芪参益气方促血管新生机制及抗心肌缺血作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国人口老龄化进程的加剧,缺血性心脏病的发病率和死亡率均呈现出逐年上升的趋势。药物治疗是缺血性心脏病临床治疗的重要途径之一,特别是对于无法进行手术治疗的冠状动脉弥漫性狭窄病变患者尤为重要。在我国,大量中药方剂和中成药制剂已被用于缺血性心脏病的预防与治疗,但其药效物质基础与作用机制有待进一步研究。治疗性血管新生(Therapeutic Aginogenesis)是近年来提出的缺血性心脏病治疗新途径,其原理是通过促进心肌缺血区域新血管的生成和开放新的侧支循环通路,达到恢复缺血心肌的血流供应、改善患者症状和预后的目的。因此,研究中药方剂促血管新生作用并探讨其作用机制对于缺血性心脏病的治疗具有重要意义。
     芪参益气方治疗缺血性心脏病临床疗效显著,但抗心肌缺血作用机制还不明确。本论文综合运用多种实验技术手段研究了该方抗急性心肌缺血作用,并探讨其促血管新生的作用及机制;通过体外实验进一步研究了该方中黄芪的主要活性成分——黄芪甲苷对低氧诱导因子-1α(HIF-1α)表达的影响及其促血管新生机制;采用代谢组学技术研究了该方各组分及其配伍对急性心肌缺血大鼠血浆代谢组的影响。主要研究内容如下:
     1.研究芪参益气方的抗心肌缺血作用并探讨了其促血管新生的作用机制。运用2,3,5,氯化三苯基四氮唑(TTC)染色法、免疫组化(Immunohistochemistry)、荧光定量PCR (Real-time PCR)及蛋白质印迹法(Western blotting)观察了芪参益气方对急性心肌缺血大鼠血管新生的影响。研究发现:(1)芪参益气方显著减小急性心肌缺血大鼠的心肌梗死范围;(2)芪参益气方能够显著增加心肌缺血大鼠缺血交界区的血管数目;(3)芪参益气方能够显著升高缺血心肌中血管内皮生长因子(VEGF)的mRNA和蛋白表达水平;(4)芪参益气方能够显著升高缺血心肌中碱性成纤维细胞生长因子(bFGF)的mRNA和蛋白表达水平;(5)芪参益气方能够显著升高缺血心肌中血小板衍化生长因子B (PDGF-B)的mRNA水平,但对其蛋白表达无明显影响。以上结果提示,芪参益气方可能通过升高VEGF. bFGF的mRNA和蛋白表达水平以及PDGF-B的mRNA水平,促进缺血心肌血管新生,从而发挥抗心肌缺血作用。
     2.研究该方中君药黄芪的主要活性成分——黄芪甲苷对HIF-1α的影响及其促血管新生机制。分别采用Real-time PCR、Western blotting、免疫荧光、Transwell小室、Matrigel胶及鸡胚尿囊膜实验等方法研究黄芪甲苷对缺氧损伤内皮细胞中HIF-1α表达及其促血管新生机制。研究发现:(1)黄芪甲苷显著提高缺氧损伤后内皮细胞的存活率;(2)黄芪甲苷能够显著升高缺氧损伤后内皮细胞的HIF-1α的蛋白表达水平;(3)黄芪甲苷对HIF-1α的mRNA水平及HIF-1α的蛋白降解几乎无影响;(4)黄芪甲苷能够显著升高内皮细胞中AKT (Ser473)蛋白的磷酸化水平;(5)黄芪甲苷能够促使HIF-1α向细胞核内转移并促进VEGF转录,且P13K抑制剂LY294002能够干预其效果;6)黄芪甲苷能够显著促进内皮细胞迁移、管腔形成及血管新生,且LY294002能够干预其效果。以上结果提示,黄芪甲苷可能通过激活P13K/AKT信号转导通路,促进HIF-1α的蛋白合成并向细胞核内转移,促使VEGF转录增加而发挥促血管新生的作用。
     3.采用气相色谱-质谱联用技术(GC-MS)分析芪参益气方各组分及其配伍对急性心肌缺血大鼠血浆代谢组的影响。研究发现:与假手术组大鼠相比,急性心肌缺血大鼠血浆中29个内源性代谢物的含量发生改变,其中7个与能量代谢相关和7个与氨基酸代谢相关的内源性代谢物含量均明显增加。对心肌缺血大鼠进行给药后,芪参益气方各组分及其配伍对这14个内源性代谢物含量均有回调作用。提示芪参益气方可能通过调节能量代谢和氨基酸代谢发挥抗急性心肌缺血的作用。
     本论文研究结果表明,芪参益气方抗心肌缺血的作用机制包括:调节促血管生长因子如VEGF、bFGF、PDGF-B的mRNA和蛋白表达水平,以及调节能量代谢和氨基酸代谢。其君药的主要活性成分——黄芪甲苷主要通过激活PI3K/AKT信号转导通路,促进HIF-1α蛋白合成并促使其向细胞核内转移,升高VEGF的mRNA水平,进而引起内皮细胞迁移、管腔形成,从而促进血管新生。
