞上的表达情况,观察它们在调节脑血管痉挛中的作用。应用mTOR复合物1抑制剂(雷帕霉素)和mTOR复合物1/mTOR复合物2(mTOR Cl/mTOR C2)抑制剂(AZD8055),通过对mTOR通路下游蛋白P70S6K1和4E-BP1,以及增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)等能够与增殖活动相关因子的表达情况观察,以研究mTOR信号通路中的重要因子,如mTCR、P70S6K1和4E-BP1在蛛网膜下腔出血病程中的作用及可能的引发CVS的机理。
     材料与方法:
     实验动物为30只比格犬,雌雄不分,体重15~20kg。随机平均分成5组,即假实验组(Sham, n=6),蛛网膜下腔注血组(SAH,n=6),蛛网膜下腔注血组结合应用二甲基亚砜(Dimethyl sulfoxide, DMSO)组(SAH+DMSO, n=6),蛛网膜下腔注血组结合应用雷帕酶素(2mg/kg体重,SAH+RAPA, mTORCl抑制剂,n=6)和蛛网膜下腔注血组结合应用AZD8055(2mg/kg体重,一种mTORCl/mTORC2抑制剂)组(SAH+AZD8055, n=6)。动物采用乙酰丙嗪、阿托品和甲苯噻嗪全身麻醉后,在实验当天(d0)和实验后的第2天(48h),穿刺针刺破寰枕膜,放出适量脑脊液,将自体股动脉的血液注射到蛛网膜下腔(小脑延髓池),建立犬的蛛网膜下腔的两次出血模型,在实验的当天(d0)和第实验后的第7天(d7)行血管造影,观测动物的临床行为学改变、基底动脉的直径。取基底动脉行组织学观察、免疫组织化学染色和Western blot,检测基底动脉的形态学变化及其血管壁中mTOR、P70S6K1、4E-BP1和PCNA的表达。
     结果:
     肉眼观察,蛛网膜下腔内有大量的凝血块分布于脑干的腹侧Willis环的周围,即出现在延髓腹侧的延池、中脑的脚间池和视交叉池,以及基底动脉的周围。血管造影图像中,7天(d7)的基底动脉的平均直径,与假实验组相比,SAH组和SAH+DMSO组均出现了严重的基底动脉痉挛p<0.05)。而SAH组和SAH+DMSO组的7天(d7)与0天(d0)的基底动脉的平均直径的百分比分别是34.3±19.84%和38.4±10.26%,而假实验组的基底动脉的平均直径百分比是93.9±5.01%。在SAH+RAPA组和SAH+AZD8055组可见中度的血管痉挛,SAH+RAPA组和SAH+AZD8055组的7天(d7)与0天(d0)基底动脉的平均直径的百分比分别是62.3±15.92%和65.2±10.34%,与SAH组和SAH+DMSO组相比,可见显著性差异(p<0.05)。
     在临床行为学饮食评分方面:从第2天到第4天,与SAH组相比,SAH+RAPA组和SAH+AZD8055组动物的饮食情况明显好转,在实验后的5天至7天间,仍可见显著的统计学差异(p<0.05,ANOVA)。但SAH+RAPA组和SAH+AZD8055组之间未见统计学差异(p>0.05,ANOVA)。在活动度评分方面:在实验后的6天至7天,与SAH组和SAH+DMSO组相比,SAH+RAPA组和SAH+AZD8055组动物的活动度明显增强,可见显著的统计学差异(p<0.05,ANOVA)o但SAH+RAPA组和SAH+AZD8055组之间未见统计学差异(p>0.05,ANOVA)。在神经功能障碍评分方面:大多数的实验动物并没有表现出明显地神经功能障碍的症状和体征,在所观察的各组间的统计学差异不明显(p>0.05)。
     通过对基底动脉的HE染色后的形态学观察,SAH组可见明显的血管痉挛,即基底动脉发生了明显的收缩,管壁增厚,管腔直径明显缩小,内皮细胞和血管平滑肌由于收缩而变短,内弹力膜弯曲呈锯齿状,部分内皮细胞失去了连续性并从内弹力膜上脱离。SAH+RAPA和SAH+AZD8055组动物的基底动脉可见中等程度的血管痉挛。而假实验组(Sham)动物的基底动脉未见血管痉挛的表现。
     与假实验组的动物相比,在SAH组和SAH+DMSO组中,基底动脉各层中,尤其是平滑肌细胞中的mTOR、P70S6K1、4E-BP1和PCNA的免疫组化染色均很明显。用雷帕霉素和AZD8055治疗的两组动物中,mTOR、P70S6K1、4E-BP1和PCNA的染色则都有明显的减弱。双荧光和三荧光免疫组化染色显示,基底动脉的各层中,尤其是在平滑肌层中,均可见mTOR、P70S6K1和PCNA的表达。双色和三色免疫荧光图像提示:mTOR与P70S6K1和PCNA共存。使用高变焦放大摄像,染色证实mTOR、P70S6K1和PCNA共同定位于血管平滑肌细胞中。
     Western blotting显示了血管痉挛动脉中(?)mTOR通路分子标志物的表达,与假实验组相比,在蛋白电泳条带上,可见SAH组和SAH+DMSO组动物中,痉挛的基底动脉中的mTOR、P70S6K1、4E-BP1和PCNA的表达均有明显增加。雷帕霉素和AZD8055明显抑制了mTOR、P70S6K1、4E-BP1和PCNA的表达,可见显著地统计学差异(p<0.05)。而在两种抑制剂治疗组之间、SAH组和SAH+DMSO组之间,mTOR、P70S6K1、4E-BP1和PCNA的表达未见明显的统计学差异。
     结论:
     本研究显示:在SAH后,mTOR通路的活化可能通过启动血管平滑肌细胞的增殖,从而参与了基底动脉痉挛的调控;在基底动脉中观察到了mTOR通路的mTOR、P70S6K1和4E-BP1与PCNA等多种因子的表达;应用mTOR抑制剂----雷帕霉素和AZD8055后,mTOR、P70S6K1、4E-BP1和PCNA等因子的表达出现明显的变化,并可明显解除基底动脉的痉挛,改善动物的饮食和活动度等临床表现。而受(?)mTOR蛋白信号通路调节的血管平滑肌细胞的增殖,在蛛网膜下腔出血的脑血管痉挛中发挥着重要的作用。通过抑制(?)mTOR通路的活性,脑血管痉挛出现缓解,这可能是治疗蛛网膜下腔出血脑血管痉挛的重要途径。
Background:
     Subarachnoid hemorrhage (SAH) is a subtype of devastating stroke that can lead to a variety of consequences including early brain injury and cerebral vasospasm. Despite promising therapeutic approaches, successful treatment following SAH remains inadequate. This is partly attributed to the poor strategic approach when dealing with cerebral ischemia as a result of cerebral vasospasm (CVS), one of the major consequences seen following an SAH. Although much has been discovered with regards to the mechanistic understanding of CVS, it continues to puzzle most scientists.
