大挠性航天板状结构智能振动与形状控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型柔性板状结构系统的控制技术可应用于空间系统、航天器及主动光学等领域,大型柔性板状结构是典型的轻质柔性结构系统,此类系统为分布式参数系统,其阻尼弱、低频模态密集且模态参数具有不确定性。再者,控制系统性能指标要求高指向精度、高形状控制精度以及结构模态密集问题使得结构振动与形状控制问题更为棘手。本文侧重研究大型柔性板状结构的智能高精度振动与形状控制,其中考虑到系统高阶模态频率、高维数、多输入多输出性质、边界条件以及作动器/传感器的可靠性等因素的影响,大型柔性板状结构动力学系统的不确定问题归因于高非线性。本文着重研究了结构的建模以及结构振动与形状控制系统设计相关非线性问题,其主要工作如下:
     首先,为了确保控制系统测可控性、可观性以及高效能量利用,需要优化设计系统。本文将多种智能算法应用于大型柔性板状结构振动与形状控制中的三类优化配置问题。第一类问题是大型柔性空间板状结构的压电作动器位置优化配置。第二类问题是大型柔性空间板状结构的压电作动器数量优化配置。第三类问题是大型柔性空间板状结构的压电作动器方向优化配置。优化配置作动器优所使用的化适应度函数是以应变片所测表面应力为基础的,其优点在于可将适应度函数与优化问题相对独立因而便于求解。相比之前的研究工作,该优化方法更适应于板状结构几何形状复杂以及适应度函数难以求导的情况。通过与之前的研究成果对比仿真分析表明智能优化算法具有良好的优化效果。
     其次,应用新的建模方法构建了详细、完整、准确的大型柔性板状结构动力学模型。该模型的优点在于考虑了结构的主要模态因而更好的避免了“溢出”现象。此外,该模型为降阶模型且因其形式简单便易于大型柔性板状结构振动与形状控制器的设计,更重要的是避免了由控制溢出与观测溢出而导致的系统不稳定现象。最后,通过圆形板与矩形板的建模分析,证明了建模方法的有效性。
     第三,本文通过计算仿真与分析并引入了多种智能控制算法用于大型柔性板状结构的振动与形状控制。仿真结果表明与传统控制算法相比,智能控制策略可更好地用于大型柔性板状结构的振动与形状控制,原因在于智能振动与形状控制系统能够更好地处理复杂、不确定性、非线性时变因素。
     最后,通过建立智能振动与形状控制实验系统证明了动力学建模方法、多目标智能优化算法、多种智能控制策略的有效性。
The control of large flexible space plate-like structure systems has application to control of spacesystems, aircraft and active optics, to name a few. Large flexible space plate-like structure systems aretypically lightweight and highly flexible. These systems have distributed-parameter dynamics; theirnatural damping is very small; they have many densely packed low-frequency modes; and their modelparameters are uncertain. Moreover, performance requirements such as pointing accuracy, shapecontrol, and bandwidth are very stringent and make the problem of structural vibration more acute.
     This dissertation is concerned with the intelligent high precision shape and vibration control oflarge flexible space plate-like structures. The dynamics of large flexible space plate-like structuresystems is uncertain due to factors such as high non-linearity, consideration of higher modalfrequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well asunexpected failures of sensors and/or actuators. This dissertation addresses the modeling of thesestructures and the associated vibration and shape control system design technique. Essentially thisthesis consists of four primary sections.
     Firstly, to ensure the highest energy efficiency, controllability, and observability of the system aprocess of optimization is described. This thesis uses several kinds of intelligent algorithms to solvethree optimization problems for vibration and shape control of the large flexible space plate-likestructure. The first problem optimizes the position of a single group of piezoelectric actuators on thelarge flexible space plate-like structure. The second problem optimizes the activation of apre-determined number of actuators. The third problem optimizes the orientation of a single组ofpiezoelectric actuators on the large flexible space plate-like structure. The fitness function foroptimization is determined form the surface strain measured at a strain sensor for the activation ofeach possible actuator. The advantage of this method lies in the decoupling of the fitness functionformulation from the optimization. In comparison to previous approaches, this allows optimization onmuch more complex geometries where the derivation of an analytical fitness function is prohibitive orimpossible. The optimization results obtained through simulation are verified through a comparisonwith results obtained from a report in the existing literature. The agreement between results fromsimulation and experiment demonstrates the validity of the optimizations.
     Secondly, a novel modeling method is proposed for flexible space plate-like structure. An explicit,complete, and accurate dynamic mode of large flexible space plate-like structure system is developedusing the proposed new modeling method. The advantage of this type of modeling is that the main mode of vibrations wherein the total energy is concentrated are accommodated thereby avoiding theso-called “spillover” phenomenon. The new model is reduced order model and it is used in designingcontroller for flexible space plate-like structure due to its simplicity, however, it doesn’t lead tocontrol spillover effect which tends to degrade the performance or even destabilize. Besides, the newmodel can facilitate the design of controller. The new modeling method is validated throughcomparative analyses on examples circular plate structure and rectangular plate structure.