With the gradually increasing of the aging population, the morbidity and mortality of ischemic heart disease is vastly increasd in recent years. Drug therapy is one of the most important ways in the clinical therapeutics of ischemic heart disease, especially for patients of coronary artery stenosis, which can not be treated by surgery. In china, a large number of traditional Chinese medicines were used for the prevention and treatment of ischemic heart disease, but the active componets and mechanisms of action of many traditional Chinese medicines are still unclear. Therapeutic angiogenesis is a recently proposed approach for the treatment of ischemic heart disease. It is belived that angiogenesis in ischemic region of myocardium may lead to the construction of new collateral circulation and resume blood supply. Therefore, studies on therapeutic angiogenesis induced by traditional Chinese medicine may play important roles in the treatment of ischemic heart disease.
     QI-SHEN-YI-QI showed a significant effect in treatment of ischemic heart disease, but the mechanisms were not clear. In this study, experimental techniques of pharmacology were used to study the angiogenic mechanisms of QI-SHEN-YI-QI. In vitro experiments were performed to study the accumulation of hypoxia-inducible factor-1α(HIF-1α) and angioenesis by astragaloside IV. Then metabolomics technique was used to study the effect of QI-SHEN-YI-QI on regulation of endogenous metabolites in rat plasma. The main contents of dissertation include:
     1. This study aims to determine the possible cardioprotective effects of QI-SHEN-YI-QI and its angiogenic mechanism. Male Sprague-Dauley rats were subjected to ligation of left anterior descending artery (LAD). Triphenyltetrazolium chloride (TTC) staining, immunohistochemistry, real-time PCR and western blotting were used to study the agiogenic effect of QI-SHEN-YI-QI. The results showed that QI-SHEN-YI-QI significantly reduced infarct size and increased density of vessel. The mRNA levels of VEGF, bFGF and PDGF-B were increased in QI-SHEN-YI-QI treated group compared to myocardial infarct group. Western blotting results further demonstrated that protein expression of VEGF and bFGF were also notably raised in QI-SHEN-YI-QI treated group. Our study demonstrated that therapeutic angiogenesis induced by QSYQ may lead to neovascularization and conferring myocardial protection by increaing expression of angiogenic factors.