     Mammalian target of rapamycin (mTOR) pathway is a serine/threonine protein kinase that plays a vital role in regulating growth, proliferation, survival, and protein synthesis among cells. As a member of the PI3K family (phosphatidylinositol3-kinase-related kinase), mTOR has been shown to orchestrate the phosphorylation of key downstream proteins including P70S6K1(proteins p70ribosomal S6kinase) and4E-BP1(eukaryotic initiation factor4E binding protein1).
     As a protein kinase, mTOR forms two distinct multiprotein complexes called mTORC1and mTORC2. The mTORC1is inhibited by rapamycin. On the other hand, AZD8055is a potent and selective mTOR kinase inhibitor that acts on both the C1and C2prototypes, along with other downstream substrates. However, mTOR inhibitors role in cerebral vasospasm has not been investigated.
     Subject:
     In the present study, we investigated the role of the mTOR protein kinase following SAH brain injury in canines, specifically investigating its position as a key orchestrator of cerebral vasospasm. We used an mTOR C1inhibitor (rapamycin) and an mTOR C1/mTOR C2simultaneous inhibitor (AZD8055) to explore potential mechanistic theories while measuring direct anti-proliferation activity through P70S6K1,4E-BP1and PCNA (proliferating cell nuclear antigen) expression.
     Materials and Methods:
     Thirty male/female beagle dogs weighing15to20kg were housed in a12-hour light/dark cycle at a controlled temperature and humidity with free access to food and water. All animals were randomly assigned to one of five groups-Sham (n=6), SAH (n=6), SAH+DMSO (Dimethyl sulfoxide; n=6), SAH+RAPA (Rapamycin,2mg/kg, mTORC1inhibitor, n=6), and SAH+AZD8055(2mg/kg, a mTORC1/mTORC2inhibitor, n=6). Animals were anesthetized with a cepromazine, atropine, and xylazine cocktail. An established canine double-hemorrhage model of SAH was used by injecting autologous arterial blood into the cisterna magna on days0and2. Angiography was performed at days0and7. Iodixanol was injected to acquire an image of the basilar artery. After angiography,0.5mL/kg of blood taken from the femoral artery was injected into the cisterna magna at day0and then repeated at day2. Three behavioral examinations were modified from a previous study and performed daily after SAH to record appetite, activity, and neurological deficits. In groups, histology, immunohistochemistry, and Western blot of mTOR, P70S6K1,4E-BP1and PCNA (proliferating cell nuclear antigen) in the basilar arteries were examined.
     Results:
     Severe SAH was particularly pronounced around the Circle of Willis and along the ventral brainstem following injury. The animals in the SAH and SAH+DMSO groups developed severe vasospasm (p<0.05vs Sham) as shown by angiography on day7. The mean values of the residual diameter of the basilar artery on day7, as a percentage of that on day0, was34.3±19.84%in SAH,38.4±10.26in SAH+DMSO, and93.9±5.01%in Sham respectively. In the SAH+RAPA and SAH+AZD8055groups, a moderate vasospasm,62.3±15.92%and65.2±10.34%was observed (p <0.05versus SAH and SAH+DMSO).
