基于TCSC和SVC的电力系统次同步振荡抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路中使用串联电容补偿,可减少输电损耗,增加传输容量,提升经济效益。而当采用了串补的输电系统中的汽轮发电机组受到扰动时,就会因机网耦合而彼此互激,发生次同步谐振。大功率半导体技术的发展大大推进了柔性输电的进步,FACTS设备在电力系统各方面研究中得到了广泛的应用,在抑制次同步振荡上也不例外
     本文首先介绍了次同步振荡的主要研究内容,并对汽轮发电机轴系的模型进行了详细分析,阐述了SSDC一般设计思路和本文中所采用的设计过程。然后分别研究了采用TCSC和SVC抑制次同步振荡。
     针对TCSC常规控制无法阻尼系统次同步振荡的问题,分别采用分模态控制方法和改进模态控制方法在TCSC开环控制上附加次同步阻尼控制器。基于IEEE次同步第一测试模型进行了电气阻尼分析和时域仿真分析,而且考虑了TCSC安装位置的影响。而对电力系统中常用TCSC配合固定电容进行补偿的问题,对二者不同配比设计控制器,并分析了附加次同步阻尼控制器之后的电气阻尼。PSCAD/EMTDC中的暂态仿真验证了电气阻尼分析的结果。
     SVC在电力系统中得到了广泛的应用,然而SVC的开环控制和闭环自动电压调节无法有效阻尼系统次同步振荡,因而文中基于分模态控制方法设计了附加次同步阻尼控制器。分析了SVC开环控制上附加该控制器之后的电气阻尼,并研究了将所设计的SVC移动到其他位置和容量变化时的电气阻尼,最后采用时域仿真验证了所设计的次同步阻尼控制器的有效性。
Series capacitors compensation is widely used in transmission lines to cut down losses, enhance the transmission capability and thus promote economic benefits. However, disturbance in power systems with series capacitors compensated in transmission lines would raise the danger of subsynchronous resonance (SSR). Development in power electronics advances flexible AC transmission systems (FACTS) greatly, which contributes the widely use of FACTS device in all fields of power systems research, and damping of subsynchronous oscillation (SSO) is no exception.
     A brief introduction is made to the main content of SSO research in this paper firstly, along with detailed analysis of the modeling of a turbogenerator shaft system. After a summarily presentation of principles of FACTS for SSO mitigation, a procedure of designing Supplementary Subsynchronous Damping Controller(SSDC) applied in this thesis is given. Then it comes to the main part of the paper:research on damping of SSO using Thyristor Controlled Series Capacitor (TCSC) and Static Var compensator (SVC).
     Given the fact that it's almost impossible to suppress SSO for TCSC with conventional control methodologies, a SSDC is designed, adopting sub-modal control method and modified modal control method separately. The effectiveness of the controller is validated using modified IEEE SSR first benchmark model by means of electrical damping analysis and time domain simulation, taken the location of TCSC into consideration. Knowing that TCSC is always used together with fixed capacitor, so according to different ratio of TCSC/fixed capacitor, different controller parameters are given, and then the electrical damping is evaluated for benchmark model with TCSC and its SSDC. Finally time domain simulation in PSCAD/EMTDC is employed to verify the results of electrical damping analysis, that is the SSDC can mitigate SSO successfully.
     Static Var compensator (SVC) is widely used in power systems for its strong ability of voltage control and reactive power support but comparatively low cost, however neither SVC open-loop control nor closed-loop with automatic voltage regulator (AVR) is proved to be effective to mitigate SSO. Based on the idea of sub-modal control, a SSDC is designed to solve the SSO problem. The electrical damping of SVC with the designed SSDC is obtained, using the test signal method, the electrical damping when the location of SVC and rated capacity changes is also acquired. At last, the effectiveness of the SSDC is verified by time domain simulation carried out in PSCAD/EMTDC.
引文
[1]IEEE Committee Report. Reader's guide to subsynchronous resonance[J]. IEEE Transactions on Power Systems,1992,7(1):150-157.
    [2]Rustebakke H M, Concordia C. Self-excited oscillations in a transmission system using series capacitors[J]. IEEE Transactions on Power Apparatus and Systems,1970,89(7):1504-1512.
    [3]程时杰,曹一家,江全元.电力系统磁同步振荡的理论与方法[M].北京:科学出版社,2009.
    [4]Walker D N, Bowler C E J, Jackson R L, et al. Results of subsynchronous resonance test at Mohave[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(5):1878-1889.