     2. This study aims to determine the HIF-la accumulation and angiogenic effect of astragaloside IV and its underlying mechanisms. MTT assay, western blotting, real-time PCR, immunofluorescence, transwell, matrigel and chick chorioallantoic membrane (CAM) assays were used to study the effect of astragaloside IV on accumulation of HIF-1αand angiogenesis. The results showed that astragaloside IV significantly improved cell viability after hypoxia and stimulated HIF-1αaccumulation during hypoxia. Mechanism studies revealed that astragaloside IV did not affect the degradation of HIF-1αprotein or the mRNA level of HIF-1α. In contrast, astragaloside IV apparently activated the PI3K/AKT pathway, which regulates HIF-la protein synthesis. Moreover, HIF-1αwas translocated to nuclear and mRNA level of VEGF was significantly increased in astragaloside IV treated group. Astragaloside IV also stimulated cell migration, increased tube formation and promoted angiogenesis in chick chorioallantoic membrane assay. All angiogenic effects of astragaloside IV were reversed by PI3K inhibitor LY LY294002. Our data suggested that astragaloside IV was a novel regulator of HIF-1αand angiogenesis through the PI3K/AKT pathway in HUVECs exposed to hypoxia.
     3. GC-MS was employed to profiling the effect of QI-SHEN-YI-QI on endogenous metabolites in myocardial infarcted rats. The results showed that seven metabolites related to energy metabolism and seven metabolites related to metabolism of amino acids were significantly increased in the plasma of myocardial infracted rats. However, administration of QI-SHEN-YI-QI regulated those metabolites in energy and amino acids metabolism to the normal level. It suggested that QI-SHEN-YI-QI may exert its protective effect against myocardial ischemia through regulation of energy and amino acids metabolism.
     Taken together, QI-SHEN-YI-QI promoted angiogenesis by collaborative effect of VEGF, bFGF, PDGF-B and protected against myocardial ischemia through regulation of energy and amino acids metabolism. Astragaloside IV improved cell viability during hypoxia, stimulated HIF-1αaccumulation by P13K/AKT pathway, and increased mRNA level of VEGF, which may contribute the angiogenesis effect during hypoxia.
引文
1. Minino AM, Heron MP, Murphy SL, et al. Deaths:final data for 2004. Natl Vital Stat Rep.2007;55(19):1-119.
    2. 龚立,宋民宪,吴承云.浅议中药新药治疗胸痹病的临床研究[J].华西药学杂志.2002;17(3):234,235.
    3. 邓铁涛.冠心病的辨证论治[J].中华内科杂志.1997;2(1):401.
    4. Shohet RV, Garcia JA. Keeping the engine primed:HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia. J Mol Med.2007; 85(12):1309-1315.
    5. Dorn GW,2nd. Myocardial angiogenesis:its absence makes the growing heart founder. Cell Metab.2007;5(5):326-327.
    6. Arsham AM, Plas DR, Thompson CB, et al. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem.2002; 277(17):15162-15170.
    7. Koneru S, Varma Penumathsa S, Thirunavukkarasu M, et al. Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats:role of VEGF/angiopoietin-1. J Cell Mol Med.2008;12(6B): 2651-2664.
    8. Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis. 2008;11(2):121-140.
    9. Liu Y, Cox SR, Morita T, et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5'enhancer [J]. Circ Res.1995;77(3):638-643.
    10. Liu LX, Lu H, Luo Y, et al. Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem Biophys Res Commun.2002; 291(4):908-914.
    11. Silvestre JS, Levy BI, Tedgui A. Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res.2008;78(2):201-202.
    12. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med.2003;9(6):669-676.
    13. Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res.2002;90(12):1243-1250.
    14. Parsons-Wingerter P, Elliott KE, Clark JI, et al. Fibroblast growth factor-2 selectively stimulates angiogenesis of small vessels in arterial tree. Arterioscler Thromb Vasc Biol.2000;20(5):1250-1256.
    15. Battegay EJ, Rupp J, Iruela-Arispe L, et al. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol. 1994;125(4):917-928.
    16. Miura S, Fujino M, Matsuo Y, et al. High density lipoprotein-induced angiogenesis requires the activation of Ras/MAP kinase in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol.2003;23(5):802-808.
    17. 秦少强,纪莉.心肌能量代谢与老年缺血性心力衰竭[J].吉林医学.2008;29(19):1685-1687.