     The behavior scores are shown that the appetite score in both Rapamycin and AZD8055treatment groups were better than in the SAH group from days2to4, even though statistical significance was achieved at day5to7(p<0.05, ANOVA). No statistical difference was found between SAH+Rapamycin and SAH+AZD8055groups (p>0.05, ANOVA). The activity scores in Rapamycin and AZD8055treatment groups were significantly better than in the SAH and SAH+DMSO groups (p<0.05, ANOVA) at day6and7. Most animals did not show any signs of serious neurological deficits which was evident by the lack of statistical significance among the observed groups.
     Morphological vasospasm was observed in animals assigned to the SAH group. This was characterized by corrugation of the internal elastic lamina, contraction of smooth muscle cells, and increased thickness of the vessel wall, which was a sign of severe vasospasm. Treatment with vehicle of DMSO did not get any improvement. Moderate vasospasm was observed in the SAH+RAPA and SAH+AZD8055animal groups. Sham animals were the only group that did not show any signs of vasospasm.
     In the SAH and SAH+DMSO groups, notable immunohistochemical staining of mTOR, P70S6K1,4E-BP1, and PCNA were observed across all layers of the basilar artery, especially among smooth muscle cells compared to Sham animals. Animals treated with both Rapamycin and AZD8055where characterized by a notable reduction in staining of mTOR, P70S6K1,4E-BP1, and PCNA. Double and triple fluorescence immunohistochemistry staining revealed a marked elevation in staining with mTOR, P70S6K1and PCNA across all layers of the basilar artery, especially in smooth muscle layer; merging double and triple of these images indicated that mTOR co-localized with P70S6K1and PCNA. Using a high magnification zoom, the stain demonstrated that mTOR, P70S6K1and PCNA co-localized in the smooth muscle cells.
     Western blotting revealed that the expressions of mTOR, P70S6K1,4E-BP1, and PCNA in the basilar artery samples in Sham, SAH, SAH+DMSO, SAH+RAPA and SAH+AZD8055groups. When the values in the sham basilar arteries were regarded as100%, there was a significant enhancement of expression of mTOR, P70S6K1,4E-BP1, and PCNA in the spastic basilar arteries from the SAH and SAH+DMSO animals sacrificed at day7(p<0.05vs. Sham). Treatment with Rapamycin and AZD8055significantly suppressed the expression of mTOR, P70S6K1,4E-BP1, and PCNA (p<0.05vs. Sham). No significant differences were noted between the two inhibitor treatment groups and between the SAH and SAH+DMSO groups.
     Conclusion:
     Our study suggests that vascular smooth muscle cell proliferation mediated by the mTOR pathway may in fact play a significant role in cerebral vasospasm following SAH injury. The expressions of mTOR, P70S6K1and4E-BP1were accompanied with PCNA in the basilar arteries. By blocking the activation of the mTOR pathway, the attenuation of angiographic vasospasm was attributed to the anti-proliferation that ensues following cerebral vasospasm.
     The mTOR molecular signaling pathway plays a significant role in cerebral vasospasm following SAH, and the inhibition of the mTOR pathway has the potential to become an attractive strategy to treat vasospasm following SAH. However, More studies evaluating the exact mechanistic target of the mTOR pathway within vasospasm are warranted.
引文
Alkan T, Tureyen K, Ulutas M, et al. Acute and delayed vasoconstriction after subarachnoid hemorrhage:Local cerebral blood flow, histopathology, and morphology in the rat basilar artery.Arch Physiol Pharmacol,2001,2,145-153.
    Bedersen JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke,1995,26,1086-1092.
    Beg SA, Hansen-Schwartz JA, Vikman PJ, et al. ERK 1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET (B) and 5-HT (1B) receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab, 2006,26 (6),846-856.
    Bhardwaj A. SAH-induced cerebral vasospasm:unraveling molecular mechanisms of a complex disease. Stroke,2003,34,427-433.
    Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell 2007,12,487-502.
    Borel CO, McKee A, Parra A, Haglund MM, Solan A, Prabhakar V, Sheng H, Warner, DS, Niklason L. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke,2003,34,427-433.
    Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM:RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA,1998,95,1432-1437.
    Carew JS, Kelly KR, Nawrocki ST. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol,2011,6,17-27.
    Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiology of Disease,2008,32, 329-339.
    Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res,2010,70,288-298.
    Christopher G, H arrod MS, Bem ard R, et al. Predict ion of cerebral vasospasm in patients presenting with an eurymal subarachnoid hemorrhage:a review. Neurosurg,2005,56 (4),633-652.
    Ciuffreda L, Di SC, Incani UC, Milella M. The mTOR pathway:a new target in cancer therapy. Curr Cancer Drug Targets,2010,10,484-495.
    Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin:do all roads pass through mTOR? Oncogene,2006,25,6347-6360.
    Debdi M, Seylaz J, Sercombe R. Early changes in rabbit cerebral artery reactivity after subarachnoid hemorrhage. Stroke,1992,23,1154-1162.
    Domasiewicz A, Michalik R, Gadamski R, et al. Acute ischemia following subarachnoid haemorrhage predisposes to the development of late vascular abnormalities in the rat brain. J Physiol Pharmacol,2006,57(S-2),53.
    Erlich S, Shohami E, Pinkas-Kramarski R:Neurodegeneration induces upregulation of Beclin 1. Autophagy,2006,2,49-51.
    Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov,2006,5,671-688.
    Gera J, Lichtenstein A. The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma. Leuk Lymphoma,2011,52(10),1857-1866.
    Hauerberg J, Juhler M, Rasmussen G. Cerebral blood flow autoregulation after experimental subarachnoid hemorrhage during hyperventilation in cats. J Neurosurg Anesthesiol,1993,5(4),258-263.
    Hayakawa T, Waltz AG. Experimental subarachnoid hemorrhage from a middle cerebral artery. Neurologic deficits, intracranial pressures, blood pressures, and pulse rates. Stroke,1977,8(4),421-426.
    Kamii H, Kato I, Kinouchi H, et al. Amelioration of vasospasm after subarachnoid hemorrhagein transgenic mice overexpressing Cu Zn-superoxide dismuatse. Stroke 1999,30,867-872.
    Kawanabe Y, Masaki T, Hashimoto N. Involvement of phospholipase C in endothelin 1-induced stimulation of Ca++channels and basilar artery contraction in rabbits. J Neurosurg,2006,105(2),288-293.
    Kozniewska E, Michaliki J, Rafaowska R, Gadamski M, Walski M, Frontczak BP, Plotrowski P, Czernicki Z. Mechanisms of vascular dysfunction after subarachnoid hemorrhage. J Physio and Pharm,2006,57(S-11),145-160.
    Kusaka G, Kimura H, Kusaka I, Perkins E, Nanda A, Zhang JH. Contribution of Src tyrosine kinase to cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg,2003,99,383-390.
    Landsberg JW, Yuan JX. Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci,2004,19,44-50.
    Lee JY, Sagher O, Keep R, Hua Y, Xi G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery,2009,65(2), 331-343.
    Li W, Petrimpol M, Molle KD, Hall MN, Battegay EJ, Humar R. Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Circ Res,2007, 100,79-87.
    Liao Q, Shi DH, Zheng W, Xu XJ, Yu YH. Antiproliferation of cardamonin is involved in mTOR on aortic smooth muscle cells in high fructose-induced insulin resistance rats. Eur J Pharmacol,2010,641,179-186.
    Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA. Rapamycin' protects against neuron death in vitro and in vivo models of Parkinson's disease. J Neurosci,2010,30,1166-1175.
    Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res,1995,76, 412-417.
    McGirt MJ, Lynch JR, Blessing R, Warner DS, Friedman AH, Laskowitz DT. Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery,2002,51,1128-1134.
    Meguro T, Clower B, Carpenter R. Improved rat model for cerebral vasospasm studies. Neurol Res,2001,23,761-766.
    Miwa K, Fujita M, Sasayama S. Recent insights in to the mechanism s, predisposing factors, and racial differences of coronary vasospasm. Heart Vessels,2005,20 (1), 1-7.
    Megyesi JF, Vollrath B, Cook DA, et al. In vivo animal models of cerebral vasospasm: a review. Neurosurgery,2000,46(2),448-460.
    Nissim H, Nahum S. Upstream and downstream of mTOR. Genes Dev,2004,18(16), 1926-1945.
    Pignataro G, Capone D, Polichetti G, Vinciguerra A, Gentile A, Di RG, Annunziato L. Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors:current and emerging therapeutic options. Curr Opin Pharmacol, 2011,11,378-394.
    Pitarys CJ, Forman MB, Panayiotou H, Hansen DE. Long-term effects of excision of the mitral apparatus on global and regional ventricular function in humans. J Am Coll Cardiol,1990,15(3),557-563.
    Prunell GF, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuro Report,2002,13 (18),2553-2556.
    Sharma N, Cho DH, Kim SY, Bhattarai JP, Hwang PH, Han SK. Magnesium sulfate suppresses L-type calcium currents on the basilar artery smooth muscle cells in rabbits. Neurol Res,2012,34(3),291-296.
    Shirao S, Yoneda H, Ishihara H, Kajiwara K, Suzuki M. A proposed definition of symptomatic vasospasm based on treatment of cerebral vasospasm after subarachnoid hemorrhage in Japan:Consensus 2009, a project of the 25 Spasm Symposium. Surg Neurol,2011, Int 2,74.
    Shor B, Gibbons JJ, Abraham RT, Yu K. Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle,2009,8,3831-3837.
    Schwartz AY, Masago A, Sehba F.A., Bederson J.B Experimental models of subarachnoid hemorrhage in the rat:a refinement of the endovascular filament model. J Neurosci Meth 2000,96,161-167.
    Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycinresistant functions of mTORCl. J Biol Chem,2009, 284,8023-8032.
    Titova E, Ostrowski RP, Zhang JH, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res,2009,31(6),568-581.
    Varsos VG, Liszczak TM, Han DH, Kistler JP, Vielma J, Black PM, Heros RC, Zervas NT. Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine, or papaverine in a "two-hemorrhage" canine model. J. Neurosurg, 1983,58,11-17.
    Yamaguchi-Okada M, Nishizawa S, Koide M, et al. Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. J App 1 Physiol,2005,99 (5),2045-2052.