     Thirdly, thesis develops and evaluates several kinds of intelligent strategies for vibration and shapecontrol of large flexible space plate-like structures through computer simulation and experiment.Simulation and experiment results show that intelligent strategies can more effectively vibration andshape control of large flexible space plate-like structures when compared with conventional algorithm.The intelligent vibration and shape control system can be capable of handing complexity, uncertainty,nonlinearity, and variations with time.
     Finally, the experiment system of intelligent vibration and shape control validate modeling method,muti-objects optimization algorithm and intelligent control strategies.
引文
[1] Glasstone S. Sourcebook on the Space Sciences[M]. D.Van Nostrand Co.,Princeton, NewJersey,1965:158~171.
    [2] Hughes P C C. Spacecraft Attitude Dynamics[M]. John Wiley&Sons,New York, N.Y.,Dover Publications,1986:409~410.
    [3] Likins P. Spacecraft Attitude Dynamics and Control-A Personal Perspective on EarlyDevelopments[J]. Journal of Guidance,Control,and Dynamics,1986,9(2):129~134.
    [4] Balas M. Trends in large space structure control theory: fondest hopes, wildest dreams[J].Automatic Control, IEEE Transactions on, IEEE,1982,27(3):522~535.
    [5] Tzou H S, Tseng C I. Distributed piezoelectric sensor/actuator design for dynamicmeasurement/control of distributed parameter systems: a piezoelectric finite element[J].Journal of Sound and Vibration, Elsevier,1990,138(1):17~34.
    [6] Tzou H S. Piezoelectric shells-Distributed sensing and control of continua[J]. Dordrecht,Netherlands: Kluwer Academic Publishers(Solid Mechanics and Its Applications,1993,19.
    [7] Shen N H. Analysis of beams containing piezoelectric sensors and actuator[J]. SmartMaterials and Structures, IOP Publishing,1999,3(4):439.
    [8] CHANG F U K U O, HA S K, Keilers C. Finite element analysis of composite structurescontaining distributed piezoceramic sensors and acuators[J]. AIAA journal,1992,30(3):772~780.
    [9] Crawley, E.F. and Lazarus K B. Induced strain actuation of isotropic and anisotropic plates[J].AIAA journal,2012,29(6):944~951.
    [10] Chopra I. Smart Structures theory[M]. University of Maryland, College Park, MD,2000:8~18.
    [11] Akella P, Chen X, Cheng W, et al. Modeling and control of smart structures with bondedpeizoelectric sensors and actuators[J]. Smart Materials and Structures, IOP Publishing,1999,3(3):344.
    [12] Rao, V. and Damle, R. and Tebbe, C. and Kern F. Adaptive control of smart structures usingneural networks[J]. Smart Materials and Structures,1999,3(3):354.
    [13] Chen C Q, Shen Y P. Optimal control of active structures with piezoelectric modal sensorsand acuators[J]. Smart materials and structures, IOP Publishing,1999,6(4):403.
    [14] Butler R, Rao V. A state space modeling and control method for multivariable smart structuralsystems[J]. Smart materials and structures, IOP Publishing,1999,5(4):386.
    [15] Kar, I.N. and Seto K and others. Multimode vibration control of a flexible structure using H∞based robust control[J]. Mechatronics, IEEE/ASME Transactions on,2000,5(1):23~31.
    [16] Song G, Sethi V, Li H N. Vibration control of civil structures using piezoceramic smartmaterials: A review[J]. Engineering Structures,2006,28:1513~1524.
    [17] Saadat, S. and Salichs, J. and Noori, M. and Hou, Z. and Davoodi, H. and Bar-On, I. andSuzuki, Y. and Masuda A. An overview of vibration and seismic applications of NiTi shapememory alloy[J]. Smart Materials and Structures,2002,11(2):218.
    [18] Pablo F, Osmont D, Ohayon R. Thin Plate Electrostrictive Element for Active VibrationControl[C].OFFICE NATIONAL D ETUDES ET DE RECHERCHES AEROSPATIALESONERA-PUBLICATIONS-TP. INFORMATION SCIENTIFIQUE ET TECHNIQUE ET,2001(42).
    [19] Yalcintas, M. and Dai H. Magnetorheological and electrorheological materials in adaptivestructures and their performance comparison[J]. Smart materials and structures,1999,8(5):560.
    [20] Charon W, Baier H, Charon, W. and Baier H. Active damping and compensation of satelliteappendages[M]. Graz International Astronautical Federation Congress,1993,1:16~22.
    [21] de Weck, O. and Hollister W. Challenges and solutions for low-area-density spacecraftcomponents application to ultra-in solar panel technology[C].Defense&Civil space programsconference and thexhibit.1998:28~30.
    [22] Q. Hu, G. Ma C L. Active vibration control of a flexible plate structure using LMI-basedoutput feedback control law[C].Proceedings of the5World Congress on Intelligent Controland Automation.2004:738~742.