    18. 王广基,阿基业,严蓓等.代谢组学研究冠心病中医分型的体内物质基础[J].世界科学技术-中医药现代化.2009;11(1):127-133.
    19. 张铭,周胜华.心肌缺血的能量代谢障碍治疗进展[J].心脏杂志.2006;18(14):467-474.
    20. Wirleitner B, Rudzite V, Neurauter G, et al. Immune activation and degradation of tryptophan in coronary heart disease. Eur J Clin Invest.2003;33(7):550-554.
    21. Yildiz A, Demirbag R, Yilmaz R, et al. The association of serum prolidase activity with the presence and severity of coronary artery disease. Coron Artery Dis.2008;19(5):319-325.
    22. Samuel JL, Schaub MC, Zaugg M, et al. Genomics in cardiac metabolism. Cardiovasc Res.2008;79(2):218-227.
    23. Feala JD, Coquin L, Paternostro G, et al. Integrating metabolomics and phenomics with systems models of cardiac hypoxia. Prog Biophys Mol Biol. 2008;96(1-3):209-225.
    24. Giovane A, Balestrieri A, Napoli C. New insights into cardiovascular and lipid metabolomics. J Cell Biochem.2008;105(3):648-654.
    25. Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol.2008; 52(2):117-123.
    26. Mayr M, Madhu B, Xu Q. Proteomics and metabolomics combined in cardiovascular research. Trends Cardiovasc Med.2007;17(2):43-48.
    27. Watson AD. Thematic review series:systems biology approaches to metabolic and cardiovascular disorders. Lipidomics:a global approach to lipid analysis in biological systems. J Lipid Res.2006;47(10):2101-2111.
    28. Sabatine MS, Liu E, Morrow DA, et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation.2005;112(25):3868-3875.
    29. Barba I, de Leon G, Martin E, et al. Nuclear magnetic resonance-based metabolomics predicts exercise-induced ischemia in patients with suspected coronary artery disease. Magn Reson Med.2008;60(1):27-32.
    30. 张伯礼,高秀梅,商洪材等.复方丹参方的药效物质及作用机理研究[J].世界科学技术,中医药现代化.2003;5(5):14-17.
    31. 邓杰.中药银杏叶提取物治疗冠心病心绞痛的临床研究[J].中国中医急症.1997;6(1):5-8.
    32. 陈羽嫣.血塞通注射液治疗缺血性心脏病40例临床观察[J].海南医学.2006;17(1):46-47.
    33. 庄定华.中医药治疗缺血性心脏病68例临床分析[J].中国民族民间医药.2009;18(4):114-115.
    34. Shang H, Chen J, Zhang J, et al. Three therapeutic tendencies for secondary prevention of myocardial infarction and possible role of Chinese traditional patent medicine:viewpoint of evidence-based medicine. J Evid Based Med. 2009;2(2):84-91.
    35. 王永炎,王忠.中成药二次开发的意义与对策[J].中国药学杂志.2010;45(10):721-723.
    36. 魏营,杜武勋,刘长玉等.芪参益气滴丸对心肌梗死大鼠心脏血流动力学影响的研究[J].中西医结合心脑血管病杂志.2008;6(10):1175-1176.
    37. 燕芳芳,刘艳,刘运芳等.芪参益气滴丸对实验性动脉粥样硬化斑块组织学的影响[J].南京中医药大学学报.2007;23(5):295-296.
    38. 廖瑜修,王银山,钟宏量.芪参益气滴丸治疗冠心病心绞痛临床观察[J].中国现代医药杂.2008;10(1):38-39.
    39. 谢东霞,毛秉豫.芪参益气滴丸对冠心病二级预防的临床观察[J].中国中医药信息杂志.2008;15(8):81.
    40. Sinclair S. Chinese herbs:a clinical review of Astragalus, Ligusticum, and Schizandrae. Altern Med Rev.1998;3(5):338-344.