    Yamaguchi M, Zhou C, Nanda A, Zhang JH. Ras protein contributes to cerebral vasospasm in a canine double-hemorrhage model. Stroke,2004,35,1750-1755.
    Yan J, Chen C, Lei J, Yang L, Wang K, Liu J, Zhou C.2-methoxyestradiol reduces cerebral vasospasm after 48 hours of experimental subarachnoid hemorrhage in rats. Exp Neurol,2006,202,348-356.
    Yan J, Chen C, Hu Q, Yang X, Lei J, Yang L, Wang K, Qin L, Huang H, Zhou C. The role of p53 in brain edema after 24 h of experimental subarachnoid hemorrhage in a rat model.Exp Neurol,2008,214,37-46.
    Zhang JH. Role of MAPK in cerebral vasospasm. Drug News Perspect,2001,14, 261-267.
    Zhang ZD, Macdonald RL. Contribution of the remodeling response to cerebral vasospasm. Neurol Res,2006,28(7),713-720.
    Zhou C, Yamaguchi M, Colohan AR, Zhang JH. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab,2005,25,572-582.
    Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab,2004,24, 419-431.
    Zoghbi HY, Okumura S, Laurent JP, Fishman MA. Acute effect of glycerol on net cerebrospinal fluid production in dogs. J Neurosurg,1985,63,759-762.
    Zuccarello M, Bonasso CL, Lewis AI, Sperelakis N, Rapoport RM. Relaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim. Stroke,1996,27(2),311-316.
    Beg SA, Hansen-Schwartz JA, Vikman PJ, et al. ERK 1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET (B) and 5-HT (1B) receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab, 2006,26 (6),846-856.
    Bhardwaj A. SAH-induced cerebral vasospasm:unraveling molecular mechanisms of a complex disease. Stroke,2003,34,427-433.
    Borel CO, McKee A, Parra A, Haglund MM, Solan A, Prabhakar V, Sheng H, Warner DS, Niklason L. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke,2003,34,427-433.
    Carew JS, Kelly KR, Nawrocki ST. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol,2011,6,17-27.
    Christopher G, H arrod MS, Bern ard R, et al. Predict ion of cerebral vasospasm in patients presenting with an eurymal subarachnoid hemorrhage:a review. Neurosurg,2005,56 (4),633-652.
    Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, James D, Howard Z, Dudley P, Hughes G, Smith L, Maguire S, Hummersone M, Malagu K, Menear K, Jenkins R, Jacobsen M, Smith GC, Guichard S, Pass M. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res,2010,70,288-298.
    Ciuffreda L, Di SC, Incani UC, Milella M. The mTOR pathway:a new target in cancer therapy. Curr Cancer Drug Targets,2010,10,484-495.
    Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin:do all roads pass through mTOR? Oncogene,2006,25,6347-6360.
    Debdi M, Seylaz J, Sercombe R. Early changes in rabbit cerebral artery reactivity after subarachnoid hemorrhage. Stroke,1992,23,1154-1162.
    Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov,2006,5,671-688.
    Gera J, Lichtenstein A. The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma. Leuk Lymphoma,2011,52(10),1857-1866.
    Kusaka G, Kimura H, Kusaka I, Perkins E, Nanda A, Zhang JH. Contribution of Src tyrosine kinase to cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg,2003,99,383-390.
    Landsberg JW, Yuan JX. Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci,2004,19,44-50.
    Lee JY, Sagher O, Keep R, Hua Y, Xi G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery,2009,65(2), 331-343.
    Liao Q, Shi DH, Zheng W, Xu XJ, Yu YH. Antiproliferation of cardamonin is involved in mTOR on aortic smooth muscle cells in high fructose-induced insulin resistance rats. Eur J Pharmacol,2010,641,179-186.
    Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res,1995,76, 412-417.
    McGirt MJ, Lynch JR, Blessing R, Warner DS, Friedman AH, Laskowitz DT. Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery,2002,51,1128-1134.
    Megyesi JF, Vollrath B, Cook DA, et al. In vivo animal models of cerebral vasospasm: a review. Neurosurgery,2000,46(2),448-460.
    Miwa K, Fujita M, Sasayama S. Recent insights in to the mechanism s, predisposing factors, and racial differences of coronary vasospasm. Heart Vessels,2005,20 (1),1-7.
    Pignataro G, Capone D, Polichetti G, Vinciguerra A, Gentile A, Di RG, Annunziato L. Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors:current and emerging therapeutic options. Curr Opin Pharmacol, 2011,11,378-394.
    Schwartz AY, Masago A, Sehba F.A., Bederson J.B Experimental models of subarachnoid hemorrhage in the rat:a refinement of the endovascular filament model. J Neurosci Meth 2000,96,161-167.
    Shirao S, Yoneda H, Ishihara H, Kajiwara K, Suzuki M. A proposed definition of symptomatic vasospasm based on treatment of cerebral vasospasm after subarachnoid hemorrhage in Japan:Consensus 2009, a project of the 25 Spasm Symposium. Surg Neurol,2011, Int 2,74.
    Varsos VG, Liszczak TM, Han DH, Kistler JP, Vielma J, Black PM, Heros RC, Zervas NT. Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine, or papaverine in a "two-hemorrhage" canine model. J. Neurosurg, 1983,58,11-17.