    [5]Mortensen K, Larsen E V, Piwko R J. Field tests and analysis of torsional interaction between the Coal Creek turbine-generators and the CU HVDC systems[J]. IEEE Transactions on Power Apparatus and Systems, 1981,100(1):336-344.
    [6]Yacamimi R. How HVDC schemes can excite torsional oscillations in turbo-alternator shafts[C]. Proceedings of IEE-Generation, Transmission and Distribution,1986,133(6),301-307.
    [7]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [8]国家电网公司建设运行部,中国电力科学研究院.灵活交流输电技术在国家骨干电网中的工程应用[M].北京:中国电力出版社,2008.
    [9]谢小荣,姜齐荣.柔性交流输电系统的原理与应用[M].北京:清华大学出版社,2006.
    [10]IEEE Subsynchronous Resonance Working Group. First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems,1977,96(5):1565-1572.
    [11]IEEE Subsynchronous Resonance Working Group. Second benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(5):1057-1066.
    [12]IEEE Subsynchronous Resonance Working Group. Proposed terms and definitions for subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems,1980,99(2):506-511.
    [13]IEEE Subsynchronous Resonance Working Group. Terms, definitions and symbols for subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(6):1326-1334.
    [14]IEEE Committee Report. A bibliography for the study of subsynchronous resonance between rotating machines and power systems[J]. IEEE Transactions on Power Apparatus and Systems,1976,95(1):216-218.
    [15]IEEE Committee Report. First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems[J]. IEEE Transactions on Power Apparatus and Systems,1979,98(6):1872-1875.
    [16]IEEE Committee Report. Second Supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems[J]. IEEE Transactions on Power Apparatus and Systems, 1985,104(2):321-327.
    [17]IEEE Committee Report. Third supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems[J]. IEEE Transactions on Power Systems,1991,6(2):830-834.
    [18]IEEE Committee Report. Fourth supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems[J]. IEEE Transactions on Power Systems,1997,12(3):1276-1282.
    [19]葛俊,童陆园,耿俊成,等.TCSC抑制次同步谐振的机理研究及其参数设计[J].中国电机工程学报,2002,22(6):25-29.
    [20]康海燕,王西田.TCSC次同步频率阻抗特性及其抑制SSR的参数设计[J].电力系统及其自动化学报,2008,20(5):91-96.
    [21]唐酿,肖湘宁,李伟,等.HVDC附加次同步阻尼控制器设计及其相位补偿分析[J].高电压技术,2011,37(4):1015-1021.
    [22]蒋平,栗楠.PSS和SVC联合抑制次同步振荡[J].电力自动化设备,2010,30(7):40-45.
    [23]汤凡,刘天琪,李兴源.电力系统稳定器及附加励磁阻尼控制器对次同步谐振的影响[J].电网技术,2010,34(8):36-40.
    [24]庞亚东,白秀娟.基于SVC抑制次同步谐振的应用研究[J].电力系统,2010,29(17):32-35.
    [25]李志鹏,谢小荣.应用静止同步补偿器抑制次同步谐振的模态互补电流控制方法[J].中国电机工程学报,2010,30(34):22-27.
    [26]刘敏,周孝信,田芳,朱旭凯.抑制次同步振荡的可控串补附加阻尼控制[J].电网技术,2010,34(10):65-70.
    [27]Perkins B K, Iravani M R. Dynamic modeling of a TCSC with application to SSR analysis[J]. IEEE Transactions on Power Systems,1997, 12(4):1619-1625.
    [28]吕世荣,刘晓鹏,郭强,夏道止.TCSC对抑制次同步谐振的机理分析[J].电力系统自动化,1999,23(6):14-18.
    [29]Pilotto L A S, Bianco A, Long W F, et al. Impact of TCSC control methodologies on subsynchronous oscillations[J]. IEEE Transactions on Power Delivery, 2003,18(1):243-252.
    [30]Putman T H, Ramey D G. Theory of the modulated reactance solution for subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems,1982,101 (6):1527-1535.
    [31]张帆,徐政.采用SVC抑制发电机次同步谐振的理论与实践[J].高电压技术,2007,33(3):26-31.
    [32]张静,徐政,郑翔,裘鹏.SVC抑制SSR的机理及控制器设计[J].南方电网技术,2010,4(3):57-61.
    [33]IEEE Subsynchronous Resonance Working Group. Countermeasures to subsynchronous resonance problems [J]. IEEE Trans on Power Apparatus and Systems,1980,99(5):1810-1818.