    41. 朱海燕,陈立新,朱陵群.黄芪多糖对缺氧再复氧后人心脏微血管内皮细胞ICAM-1 VCAM-1表达的影响[J].辽宁中医杂志.2008;35(2):293-295.
    42. 朱海燕,陈立新,朱陵群.人心脏微血管内皮细胞血管细胞黏附分子1及核因子K B在缺氧再复氧损伤后的表达与黄芪多糖的干预[J].中国组织工程研究与临床康复.2007;11(41):8255-8258.
    43. 包吉日木图,赵明,包伍叶.黄芪总黄酮对急性心肌梗死心室肌细胞钠电流的作用[J].中国心血管病研究.2008;6(1):59,61.
    44. Fan Y, Wu DZ, Gong YQ, et al. Effects of calycosin on the impairment of barrier function induced by hypoxia in human umbilical vein endothelial cells. Eur J Pharmacol.2003;481(1):33-40.
    45. Wu XL, Wang YY, Cheng J, et al. Calcium channel blocking activity of calycosin, a major active component of Astragali Radix, on rat aorta. Acta Pharmacol Sin.2006;27(8):1007-1012.
    46. Zhang BQ, Hu SJ, Qiu LH, et al. Effects of Astragalus membranaceus and its main components on the acute phase endothelial dysfunction induced by homocysteine. Vascul Pharmacol.2007; 46(4):278-285.
    47. Chan WS, Durairajan SS, Lu JH, et al. Neuroprotective effects of Astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture. Neurochem Int. 2009;55(6):414-422.
    48. Wang S, Li J, Huang H, et al. Anti-hepatitis B virus activities of astragaloside IV isolated from radix Astragali. Biol Pharm Bull.2009;32(1):132-135.
    49. Li HB, Ge YK, Zhang L, et al. Astragaloside IV improved barrier dysfunction induced by acute high glucose in human umbilical vein endothelial cells. Life Sci.2006;79(12):1186-1193.
    50. Chen J, Gui D, Chen Y, et al. Astragaloside IV improves high glucose-induced podocyte adhesion dysfunction via alpha3betal integrin upregulation and integrin-linked kinase inhibition. Biochem Pharmacol.2008;76(6):796-804.
    51. Xu XL, Chen XJ, Ji H, et al. Astragaloside IV improved intracellular calcium handling in hypoxia-reoxygenated cardiomyocytes via the sarcoplasmic reticulum Ca-ATPase. Pharmacology.2008;81(4):325-332.
    52. Zhang Y, Zhu H, Huang C, et al. Astragaloside IV exerts antiviral effects against coxsackievirus B3 by upregulating interferon-gamma. J Cardiovasc Pharmacol. 2006;47(2):190-195.
    53. Qu YZ, Li M, Zhao YL, et al. Astragaloside IV attenuates cerebral ischemia-reperfusion-induced increase in permeability of the blood-brain barrier in rats. Eur J Pharmacol.2009;606(1-3):137-141.
    54. Xu XL, Ji H, Gu SY, et al. Modification of alterations in cardiac function and sarcoplasmic reticulum by astragaloside IV in myocardial injury in vivo. Eur J Pharmacol.2007;568(1-3):203-212.
    55. Zhang WD, Chen H, Zhang C, et al. Astragaloside IV from Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro. Planta Med.2006;72(1):4-8.
    56. Zhang WD, Zhang C, Wang XH, et al. Astragaloside IV dilates aortic vessels from normal and spontaneously hypertensive rats through endothelium-dependent and endothelium-independent ways. Planta Med.2006; 72(7):621-626.
    57. 罗海明,戴瑞鸿,李勇等.黄芪有效成分治疗充血性心力衰竭的核心脏病学研究[J].中国中西医结合杂志.1995;15(12):707-709.