    Yamaguchi-Okada M, Nishizawa S, Koide M, et al. Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. J App 1 Physiol,2005,99 (5),2045-2052.
    Yamaguchi M, Zhou C, Nanda A, Zhang JH. Ras protein contributes to cerebral vasospasm in a canine double-hemorrhage model. Stroke,2004,35,1750-1755.
    Yan J, Chen C, Lei J, Yang L, Wang K, Liu J, Zhou C.2-methoxyestradiol reduces cerebral vasospasm after 48 hours of experimental subarachnoid hemorrhage in rats. Exp Neurol,2006,202,348-356.
    Zhang JH. Role of MAPK in cerebral vasospasm. Drug News Perspect,2001,14, 261-267.
    Zhang ZD, Macdonald RL. Contribution of the remodeling response to cerebral vasospasm. Neurol Res,2006,28(7),713-720.
    Zhou C, Yamaguchi M, Colohan AR, Zhang JH. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab,2005,25,572-582.
    Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab,2004,24, 419-431.
    Zoghbi HY, Okumura S, Laurent JP, Fishman MA. Acute effect of glycerol on net cerebrospinal fluid production in dogs. J Neurosurg,1985,63,759-762.
    Zuccarello M, Bonasso CL, Lewis AI, Sperelakis N, Rapoport RM. Relaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim. Stroke,1996,27(2),311-316.
    1. Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurismal subarachnoid hemorrhage:a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke,2009,40,994-1025.
    2. Schwartzl JH, Vajkoczy P, Macdonald RL, et al. Cerebral vasospasm:looking beyond vasoconstriction. Trends in Pharm Scien,2007,28,252-256.
    3. Crowley RW, Medel R, Kassell NF, et al. New insights in to the causes and therapy of cerebral vasospasm following subarachnoid hemorrhage. Drug Discov Today,2008,13 (5-6),254-260.
    4. Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage:the emerging revolution. Nat Clin Pract Neurol,2007,3(5),256-263
    5. Macdonald RL, Kassell NF, Mayer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1). Randomized, double-blind, placebo controlled phase 2 dose-finding trial. Stroke,2008,39,3015-3021.
    6. Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH.Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir,2011(S),110,43-48.
    7. Pluta R M., Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, Kasuya H, Wellman G, Keller E, Zauner A, Dorsch N, Clark J, Ono S, Kiris T, RouxP.L.,Zhang J.H.Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res.2009,31(2),151-158.
    8. Hansen-Schwartz J, Vajkoczy P, Macdonald RB, et al. Cerebral vasospasm:looking beyond vasoconstriction. Trends Pharma Sciences,2007,28(6),251-256.
    9. Zubkov AY, Tibbs RE, Clower B, Ogihara K, Aoki K, Zhang JH.Morphological changes of cerebral arteries in a canine double hemorrhage model. Neurosci Lett, 2002,326(2),137-141.
    10. Apenberg S, Freyberg MA, Friedl P. Shear stress induces apoptosis in vascular smooth muscle cells via an autocrine Fas/FasL pathway. Biochem Biophys Res Commun,2003,310(2),355-359.
    11. Wang X, Zhu C, Zhang G, Lu Y. Changes of endothelin during cerebral vasospasm after experimental subarachnoid hemorrhage. Chin Med J,1995, 108(8),586-590.
    12. Borel CO, McKee A, Parra A, Haglund MM, Solan A, Prabhakar V et al Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke,2003,34,427-433.
    13. Malik G, Abdulrauf S, Yang XY, Gutierrez JA, Rempel SA. Expression of transforming growth factor-beta complex in arteriovenous malformations. Neurol Med Chir,1998,38(S),161-164.
    14. Iuliano BA, Pluta RM, Jung C, Oldfield EH. Endothelial dysfunction in a primate model of cerebral vasospasm. J Neurosurg,2004,100(2),287-294.
    15. Barth M, Capelle HH, Manch E, et al. Effects of the selective endothelin A (ET-A) receptor antagon is Clazosen tanon cerebral perfusion and cerebral oxygenation following severe subarachnoid hemorrhage-preliminary results from a randomized clinical series. Acta Neurochir,2007,149 (9),911-918.
    16. Kawanabe Y, Masaki T, Hashimoto N. Involvement of phospholipase C in endothelin 1-induced stimulation of Ca++ channels and basilar artery contraction in rabbits. J Neurosurg,2006,105(2),288-293.
    17. Zhou C,Yamaguchi M, Kusaka G, et al. Caspase epidermal growth factor receptor protein tyrosine kinase transactivation in endothelin-1 induced vascular contraction. Neurosurg,2004,100,1066-1071.
    18. Sharma N, Cho DH, Kim SY, Bhattarai JP, Hwang PH, Han SK. Magnesium sulfate suppresses L-type calcium currents on the basilar artery smooth muscle cells in rabbits. Neurol Res,2012,34(3),291-296.
    19. Kikkawa Y, Matsuo S, Kameda K, Hirano M, Nakamizo A, Sasaki T, Hirano K. Mechanisms underlying potentiation of endothelin-1-induced myofilament Ca(2+) sensitization after subarachnoid hemorrhage. J Cereb Blood Flow Metab,2012, 32(2),341-352.