    [23] Kar I N, Miyakura T, Seto K. Bending and torsional vibration control of a flexible platestructure using based robust control law[J]. Control Systems Technology, IEEE Transactionson, IEEE,2000,8(3):545~553.
    [24] Xianmin Z, Changjian S, Erdman A G. Active vibration controller design and comparisonstudy of flexible linkage mechanism systems[J]. Mechanism and machine theory, Elsevier,2002,37(9):985~997.
    [25] Mat Darus I Z, Tokhi M O. Soft computing adaptive active vibration control of flexiblestructures[D]. Engineering Applications of Artificial Intelligence, Elsevier,2005,18(1):93~114.
    [26] Clark, R.L. and Saunders, W.R. and Gibbs G P. Adaptive Structures Dynamics andControl[M]. Wiley New York,1998,28(2).
    [27] Kar I N, Miyakura T, Seto K. Bending and torsional vibration control of a flexible platestructures using based robust control law[J]. Control Systems Technology, IEEE Transactionson, IEEE,2000,8(3):545~553.
    [28] Sadri, AM and Wynne, RJ and Wright J. Robust strategies for active vibration control ofplate-like structures: theory and experiment[J]. Proceedings of the Institution of MechanicalEngineers, Part I: Journal of Systems and Control Engineering,1999,213(6):489~04.
    [29]孙东昌,王大钧.智能板振动控制的分布压电单元法[J].力学学报,1996,28(6):692~699.
    [30]蔡炜,李山青,杨耀文, et al.压电层合板结构振动控制的有限元法[J].固体力学学报,1998,19(1):45~52.
    [31]殷学纲,李宾.点式压电智能柔性板振动主动控制的建模与仿真[J].噪声与振动控制,1999(5):16~20.
    [32]方有亮,武哲.复合材料板变形最优控制的数值分析[J].北京航空航天大学学报,1999,25(2):176~179.
    [33]唐纪晔,黄海,夏人伟.压电复合材料层合板自适应结构的振动控制[J].计算力学学报,2000,17:4.
    [34]王树和,严宗达.智能板模态传感与控制的数值分析[J].计算力学学报,2001,18(8):273~277.
    [35]张妃二,姚立宁.复合材料层合板智能结构主动振动控制的边界元法[J].振动与冲击,2003,22(1):40~42.
    [36]陈亚梅.基于形状记忆合金的太阳帆板的变结构控制[J].机械制造与自动化,2009,38(3):6~7.
    [37] Qiu, Z. and Ye, C. and Wei J. Experimental Study on Sliding Mode Variable StructureVibration Control for Piezoelectric Cantilever Plate[C].2008. WCICA2008.7th WorldCongress on Intelligent Control and Automation.2008:1864~1868.
    [38] Qiu, Z. and Wu, H. and Zhang D. Experimental researches on sliding mode active vibrationcontrol of flexible piezoelectric cantilever plate integrated gyroscope[J]. Thin-WalledStructures,2009,47(8):836~846.
    [39]周连文,周军,李卫华.挠性航天器姿态机动的主动振动控制[J].火力与指挥控制,2006,31(6):31~33.
    [40]蒋建平.航天器太阳能帆板智能结构动力学建模与分散化振动控制研究[D].[博士学位论文].长沙:国防科学技术大学,2009.
    [41] Modi V. Attitude Dynamics of Satellites with Flexible Appendages-a Brief Review[J]. Journalof Spacecraft and Rockets,1974,11:743~751.
    [42] Nurre, GS and Ryan, RS and Scofield, HN and Sims J. Dynamics and Control of Large SpaceStructures[J]. Journal of Guidance, Control, and Dynamics,1984,7(5):514~525.
    [43] Kuang, J. and Meehan, P.A. and Leung, AYT and Tan S. Nonlinear dynamics of a satellitewith deployable solar panel arrays[J]. International Journal of Non-Linear Mechanics,2004,39(7):1161~1179.
    [44] Dario Izzo, Lorenzo Perrazzi and C V. A comparison between models of flexiblespacecraft[M].2005.
    [45] A.Banerjee. Block diagonal equations for multibody elasto-dynamics with geometric stiffnessand constraints[J]. J. Guidance, Control, and Dynamics,1993,16(6):1092~1100.
    [46] Bajodah A H, Hodges D H, Chen Y H. New form of Kane’s equation of motion forconstrained systems[J]. Journal of guidance, control, and dynamics,2003,26(1):79~88.
    [47] Meghdari A, Fahimi F. On the first-order decoupling of dynamical equations of motion forelastic multibody system as applied to a two-link flexible manipulator[J]. Multibody SystemDynamics, Springer,2001,5(1):1~20.
    [48] Stefan Von Dombrowski R S. Analysis of large flexible body deformationin multibodysystems using absolute coordinates[J]. Advances in Computational Multibody Dynamics,1999,1(20):20~23.