    58. Tang F, Wu X, Wang T, et al. Tanshinone II A attenuates atherosclerotic calcification in rat model by inhibition of oxidative stress. Vascul Pharmacol. 2007;46(6):427-438.
    59. Fu J, Huang H, Liu J, et al. Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol.2007; 568(1-3):213-221.
    60. Jang SI, Kim HJ, Kim YJ, et al. Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells:possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol.2006;542(1-3): 1-7.
    61. Fang ZY, Lin R, Yuan BX, et al. Tanshinone IIA inhibits atherosclerotic plaque formation by down-regulating MMP-2 and MMP-9 expression in rabbits fed a high-fat diet. Life Sci.2007; 81(17-18):1339-1345.
    62. Fang ZY, Lin R, Yuan BX, et al. Tanshinone IIA downregulates the CD40 expression and decreases MMP-2 activity on atherosclerosis induced by high fatty diet in rabbit. J Ethnopharmacol.2008;115(2):217-222.
    63. Suh SJ, Jin UH, Choi HJ, et al. Cryptotanshinone from Salvia miltiorrhiza BUNGE has an inhibitory effect on TNF-alpha-induced matrix metalloproteinase-9 production and HASMC migration via down-regulated NF-kappaB and AP-1. Biochem Pharmacol.2006;72(12):1680-1689.
    64. Huang KJ, Wang H, Xie WZ, et al. Investigation of the effect of tanshinone IIA on nitric oxide production in human vascular endothelial cells by fluorescence imaging. Spectrochim Acta A Mol Biomol Spectrosc.2007;68(5):1180-1186.
    65. 李永胜,王进,王照华等.丹参酮ⅡA对主动脉内皮细胞功能损伤的保护机制[J].中国急救医学.2007;27(8):720.
    66. 黎莲娘,徐理纳,张均田等.中药丹参的新水溶性活性成份——丹酚酸类化合物[J].中国医学科学院学报.1995;(6):480.
    67. Shi CS, Huang HC, Wu HL, et al. Salvianolic acid B modulates hemostasis properties of human umbilical vein endothelial cells. Thromb Res.2007;119(6): 769-775.
    68. Zhang HS, Wang SQ. Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis factor-alpha (TNF-alpha)-induced MMP-2 upregulation in human aortic smooth muscle cells via suppression of NAD(P)H oxidase-derived reactive oxygen species. J Mol Cell Cardiol.2006;41(1):138-148.
    69. 王蕾,熊泽宇,王刚等.复方丹参滴丸治疗稳定型心绞痛随机对照试验的系统评价[J].现代中西医结合杂志.2004;24(6):500,504.
    70. Chen KJ. Certain progress in the treatment of coronary heart disease with traditional medicinal plants in China. Am J Chin Med.1981;9(3):193-196.
    71. Ji X, Tan BK, Zhu YC, et al. Comparison of cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats. Life Sci.2003;73(11):1413-1426.
    72. Yang H, Han L, Sheng T, et al. Effects of replenishing qi, promoting blood circulation and resolving phlegm on vascular endothelial function and blood coagulation system in senile patients with hyperlipemia. J Tradit Chin Med. 2006;26(2):120-124.
    73. 高小平,徐大勇,邓义龙等.从丹参中筛选血管紧张素转换酶抑制剂[J].中国中药杂志.2004;29(4):359-362.
    74. 邱忠霞,马贺军,王涤非.复方丹参滴丸联合曲美他嗪治疗老年不稳定心绞痛疗效观察[J].中国中西医结合杂志.2005;25(9):787-789.
    75. 张荣军,游潮,蔡博文.复方丹参注射液对外伤性脑梗死患者凝血功能的影响[J].中华现代中西医杂志.2004;24:882-884.
    76. 周洪奎.丹参对肺心病患者右心功能和血液流变学的影响[J].中西医结合杂志.1984;4(4):220.
    77. 田晓辉,薛武军,丁小明等.丹参注射液在肾移植术后早期的应用[J].现代中西医结合杂志.2005;25(5):404-407.