    [34]Keshavan B K, Prabhu N. Damping of subsynchronous oscillations using STATCOM-A FACTS controller[C]. Intemational Conference on Power System Technology,2004:12-16.
    [35]Rai D, Ramakrishna G, Faried S O, et al. Damping subsynchronous resonance using a STATCOM operating in a phase imbalanced mode[C]. Power & Energy Society General Meeting,2009:1-8.
    [36]Padiyar K R, Prabhu N. Design and performance evaluation of subsynchronous damping controller with STATCOM[J]. IEEE Transactions on Power Delivery, 2006,21 (3):1398-1405.
    [37]Salemnia A, Khederzadeh M, Ghorbani A. Mitigation of subsynchronous oscillations by 48-pulse VSC STATCOM using remote signal[C]. IEEE Bucharest Power Tech Conference,2009:1-7.
    [38]郑翔,徐政,屠卿瑞,等.静止同步串联补偿器次同步谐振多模式阻尼控制器设计[J].高电压技术,2011,37(9):2321-2327.
    [39](加)Mathur R M,(印)Varma R K.基于晶闸管的柔性交流输电控制装置.徐政,译.北京:机械工业出版社,2005:291-309.
    [40]杨秀,王西田,陈陈.高压直流输电系统逆变站对次同步振荡的影响及鲁棒控制设计[J].上海交通大学学报,2005,39(S 1):31-35.
    [41]徐政.复转矩系数法的适用性分析及其时域仿真实现[J].中国电机工程学报,2000,20(6):1-4.
    [42]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [43]Wang Li, Lee Ching-Huei. Stabilizing torsional oscillations using a shunt reactor controller[J]. IEEE Transactions on Energy Conversion, 1991,6(3):373-380.
    [44]Patil K V, Senthil J, Jiang J, et al. Application of STATCOM for damping torsional oscillations in series compensated ac systems[J]. IEEE Transactions on Energy Conversion,1998,13(3):237-243.
    [45]刘敏,周孝信,田芳.采用主备方式的TCSC次同步振荡附加阻尼控制策略[J].电力系统自动化,2011,35(11):8-14.
    [46]Lawson K D, Brown N L. Bandpass filter having low passband phase shift[P]. US,4189681, 1980-02-19.
    [47]郑翔,徐政,张静.TCSC次同步谐振附加阻尼控制器[J].电工技术学报,2011,26(2):181-186.
    [48]HSU Yuan-Yih., Wu Chi Ji. Design of PID static var controllers for the damping of subsynchronous oscillations[J]. IEEE Transaction on Energy Conversion,1988,3(2):210-216.
    [49]Hammad A E, El-Sadek M. Application of a thyristor controlled var compensator for damping subsynchronous oscillations in power systems[J]. IEEE Transactions on Power Apparatus and Systems,1984,103(1):198-212
    [50]Iravani M R, Mathur R M. Damping subsynchronous oscillations in power systems using a static phase-shifter[J]. IEEE Transactions on Power Systems, 1986,1 (2):76-82.
    [51]Lee Shun, Liu Chun-Chang. Damping subsynchronous resonance using a SIMO shunt reactor controller[J]. IEEE Transactions on Power Systems, 1994,9(3):1253-1262.
    [52]张帆,徐政.TCSC对发电机组次同步谐振阻尼特性影响研究[J].高电压技术,2005,31(3):68-70.
    [53]张远取,谢小荣,姜齐荣.应用附加励磁阻尼控制抑制HVDC引起的次同步振荡[J].电力系统保护与控制,2010,38(4):1-5.
    [54]曹路,陈珩.可控串联补偿抑制次同步谐振的机理[J].电力系统自动化,2001,25(4):25-30.
    [55]周长春,刘前进,Lennart Angquist,等.抑制次同步谐振的TCSC主动阻尼控制[J].中国电机工程学报,2008,28(10):130-135.
    [56]张丹.高压直流输电系统次同步振荡的特征值分析与控制[D].北京:华北电力大学,2011.
    [57]Ramey D G, Kimmel D S, Dorney J W, et al. Dynamic stabilizer verification tests at the San Juan station[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(12):5011-5019.
    [58]张象荣.SSR-DS装置在国华锦能电厂的应用[J].科技致富向导2011(29):1-3.
    [59]张帆.电力系统次同步振荡抑制技术研究[D].浙江:浙江大学,2007.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.