    [49] Modi, VJ and Ibrahim A. A general formulation for librational dynamics of spacecraft withdeploying appendages[J]. Journal of Guidance, Control, and Dynamics,1984,7:563~569.
    [50] Yang J B, Jiang L J, Chen D. Dynamic modeling and control of a rotating Euler-Bernoullibeam[J]. Journal of sound and vibration, Elsevier,2004,274(3):863~875.
    [51] Yoo, HH and CHUNG J. Dynamics of rectangular plates undergoing prescribed overallmotion[J]. Journal of Sound and Vibration,2001,239(1):123~137.
    [52] Yoo, HH and Pierre C. Modal characteristic of a rotating rectangular cantilever plate[J].Journal of sound and vibration,2003,259(1):81~96.
    [53]王建明,洪嘉振,刘又午.刚柔耦合系统动力学建模新方法[J].振动工程学报,2003,16(002):194~197.
    [54]蒋丽忠,洪嘉振.带柔性部件卫星耦合动力学建模理论及仿真[J].宇航学报,2000,21(3):39~44.
    [55]刘锦阳,洪嘉振.刚柔耦合动力学系统的建模理论研究[J].力学学报,2002,34(3):408~415.
    [56]刘锦阳,洪嘉振.柔性梁的刚-柔耦合动力学特性研究[J].振动工程学报,2002,15(2):194~198.
    [57]胡振东,洪嘉振.刚柔耦合系统动力学建模及分析[J].应用数学和力学,1999,20(10):1087~1093.
    [58]杨辉,洪嘉振,余征跃.刚-柔耦合多体系统建模与数值仿真[J].计算力学学报,1999,20(4):402~408.
    [59]蔡国平,洪嘉振.中心刚体-柔性悬臂梁系统的动力学特性研究[J].宇航学报,2004,25(3):248~253.
    [60]杨辉,洪嘉振,余征跃.一类刚-柔耦合系统的模态特性与实验研究[J].宇航学报,2002,23(2):67~72.
    [61]蒋建平,李东旭.航天器挠性附件刚柔耦合动力学建模与仿真[J].宇航学报,2005,26(003):270~274.
    [62]蒋建平,李东旭.带挠性附件航天器刚柔耦合动力学[J].上海航天,2005,22(5):24~27.
    [63]金国光,刘又午.带有空间伸展机构的复杂航天器柔性多体动力学分析[J].中国机械工程,2000,11(6):650~653.
    [64]曲广吉,程道生.复合柔性结构航天器动力学建模研究[J].中国工程科学,1999,1(2):52~56.
    [65]刘才山,阎绍泽.基于Hamilton原理的柔性多体系统动力学建模方法[J].导弹与航天运载技术,1999(5):32~36.
    [66]肖建强,章定国.转动刚体上柔性悬臂梁的动力学建模与仿真[J].机械科学与技术,2005,24(1):45~47.
    [67] Low, KH and Lau M W S. Experimental investigation of the boundary condition of slewingbeams using a high-speed camera system[J]. Mechanism and machine theory,1995,30(4):629~643.
    [68] C.E.etc W A D&Sm. Vibration mode of centrifugal stiffened beam[J]. Journal of AppliedMechanics,1982,49:197~202.
    [69]肖世富,陈滨.一类刚柔耦合系统柔体模态分析的特征[J].中国空间科学技术,1998,18(4):8~13.
    [70]黄文虎,王心清,张景绘等.航天柔性结构振动控制的若干新进展[J].力学进展,1997,27(1):5~18.
    [71] J B R. Identification of Nonlinear Joints in a Truss Structure[C].AIAA ASME AdaptiveStructures Forum,Hilton Head,Apr.21-22,1994,USA.1994:402~410.
    [72]缪炳祺,曲广吉.柔性航天器的动力学建模问题[J].中国空间科学技术,1999,19(5):35~40.
    [73]杨辉.刚-柔耦合动力学系统的建模理论与实验研究[D].[博士学位论文].上海:上海交通大学,2002.
    [74]王毅,吴德隆.航天柔性多体动力学及其发展[J].导弹与航天运载技术,1995(7):7~18.
    [75]洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学[J].力学进展,2000,30(1):15~20.
    [76] Mackerle J. Smart Materials and Structures-a Finite-Element Approach:aBibliography(1986~1997)[J]. Modelling Simul. Mater. Sci. Eng.,1998,6(3):293~334.
    [77] Ulrich Gabbert, Heinz Koppe E. Overall Design of Actively Controlled Smart Structures bythe Finite Element Menod[C].Signal Proceeding,and Control in Smart Structures,Proceedingof SPIE Modeling.2001:113~121.
    [78] Chen, J.C. and Fanson J L. System identification test using active members[J]. AIAA journal,1991,29(4):633~640.
    [79] Chen, J.C. and Fanson J L. On-orbit Vibration Testing for Space Structures[J]. ActaAstronautica,1990,21(6):457~466.