    78. 章梅,李旭,邱根全等.丹参注射液对Ⅱ型糖尿病患者血小板膜糖蛋白表达的作用[J].中药材.2003;26(10):738-740.
    79. Jin UH, Park SG, Suh SJ, et al. Inhibitory effect of Panax notoginseng on nitric oxide synthase, cyclo-oxygenase-2 and neutrophil functions. Phytother Res. 2007;21(2):142-148.
    80. 何翠瑶,李晓辉,何雪峰.三七皂苷单体不同配伍对单核-内皮细胞黏附作用的影响[J].中医杂志.2007;48(4):354-361.
    81. 闫彦芳,张壮,孙塑伦等.三七总皂苷及其主要成分对血管内皮细胞缺氧损伤的保护作用[J].中国实验方剂学杂志.2002;8(1):34-37.
    82. 文川,徐浩,黄启福等.活血中药对ApoE基因缺陷小鼠血脂及动脉粥样硬化斑块炎症反应的影响[J].中国中西医结合杂志.2005;25(4):345-349.
    83. 庞荣清,潘兴华,吴亚玲等.三七总皂苷对兔血管平滑肌细胞核因子kappaB和细胞周期的影响[J].中国微循环.2004;8(3):154-156.
    84. Ma LY, Xiao PG. Effects of Panax notoginseng saponins on platelet aggregation in rats with middle cerebral artery occlusion or in vitro and on lipid fluidity of platelet membrane[J]. Phytother Res.1998; 12(2):138-140.
    85. 袁志兵,李晓辉,李淑惠等.三七总皂苷改善兔动脉粥样硬化斑块稳定性的机制探讨[J].中草药.2006;37(5):741,743.
    86. 陈鼎祺.三七治胸痹、降血脂[J].中医杂志.1994;35(1):5.
    87. 朱梅佳,朱日华.三七总皂甙对急性脑梗塞患者神经功能缺损的影响[J].山东医药.1998;7(8):22-23.
    88. 訾慧.中药降香研究进展[J].辽宁中医学院学报.2003;5(2):90,91.
    89. 张燚,胡光,洪思佳等.黄芪提取物对人脐静脉内皮细胞的促血管新生作用[J].中药药理与临床.2007;23(2):34-37.
    90. Zhang Y, Hu G, Lin HC, et al. Radix Astragali extract promotes angiogenesis involving vascular endothelial growth factor receptor-related phosphatidylinositol 3-kinase/Akt-dependent pathway in human endothelial cells. Phytother Res.2009; 23(9):1205-1213.
    91. Lay IS, Chiu JH, Shiao MS, et al. Crude extract of Salvia miltiorrhiza and salvianolic acid B enhance in vitro angiogenesis in murine SVR endothelial cell line. Planta Med.2003; 69(1):26-32.
    92. Sengupta S, Toh SA, Sellers LA, et al. Modulating angiogenesis:the yin and the yang in ginseng. Circulation.2004; 110(10):1219-1225.
    93. Huang YC, Chen CT, Chen SC, et al. A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharm Res.2005; 22(4):636-646.
    94. 李莹.芪参益气方抗急性心肌缺血作用的蛋白质组学研究[D].杭州:浙江大学药学院药物信息学研究所.2008:24-25.
    95. 张伯礼,苏雅,高秀梅等.复方黄芪丹参颗粒剂治疗心绞痛临床和实验研究[J].天津中医.2002;19(4):12-15.
    96. Yamaguchi F, Sanbe A, Takeo S. Cardiac sarcoplasmic reticular function in rats with chronic heart failure following myocardial infarction. J Mol Cell Cardiol. 1997;29(2):753-763.
    97. Vicario J, Piva J, Pierini A, et al. Transcoronary sinus delivery of autologous bone marrow and angiogenesis in pig models with myocardial injury. Cardiovasc Radiat Med.2002; 3(2):91-94.
