microRNA-21在大鼠心肌缺血再灌注早期的抗凋亡作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:细胞凋亡是缺血再灌注(ischemia-reperfusion, I/R)损伤的重要环节,抑制细胞凋亡可以防止或减轻I/R损伤。文献报道microRNA-21(miR-21)在I/R动物模型表达异常,本研究探讨miR-21在I/R早期表达异常是否与细胞凋亡相关及其可能机制。曲美他嗪(trimetazidine, TMZ)是经典抗缺血药物,本研究还将探讨TMZ在I/R早期抗细胞凋亡作用是否由miR-21及其靶基因介导。
     方法:1.体内实验:48只SD大鼠随机分为假手术(Sham)、I/R2h、 I/R4h、I/R6h组,每组12只大鼠。Sham组大鼠仅开胸,其余组分别开胸结扎前降支45分钟后再灌注2h、4h、6h。比较各组的细胞凋亡水平及miR-21水平,以Bcl-2/Bax、Caspase-3为心肌细胞凋亡指标。HE染色观察心肌组织形态结构,Westernblot方法检测Bcl-2/Bax、 Caspase-3的蛋白水平,Realtime PCR检测miR-21变化。2.体内miR-21过表达实验:成功构建重组腺相关病毒rAAV9-ZsGreen-pre-miR-21及空白对照病毒,滴度为5.0×1012vg/ml。30只SD大鼠,随机分为①对照组:大鼠转染空白病毒;②miR-21组:大鼠转染rAAV9-ZsGreen-pre-miR-21;③Sham组:大鼠转染空白病毒后开胸;④I/R组:大鼠转染空白病毒后I/R2h;⑤I/R+miR-21组:大鼠转染rAAV9-ZsGreen-premiR-21后I/R2h。以PTEN/AKT通路作为拟验证的miR-21的下游通路。比较过表达miR-21后细胞凋亡水平及miR-21下游通路水平变化。Realtime PCR方法检测miR-21、PTENmRNA水平,免疫组化观察缺血区Bcl-2、Bax、Caspase-3的表达,Westernblot方法检测缺血区凋亡指标水平及下游通路PTEN、 p-AKT的蛋白水平。3.体外实验:用LipofectamineTM2000将30nM,50nM,100nM的miR-21抑制剂(inhibitors)及30nM,50nM,100nM的miR-21模拟物(mimics)转染H9C2细胞,摸索最佳转染浓度。将细胞随机分为①Vehicle Control(VC).②抑制物阴性对照(inhibitors negative control,INC)、③模拟物阴性对照(mimics negative control, MNC)、④缺氧-复氧(hypoxia-reoxygenation,H/R)+VC、⑤H/R+INC、⑥H/R+MNC、⑦H/R+inhibitors、⑧H/R+mimics。H/R处理为低氧培养4小时后常氧培养3小时。比较正、负调控miR-21表达时miR-21、下游通路PTEN/AKT水平及细胞凋亡水平的变化。Realtime PCR检测miR-21, PTENmRNA水平,Westernblot方法检测Bcl-2/Bax, Caspase-3, PTEN, p-AKT的蛋白水平,流式细胞仪检测细胞凋亡。4.体外TMZ抗凋亡实验:H9C2细胞随机分为Control、H/R+Control、 H/R+TMZ组;同时另设H/R+TMZ+INC、H/R+TMZ+inhibitors组。观察TMZ对H/R后细胞miR-21、下游通路PTEN/AKT水平及细胞凋亡水平的影响,进一步观察miR-21表达抑制后上述指标的变化。
     结果:1.与Sham组比较,I/R2h,4h,6h组大鼠心肌缺血区miR-21进行性降低(P<0.05),抑制凋亡指标Bcl-2/Bax水平降低(P<0.05),促凋亡因子Caspase-3水平逐渐升高(P<0.05)。非缺血区miR-21表达增高(P<0.05)。2.SD大鼠过表达miR-21时PTEN mRNA表达水平未明显变化(P>0.05),但PTEN蛋白水平下降(P<0.01)。与I/R组比较,过表达miR-21使I/R组大鼠miR-21表达升高、PTEN下降、p-AKT水平升高‘(P<0.05),抑制凋亡的Bcl-2/Bax升高、促凋亡因子Caspase-3表达降低(P<0.05)。3.与VC组比较,H/R可使Bcl-2/Bax降低,Caspase-3升高,细胞凋亡率升高(P<0.05);与H/R+INC组比较,miR-21表达抑制进一步降低Bcl-2/Bax水平,促进Caspase-3表达,细胞凋亡率进一步升高(P<0.05);与H/R+MNC组比较,miR-21过表达可以升高Bcl-2/Bax水平、抑制Caspase-3水平,降低细胞凋亡率(P<0.05)。4.与H/R+Control组比较, H/R+TMZ组可以升高Bcl-2/Bax.抑制Caspase-3水平,改善细胞凋亡率(P<0.05);但与H/R+TMZ组比较,抑制miR-21表达则使Bcl-2/Bax降低,Caspase-3升高,细胞凋亡率升高(P<0.05)。
     结论:1.在I/R早期大鼠心肌缺血区miR-21表达随再灌注时间延长进行性下降,并伴随细胞凋亡进展。2.rAAV9在大鼠心脏可以持久、高效表达,作用安全。3.过表达miR-21可改善心肌细胞凋亡,抑制miR-21表达可促进细胞凋亡。4.miR-21通过PTEN/AKT信号通路调控I/R早期细胞凋亡。5. miR-21/PTEN/AKT部分介导了曲美他嗪的抗凋亡作用。
     图32幅,表7个,参考文献112篇
Objective:Cell apoptosis is the important mechanism in ischemia-reperfusion (I/R) injury. Protective effects on cell apoptosis can avoid from ischemia-reperfusion injury. Evidenced support that the abnormal expression of microRNA-21(miR-21) in I/R animal model, we demonstrated in the present study that the relationship between abnormal expression of miR-21and cell apoptosis in early I/R injury and the mechanism. Trimetazidine (TMZ) is a classic anti-ischemia drug, we plan to determin that miR-21mediated the anti-apoptosis effect of TMZ in early I/R injury.