    [80] Kuo, CP and Chen, G.S. and Pham, P. and Wada B. On Orbit System Identification UsingActive Members[C].Proc of the31st AIAA/SDM Conference.1990:2306~2316.
    [81] Wada B K G J A. Summary of Adaptive Structures at Jet PropulsionLaboratory[C].Proceedings of the.International Symposium on Aerospace and FluidScience,Sendai,Japan.1993:14~16.
    [82] C J Swigert R L F. Electronic Damping of Orogonal Bending Modes in a CylindricalMast:eory and Experiments[J]. Journal of Spacecraft,1981,18(1):5~17.
    [83] Liu W, Hou Z K, Demetriou M A. A computational scheme for the optimal sensor/actuatorplacement of flexible structures using spatial H2measures[J]. Mechanical Systems and SignalProcessing,2006,20:881~895.
    [84] Maghami P G, Joshit S M. Sensor-Actuator Placement for Flexible Structures with ActuatorDynamics[J]. Journal of guidance, control, and dynamics,1993,16(2):301~307.
    [85] Zhu, Y. and Qiu, J. and Du, H. and Tani J. Simultaneous Structural-Control Optimization of aCoupled Structural-Acoustic Enclosure[J]. Journal of intelligent material systems andstructures,2003,14(4-5):287~296.
    [86] Hughes P C, Skelton R E. Stability, controllability and observability of linearmatrix-second-order systems[J]. Journal of Applied Mechanics,1980,47(2):415~420.
    [87] Hughes P C, Skelton R E. Controllabillity and observability of general linearlumped-parameter systems[J]. Joint Automatic Control Conference, Denver, Colo,1979:56~62.
    [88] Zhu, Y. and Qiu, J. and Tani, J. and Urushiyama, Y. and Hontani Y. Simultaneousoptimization of structure and control for vibration suppression[J]. Journal of vibration andacoustics,1999,121(2):237~243.
    [89] Gawronski, W. and Lim K. Balanced actuator and sensor placement for flexible structures[J].International Journal of Control,1996,65(1):131~145.
    [90] GUANGQUIAN, X. and Bainum P M. Actuator placement using degree of controllability fordiscrete-time systems[J]. Journal of dynamic systems, measurement, and control,1992,114(3):508~516.
    [91] PAN T S, RAO S S, Venkayya V B. Optimal placement of actuators in actively controlledstructures using genetic algorim[J]. AIAA journal,2012,29(6).
    [92] Aldraihem, O.J. and Wetherhold, R.C. and Singh T. Optimal Size and Location ofPiezoelectric Actuator/Sensors: Practical Considerations[J]. Journal of Guidance, Control, andDynamics,2000,23(3):509~515.
    [93] Halim D, Moheimani S O R. An optimization approach to optimal placement of collocatedpiezoelectric actuators and sensors on a in plate[J]. Mechatronics,2003,13:27~47.
    [94] Chen S T, Fan Y H, Lee A C. Effective active damping design for suppression of vibration inflexible systems via dislocated sensor/actuator positioning[J]. JSME international journal. Ser.C, Dynamics, control, robotics, design and manufacturing,1994,37(2):252~259.
    [95] CHEN G U N S H. Optimal placement of active/passive members in truss structures usingsimulated annealing[J]. AIAA journal,1991,29:1327~1334.
    [96] Baruh, H.&Meirovitch L. On the placement of actuators[C].Collection of TechnicalPapers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference.1981:611~620.
    [97] Lu, LY and Utku, S. and Wada B. Location selection for vibration controllers in space craneas adaptive structures[C].AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials Conference,31st, Long Beach, CA.1990:2375~2380.
    [98] Schulz, G. and Heimbold G. Dislocated actuator/sensor positioning and feedback design forflexible structures[J]. Journal of Guidance, Control, and Dynamics,1983(6):361~367.
    [99] Rao M S&S S. Thermo piezoelectric Control Design and Actuator Placement[J]. IAAJOURNAL,1997,35(3):534~539.
    [100] Kang Y K e. al. Optimum Placement of Piezoelectric Sensor/Actuator for Vibration Control ofLaminated Beams[J]. AIAA JOURNAL,1996,34(9):1921~1926.
    [101] Matunaga, S. and Onoda J. Actuator Placement with Failure Consideration for Static ShapeControl of Truss Structures[J]. AIAA journal,1995,33:1161~1163.
    [102] Baruh H. Actuator Failure Detection in the Control of Distributed Systems[J]. Dynamics andcontrol of large structures,1985,9(2):503~523.
    [103] Choe, K. and Baruh H. Actuator Placement in Structural Control[J]. Journal of guidance,control, and dynamics,1992,15:40~48.
    [104] Jalihal, P. and Utku, S. and Wada B K. Actuator placement in prestressed adaptive trusses forvibration control[C].AIAA/ASME/ASCE/AHS/ASC34th Structures, Structural Dynamics,and Materials Conference.1993:3312~3318.