    98. Felmeden DC, Blann AD, Lip GY. Angiogenesis:basic pathophysiology and implications for disease. Eur Heart J.2003;24(7):586-603.
    99. 蔡源源,李光早.血管内皮生长因子的调控及其作用研究进展[J].组织工程与重建外科杂志.2011;7(1):51,54.
    100. 徐云云,陈芬.碱性成纤维细胞生长因子与冠心病的关系[J].中国医药指南.2010;8(27):48-50.
    101. 谢爱国,梁红伟,谭谦.血小板衍化生长因子在细胞增殖和组织修复中的作用及机制[J].中国组织工程研究与临床康复.2011;15(2):351-355.
    102. 徐寒松,雷闽湘,刘泽灏等.黄芪对人外周血内皮祖细胞增殖及细胞周期的影响[J].中医杂志.2008;49(2):160,166.
    103. Pozzolini M, Scarfi S, Benatti U, et al. Interference in MTT cell viability assay in activated macrophage cell line. Anal Biochem.2003;313(2):338-341.
    104. Redmond EM, Cahill PA, Hirsch M, et al. Effect of pulse pressure on vascular smooth muscle cell migration:the role of urokinase and matrix metalloproteinase. Thromb Haemost.1999;81(2):293-300.
    105. Xu H, Czerwinski P, Hortmann M, et al. Protein kinase C alpha promotes angiogenic activity of human endothelial cells via induction of vascular endothelial growth factor. Cardiovasc Res.2008;78(2):349-355.
    106. Fang J, Ding M, Yang L, et al. P13K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal.2007;19(12):2487-2497.
    107. Mottet D, Dumont V, Deccache Y, et al. Regulation of hypoxia-inducible factor-1 alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem.2003; 278(33):31277-31285.
    108. Choi YK, Kim CK, Lee H, et al. Carbon monoxide promotes VEGF expression by increasing HIF-1 alpha protein level via two distinct mechanisms, translational activation and stabilization of HIF-1alpha protein. J Biol Chem. 285(42):32116-32125.
    109. Xia M, Bi K, Huang R, et al. Identification of small molecule compounds that inhibit the HIF-1 signaling pathway. Mol Cancer.2009;8:117.
    110. 李香华,王洪新.黄芪甲苷在心血管疾病中的作用[J].心血管病学进展.2011;32(1):132-136.
    111. 叶鸣,王志刚,李兴升HIF-1α在缺血性心血管疾病中作用的研究进展[J].心脏病杂志.2010;22(5):758-759.
    112. Choi YK, Kim CK, Lee H, et al. Carbon monoxide promotes VEGF expression by increasing HIF-1alpha protein level via two distinct mechanisms, translational activation and stabilizatica of HIF-1alpha protein. J Biol Chem. 2010;285(42):32116-32125.
    113. 赵婧,屈艺,母得志.PTEN/PI3K/AKT信号节点与血管生成研究进展[J].广东医学.2010;31(19):2595-2597.
    114. Yan S, Wu B, Lin Z, et al. Metabonomic characterization of aging and investigation on the anti-aging effects of total flavones of Epimedium. Mol Biosyst.2009;5(10):1204-1213.
    115. Wu B, Yan S, Lin Z, et al. Metabonomic study on ageing:NMR-based investigation into rat urinary metabolites and the effect of the total flavone of Epimedium. Mol Biosyst.2008;4(8):855-861.
    116. Chen M, Ni Y, Duan H, et al. Mass spectrometry-based metabolic profiling of rat urine associated with general toxicity induced by the multiglycoside of Tripterygium wilfordii Hook. f. Chem Res Toxicol.2008;21(2):288-294.
    117. Yao H, Shi P, Zhang L, et al. Untargeted metabolic profiling reveals potential biomarkers in myocardial infarction and its application. Mol Biosyst.2010;6(6): 1061-1070.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.