    20. Beg SA, Han sen-Schwartz JA, Vikman PJ, et al. ERK 1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET (B) and 5-HT (1B) receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab, 2006,26 (6),846-856.
    21. Ansar S, Maddahi A, Edvinsson L. Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage. BMC Neurosci,2011,27,12,107.
    22. Chrissobolis S, Sobey CG. Recent evidence for an involvement of rhokinase in cerebral vascular disease. Stroke,2006,37 (8),2174-2180.
    23. Tierney TS, Clatterbuck RE, Lawson C, et al. Prevention and reversal of experimental post hemorrhagic vasospasm by the periadventitial administration of nitric oxide from a controlled release polymer. Neurosurgery,2006,49 (5), 945-951.
    24. Cirak B, Kiymaz N, Ari HH, et al. The effects of endothel in antagonist BQ-610 on cerebral vascular wall following experimental subarachnoid hemorrhage and cerebral vasospasm.Clin Auton Res,2004,14 (3),197-201.
    25. Christopher G, H arrod MS, Bernard R, et al. Predict ion of cerebral vasospasm in patients presenting with an eurymal subarachnoid hemorrhage:a review. Neurosurg,2005,56 (4).633-652.
    26. Zhang JH. Role of MAPK in cerebral vasospasm. Drug News Perspect,2001,14, 261-267.
    27. Yamaguchi M, Zhou C, Nanda A, Zhang JH. Ras protein contributes to cerebral vasospasm in a canine double-hemorrhage model. Stroke,2004,35,1750-1755.
    28. Kusaka G, Ishikawa M, Nanda A, Zhang JH. Signaling pathways for early brain injury after subarachnoid haemorrhage. J Cereb Blood Flow Metab,2004,24 (8), 916-925.
    29. Shor B, Gibbons JJ, Abraham RT, Yu K:Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle,2009,8,3831-3837.
    30. Pignataro G, Capone D, Polichetti G, Vinciguerra A, Gentile A, Di GR and Annunziato L. Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors:current and emerging therapeutic options. Curr Opin Pharma,2011,11,378-394.
    31. Aoki K, Zubkov AY, Tibbs RE, Clower B, Ogihara K, Zhang JH. Role of MAPK in chronice cerebral vasspasm. Life Sci,2002,70(16),1901-1908.
    32. Miwa K, Fujita M, Sasayama S. Recent insights in to the mechanisms, predisposing factors, and racial differences of coronary vasospasm. Heart Vessels, 2005,20(1),1-7.
    33. Landsberg JW, Yuan JX. Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci,2004,19,44-50.
    34. Yamaguchi-Okada M, Nishizaw a S, Koide M, et al. Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. J Appl Physiol,2005,99 (5),2045-2052.
    35. Aihara Y, Jahromi BS, Yassari R, Takahashi M, Macdonald RL. Induction of housekeeping gene expression after subarachnoid hemorrhage in dogs. J Neurosci Methods.2008,15,172(1),1-7.
    36. Chandy D, Sy R, A ronow W S, et al. Hyponatremia and cerebrovascular spasm inaneurysmal subarachnoid hemorrhage. Neurol India,2006,54 (3),273-275.
    37. Hansen-Schwartz J. Cerebral vasospasm:A consideration of the various cellular mechanisms involved in the pathophysiology. Neuroerit Care,2004,1(2), 235-246.
    38. Obara K, N ish izaw a S, Koide M, el al. Interactive role of protein kinase C-delta with rho kinase in the development of cerebral vasospasm in a canine two-hemorrhage model. J Vasc Res,2005,42 (1),67-76.
    39. Pyne-Geithman GJ, Morgan CJ, Wagner K, et al. Bilirubin production and oxidation in CSF of patients with cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab,2005,25 (8),1070-1077.
    40. Clark JF, Sharp FR. Bilirub in oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab, 2006,26(10),1223-1233.
    41. Pluta RM Delayed cerebral vasospasm and nitric oxide:review, new hypothesis, and proposed treatment. Pharmacol Ther,2005,105 (1),23-56.
    42. Schoch B, Regel JP, W ich ert M, et al. Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. Neurosurgery,2007,60 (5),828-836.
    43. Chaichana KL, Pradilla G, Huang J, Tamargo RJ. Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. Surg Neurol,2009,5,1-20.
    44. Iseda K, Ono S, Onoda K, el al. Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J Neurosurg,2007, 107(1),128-135.
    45. Cahill J, Calvert JW, Solaroglu I, el al. Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke,2006,37 (7),1868-1874.
    46. Zhou C, Yamaguchi M, Colohan AR, et al. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab,2005,25 (5),572-582.
    47. Rothoerl RD, Ringel F. Molecular mechanisms of cerebral vasospasm following aneurysmal SAH. Neurol Res,2007,29(7),636-642.
    48. Nissim H, Nahum S. Upstream and downstream of mTOR. Genes Dev,2004,18 (16),1926-1945.
    49.唐琰,贡岳松,徐云根,尤启冬mTOR抑制剂的研究概况.有机化学,2011,31(7),1144-1154.