    [105] Ryou J K, Park K Y, Kim S J. Electrode pattern design of piezoelectric sensors and actuatorsusing genetic algorims[J]. AIAA journal, American Institute of Aeronautics and Astronautics,1998,36(2):227~233.
    [106] Etal J P. Optimal location of redundants for prestreasing adaptive trusses with buckingconsideration[C].Proceedings of AIAA SDM Conference.1992:412~417.
    [107] Aldraihem, O.J. and Wetherhold, R.C. and Singh T. optimal size and location of piezoelectricactuator/sensors: practical considerations[J]. Journal of Guidance, Control, and Dynamics,2000,23(3):509~515.
    [108] Etal J P. Optimal location of redundants for prestreasing adaptive trusses with buckingconsideration[C].Proceedings of AIAA SDM Conference.1992:412~417.
    [109] Xu, K. and Warnitchai, P. and Igusa T. Optimal placement and gains of sensors and actuatorsfor feedback control[J]. Journal of Guidance, Control, and Dynamics,1994,17(5):929~934.
    [110] M A. Optimal location and gains of feedback controllers at discrete locations[J]. AIAA journal,1998,36(11):2109~2116.
    [111] Devasia S, Meressi T, Paden B, et al. Piezoelectric actuator design for vibration suppression:Placement and sizing[J]. Journal of Guidance Control Dynamics,1993,16(5):859~864.
    [112] Kammer D. Sensor placement for on-orbit modal identification and correlation of large spacestructures[J]. Journal of Guidance, Control and Dynamics,1991,14(2):251~259.
    [113] C K D. Effect of noise on sensor placement for on-orbit modal identification of large spacestructures[J]. Journal of Dynamic Systems, Measurement and Control,1993,114:436~443.
    [114] Fuchs S H&M B. Quasistatic Optimal Actuator Placement with Minimum Worst CaseDistortion Principal[J]. AIAA JOURNAL,1996,34(7):1505~1511.
    [115] Kang, Y.K. and Park, H.C. and Hwang, W. and Han K S. Optimum Placement of PiezoelectricSensor Actuator for Vibration Control of Laminated Beams[J]. AIAA journal,1996,34(9):1921~1926.
    [116] Al S A E et. Optimal placement of active elements in control augmented structural Sysesis[J].AIAA Journal,1993,31(10):1906~1915.
    [117] Sepulveda, A.E. and Schmit L A. Optimal placement of actuators and sensors in controlaugmented structural optimization[J]. International journal for numerical methods inengineering,2005,32(6):1165~1187.
    [118] K T R H&H J. Integrated control of ermally distorted large apace antennas[J]. Journal of,Guidance,Control,and Dynamics,1992,19(3):605~614.
    [119] Delorenzo M L. Sensor and actuator selection for large space structure control[J]. Journal ofGuidance,Control,and Dynamics,1988,13(2):249~257.
    [120] Haftka R T, Adelman H M. Selection of actuator locations for static shape control of largespace structures by heuristic integer programming[J]. Computers\&Structures, Elsevier,1985,20(1):575~582.
    [121] MENON, RG and BROWDER, AM and KURDILA, AJ and JUNKINS J. Concurrentoptimization of piezoelectric actuator locations for disturbanceattenuation[C].AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and MaterialsConference,34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA.1993:3269~3278.
    [122] CHEN G U N S H. Optimal placement of active/passive members in truss structures usingsimulated annealing[J]. AIAA journal,1991,29:1327~1334.
    [123] Onoda J, Hanawa Y. Actuator placement optimization by genetic optimization and improvedsimulated annealing[J]. AIAA journal,2012,31(6):1167~1169.
    [124] CHEN G U N S H. Optimal placement of active/passive members in truss structures usingsimulated annealing[J]. AIAA journal,1991,29:1327~1334.
    [125] Kapania R K, Sheng L. Toward more effective genetic algorims for the optimization ofpiezoelectric actuator locations[J]. AIAA Journal,2002,40(6):1246~1250.
    [126] Dhuri K D, Seshu P. Multi-objective optimization of piezo actuator placement and sizingusing genetic algorim[J]. Journal of Sound and Vibration,2009,323:495~514.
    [127] Qu Z Q. A Multistep Method for Matrices Condensation of Finite Element Models[J]. Journalof sound and vibration, Elsevier,1998,214(5):965~971.
    [128] Moore B. Principal Component Analysis in Linear Systems: Controllability,Observabiiity,and Model Reduction[J]. Automatic Control, IEEE Transactions on, IEEE,1981,26(1):17~32.
    [129] C S R E P. Model Cost Analysis for Linear Matrix Seeond Order Systems[J]. Journal ofDynamic System.Measurementand Control,1990,102:151~158.
    [130] A W D. Model Reduction for Multivariable Systems[J]. International Journal of control,1974,20(1):57~64.
    [131] L G R. Reduction of stiffness and Mass Matrix[J]. AIAA Journal,1965,3(2):380~381.
    [132] Irons B. Structural eigenvalue Problems-elimination of unwanted variables[J]. AIAA journal,2012,3(5).
    [133] Bouhaddi, N. and Fillod R. Model reduction by a simplified variant of dynamiccondensation[J]. Journal of sound and vibration,1996,191(2):233~250.
    [134] Leung A Y T. A simple dynamic substructure method[J]. Earthquake engineering&structuraldynamics, Wiley Online Library,1988,16(6):827~837.
    [135] MI, F. and JET P. Model Reduction using Dynamic and Iterated IRS Techniques[J]. Journal ofSound and Vibration,1995,186(2):311~323.
    [136] O’Callahan J. A procedure for Improved Redueed system(IRS) Model[J]. Proceedings of the7th International Modal Analysis Conference,1989,1:17~21.
    [137] P S L E M. Dynamic condensation method for structure eigenvalue analysis model[J].AIAAJournal,1992,30(4):1046~1054.
    [138]魏震松,王建成.一个新的计算动力缩聚矩阵的迭代公式[J].兰州大学学报:自然科学版,2002,38(6):40~43.
    [139]吴斌,禹建功,潘英.一种新的结构矩阵缩聚迭代法[J].北京工业大学学报,2006,32(6):481~484.
    [140]瞿祖清,华宏星,傅志方.一种有限元模型动力缩聚移频迭代法[J].应用力学学报,1999,16(2):61~67.
    [141]张德文,结构学,魏阜旋.模型修正与破损诊断[J].科学出版社,1999.
    [142]瞿祖清.结构动力缩聚技术:理论与应用[D].[博士学位论文].上海:上海交通大学,1998.
    [143]刘天雄,华宏星.结构动力模型一体化降价技术[J].强度与环境,2003,30(1):31~36.
    [144] Likins, P. and Ohkami, Y. and Wong C. Appendage Modal Coordinate Truncation Criteria inHybrid Coordinate Dynamic Analysis[J]. Journal of Spacecraft and Rockets,1976,13(10):611~617.
    [145] Hughes, P.C. and Skelton R E. Modal Truncation for Flexible Spacecraft[J]. Journal ofGuidance, Control, and Dynamics,1981,4(3):291~297.
    [146] Hughes, P.C. and Skelton R E. Controllability and Observability for Flexible Spacecraft[J].Dynamics and control of large flexible spacecraft,1979,3(5):385~408.
    [147] Chang, W. and Gopinathan, S.V. and Varadan, VV and Varadan V. Design of robust vibrationcontroller fora smart panel using finite element model[J]. Journal of vibration and acoustics,2002,124(2):265~276.
    [148] Kang, Y.K. and Park, H.C. and Hwang, W. and Han K S. Optimum Placement of PiezoelectricSensor/Actuator for Vibration Control of Laminated Beams[J]. AIAA journal,1996,34(9):1921~1926.
    [149] Kondoh, S. and YATOMI, C. and Inoue K. The Positioning of Sensors and Actuators in theVibration Control of Flexible Systems[J]. JSME international journal. Ser.3, Vibration,control engineering, engineering for industry,1990,33(2):145~152.
    [150] Schulz, G. and Heimbold G. Dislocated actuator/sensor positioning and feedback design forflexible structures[J]. Journal of Guidance, Control, and Dynamics,1983,6:361~367.
    [151] Sadri, AM and Wright, JR and Wynne R. LQG control design for panel flutter suppressionusing piezoelectric actuators[J]. Smart materials and structures,2002,11(6):834~839.
    [152] Ma, K. and Ghasemi-Nejhad M N. Adaptive control of flexible active composite manipulatorsdriven by piezoelectric patches and active struts with dead zones[J]. Control SystemsTechnology, IEEE Transactions on,2008,16(5):897~907.
    [153] Kumar R, Singh S P, Chandrawat H N. MIMO adaptive vibration control of smart structureswith quickly varying parameters: Neural networks vs classical control approach[J]. Journal ofSound and Vibration,2007,307:639~661.
    [154] Lin J, Liu W Z. Experimental evaluation of a piezoelectric vibration absorber using asimplified fuzzy controller in a cantilever beam[J]. Journal of Sound and Vibration,2006,296:567~582.
    [155] Qiu, Z. and Ye, C. and Wei J. Experimental Study on Sliding Mode Variable StructureVibration Control for Piezoelectric Cantilever Plate[C].Intelligent Control and Automation,2008. WCICA2008.7th World Congress on.2008:1864~1868.
    [156] West-Vukovich, G. and Davison, E. and Hughes P. The decentralized control of large flexiblespace structures[J]. Automatic Control, IEEE Transactions on,1984,29(10):866~879.
    [157] D C Y H P E. Decentralized Adaptive Robust Control and Its Application to an UncertationDlexible Beams[J]. Journal of Guidance,1992,15(3):692~699.