    50. Harris TE, Lawrence JC Jr. TOR signaling. Sci STKE,2003,212,re15.
    51. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science,2005,307, 1098-1101.
    52. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004,6,1122-1128.
    53. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM. mSinl is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 2006,16,1865-1870.
    54. Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta,2008,1784,116-132.
    55. Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol, 2005,17,158-166.
    56. Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XF. Chromatin-mediated regulation of nucleolar structure and RNA polymerase I localization by TOR. EMBO J,2003,22,6045-6056.
    57. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC, Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell,2006,21,521-531.
    58. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol,2004,14,1296-1302.
    59. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM:RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA,1998,95,1432-1437.
    60. Bhaskar PT, Hay N:The two TORCs and Akt. Dev Cell,2007,12,487-502.
    61. Chresta, CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, James D, Howard Z, Dudley P, Hughes G, Smith L, Maguire S, Hummersone M, Malagu K, Menear K, Jenkins R, Jacobsen M, Smith GC, Guichard S, Pass M. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res,2010,70,288-298.
    62. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycinresistant functions of mTORC 1. J Biol Chem,2009, 284,8023-8032.
    63. Hu Q, Chen C, Yan J, Yang X, Shi X, Zhao J, Lei J, Yang L, Wang K, Chen L, Huang H, Han J, Zhang JH, Zhou C Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusion-induced focal ischemia rat model. Exp Neurol.2009,216(1),35-46.
    64. Hu Q, Chen C, Khatibi NH, Li L, Yang L, Wang K, Han J, Duan W, Zhang JH, Zhou C.Lenti virus-mediated transfer of MMP-9 siRNA provides neuroprotection following focal ischemic brain injury in rats. Brain Res,2011,1367,347-359.
    65. Yan J, Chen C, Hu Q, Yang X, Lei J, Yang L, Wang K, Qin L, Huang H, Zhou C. The role of p53 in brain edema after 24h of experimental subarachnoid hemorrhage in a rat model. Exp Neurol,2008,214,37-46.
    66. Yang X, Chen C, Hu Q, Yan J, Zhou C. Gamma-secretase inhibitor (GSI1) attenuates morphological cerebral vasospasm in 24h after experimental subarachnoid hemorrhage in rats. Neurosci Lett,2010,469(3),385-390.
    67. Yan JH, Li L, Khatibi NH, Yang L, Wang K, Zhang WG, Martin RD, Han JY, Zhang J, Zhou CM. Blood-brain barrier disruption following subarchnoid hemorrhage may be facilitated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Experimental Neurology,2011,230, 240-247.
    68. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiology of Disease,2008,32, 329-339.
    69. Erlich S, Shohami E, Pinkas-Kramarski R. Neurodegeneration induces upregula-tion of Beclin 1. Autophagy,2006,2,49-51.
    70. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA. Rapamycin protects against neuron death in vitro and in vivo models of Parkinson's disease. J Neurosci,2010,30,1166-1175.
    71. Li W, Petrimpol M, Molle KD, Hall MN, Battegay EJ, Humar R. Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Circ Res,2007,100,79-87.
    72. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulkl. Nat Cell Biol,2011,13(2),132-141.
    73. Egan D, Kim J, Shaw RJ, Guan KL. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy, 2011,7(6),643-644.
    74. Gao G, Li JJ, Li Y, Li D, Wang Y, Wang L, Tang XD, Walsh MP, Gui Y, Zheng XL Rapamycin inhibits hydrogen peroxide-induced loss of vascular contractility. Am J Physiol Heart Circ Physiol,2011,300(5), H1583-1594.
    75. Kida T, Chuma H, Murata T, Yamawaki H, Matsumoto S, Hori M, Ozaki H. Chronic treatment with PDGF-BB and endothelin-1 synergistically induces vascular hyperplasia and loss of contractility in organ-cultured rat tail artery. Atherosclerosis,2011,214(2),288-294.
    76. Chang CZ, Wu SC, Kwan AL, Lin CL, Hwang SL.6-Mercaptopurine reverses experimental vasospasm and alleviates the production of endothelins in NO-independent mechanism-a laboratory study. Acta Neurochir (Wien),2011, 153(4),939-949.
    77. Sharma N, Cho DH, Kim SY, Bhattarai JP, Hwang PH, Han SK. Magnesium sulfate suppresses L-type calcium currents on the basilar artery smooth muscle cells in rabbits. Neurol Res,2012,34(3),291-296.
    78. Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid haemorrhage.J Cereb Blood Flow Metab,2004,24 (4),419-431.
    79. Endo H, Nito C, Kamada H, Yu F, Chan PH.Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab,2007,27(5),975-982.
    80. Niizuma K, Endo H, Chan PH.Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem,2009,109 (S-1),133-138.
    81. Pradilla G, Wang PP, Legnani FG, et al. Prevention of vasospasm by anti-CD11/CD 18 monoclonal antibody therapy following subarachnoid hemorrhage in rabbits. J Neurosurg,2004,101,88-92.
    82. Maddahi A, Ansar S, Chen Q, Edvinsson L. Blockade of the MEK/ERK pathway with a RAF inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab,2011,31(1),144-154.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.