    [158] West-Vukovich G, Davison E, Hughes P. The Dencentralized Control of Large Flexible SpaceStructures[J]. Automatic Control, IEEE Transactions on, IEEE,1984,29(10):866~879.
    [159]李东旭.大型柔性结构的分散化振动控制[D].[博士学位论文].长沙:国防科学技术大学,1993.
    [160]李东旭.大型挠性结构分散化振动控制理论与方法[M].国防科技大学出版社,2002.
    [161]赵超,周军,周凤岐.大型复合航天器的建模与分散化控制技术[J].飞行力学,1998,16(3):22~27.
    [162]李陶,朱志刚.大型柔性空间结构的分散化自适应模型跟随控制[J].西北工业大学学报,1994,12(3):390~396.
    [163]王青,胡昌华.柔性空间结构的分散化模糊变结构控制[J].宇航学报,2000,21(1):23~27.
    [164] Huang, Y.A. and Deng Z C. Decentralized sliding mode control for a spacecraft flexibleappendage based on finite element method[J]. Chinese Journal of Aeronautics,2005,18(3):230~236.
    [165] Larranaga P, Kuijpers C M H, Murga R H, et al. Genetic Algorims for the TravellingSalesman Problem: A Review of Representations and Operators[J]. Artificial IntelligenceReview, Springer,1999,13(2):129~170.
    [166] Reeves C R. Modern heuristic techniques for combinatorial problems[M]. John Wiley&Sons,Inc.,1993.
    [167] Pataki G. Teaching integer programming formulations using the traveling salesmanproblem[J]. SIAM review,2003,45(1):116~123.
    [168] Gendreau M. An introduction to Tabu Search[J]. Handbook of metaheuristics,2003:37~54.
    [169] Dorigo, M. and Gambardella L M. Ant colony system: a cooperative learning approach to thetraveling salesman problem[J]. Evolutionary Computation, IEEE Transactions on,1997,1(1):53~66.
    [170] Chen Z, Tian X. Artificial Fish-Swarm Algorim with Chaos and Its Application[J]. EducationTechnology and Computer Science (ETCS),2010Second International Workshop on,2010,1:226~229.
    [171] Delisle, P. and Gravel, M. and Krajecki, M. and Gagn, C. and Price W. ComparingParallelization of an ACO: Message Passing vs. Shared Memory[J]. Hybrid Metaheuristics,2005:902~902.
    [172] Flood M M. The traveling salesman problem[J]. Operations Research,1956,4(1):61~75.
    [173] Gong, M. and Jiao, L. and Zhang L. Solving Traveling Salesman Problems by ArtificialImmune Response[J]. Simulated Evolution and Learning,2006:64~71.
    [174] Duan Y, Ying S. A Particle Swarm Optimization Algorim with ant Search for SolvingTraveling Salesman Problem[C].Computational Intelligence and Security,2009. CIS’09.International Conference on.2009,2:137~141.
    [175] Kim Y S, Cha S G, Kim J M. A Generalized Model of Statistical Hopfield Neural Network toSolve TSP[C].1997. ICICS., Proceedings of1997International Conference on Information,Communications and Signal Processing,.1997:693~697.
    [176] Wang K P, Huang L, Zhou C G, et al. Particle swarm optimization for travelng salesmanproblem[J]. Machine Learning and Cybernetics,2003International Conference on,2003,3:1583~1585.
    [177] Javadian, N. and Gol Alikhani, M. and Tavakkoli-Moghaddam R, Javadian N, Gol Alikhani M,et al. A Discrete Binary Version of the Electromagnetism-Like Heuristic for Solving TravelingSalesman Problem[C].Advanced Intelligent Computing Theories and Applications. WithAspects of Artificial Intelligence. Springer,2008:123~130.
    [178] Etal. L S. Genetic Algorims for Optimization of Piezoelectric Actuator Locations[J]. AIAAJournal,2001,39(9):1818~1822.
    [179] Chee, C. and Tong, L. and Steven G. Piezoelectric actuator orientation optimization for staticshape control of composite plates[J]. Composite structures,2002,55(2):169~184.
    [180] Slotine, J.J.E. and Li W. Applied Nonlinear Control[M]. NJ: Prantice-Hall, Englewood Cliffs,1991.
    [181] Wang L X. A Course on Fuzzy Systems[M]. Englewood Cliffs, NJ: Prentice-Hall,1999.
    [182] Craig J J. Introduction to robotics: mechanics and control[M]. Prentice Hall,2004.
    [183] Bailey. Investigation of a Composite Hingeles Helicopter Totor Blade with IntegralActuators[D].[PHD Thesis].Canada:Carleton University,2000.
    [184] Bent. Active Fibre Composites for Structural Actuation[D].[PHD thesis].USA: MassachusettsInstitute of Technology,2000.
    [185] R.Clark, W. Saunders and G G. Adaptive Structures: Dynamics and Control[M]. NewYork.NY, USA: John Wiley and Sons,1998.
    [186]刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社,2008.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.