     Methods:l.In vivo experiment:Forty-eight SD rats were randomly divided into Sham group, I/R2h group, I/R4h group, I/R6h group. There are12rats in each group. Rats in Sham group were deal with open-chest, rats in other groups suffered ligation of anterior descending coronary atrery for45min and reperfusion for2h,4h,6h respectively. To compare the expression level of miR-21and level of cell apoptosis between I/R groups and Sham group, and between in the diffrent I/R time point groups. Bcl-2/Bax and Caspase-3as classic factors to stand for the level of cell apoptosis. Realtime-PCR was used to assess the expression level of miR-21in ischemic and non-ischemic area; Immunohistochemistry and Western-blot were used to determine the expression of Bcl-2, Bax, Caspase-3and Bcl-2/Bax.2.Thirty rats were divided into five groups randomly:We constructed rAAV9-ZsGreen-pre-miR-21successfully with the titer5.0×1012vg/ml.①Control group(n=6):rats were transfected with rAAV9-ZsGreen by coronary injection;②miR-21group (n=6):rats were transfected rAAV9-ZsGreen-pre-miR-21by coronary injection;③Sham group:rats were dealt with open-chest after transfected with rAAV9-ZsGreen;④I/R group (n=6):rats were treated with I/R after transfected with rAAV9-ZsGreen;⑤I/R+miR-21(n=6):rats were dealt with I/R after transfected rAAV9-ZsGreen-pre-miR-21by coronary injection. Realtime-PCR was used to assess the expression level of miR-21; Immunohistochemistry and Western-blot were used to determine the expression of Bcl-2, Bax, Caspase-3, PTEN, p-AKT and Bcl-2/Bax.3.In vitro experiment:H9C2cell were transfected with different concentration of miR inhibitors and mimics(30nM,50nM and100nM respectively) by liposome LipofectamineTM2000, Realtime-PCR was used to assess the expression level of miR-21,we choose the best concentration. H9C2cell was randomly divided into Vehicle Control (NC),inhibitors negative control (INC), mimics NC (MNC), H/R+INC, H/R+MNC, H/R+inhibitors and H/R+mimics.Cell was treated with hypoxia for4h and reoxygenation for3h. Realtime-PCR was used to assess the expression level of miR-21; Immunohistochemistry and Western-blot were used to determine the expression of Bcl-2, Bax, Caspase-3, PTEN, p-AKT and Bcl-2/Bax. Flow cytometry evaluated apoptosis rate.4. H9C2cell was randomly divided into Control, H/R+Control and H/R+TMZ. There is another2groups, H/R+TMZ+INC and H/R+TMZ+inhibitors. Cell incubated with0μM or10μM TMZ for48hours. Realtime-PCR was used to assess the expression level of miR-21; Immunohistochemistry and Western-blot were used to determine the expression of Bcl-2, Bax, Caspase-3, PTEN, p-AKT and Bcl-2/Bax. Flow cytometry evaluated apoptosis rate.
     Result:1.miR-21was down-regulated in the ischemic area after I/R compared with the Sham group (P<0.05).but miR-21expression in the non-ischemia area was significantly increased compared with the Sham group (P<0.01). MiR-21expression and the level of Bcl-2/Bax was decreased, the level of Caspase-3was increased in the I/R group than the Sham group at2h,4h and6h after I/R (P<0.05).2.The level of PTEN protein decreased when miR-21over-expressed (P<0.01), and the level of PTEN mRNA was not affected (P>0.05). Compared with I/R group, the expression of miR-21, p-AKT, Bcl-2/Bax was up-regulated in miR-21over-expressed rat suffered from H/R, meanwhile the expression of PTEN, Caspase-3was down-regulated (P<0.05).3. Compared with VC, the protein level of Bcl-2/Bax was up-regulated, which of Caspase-3was down-regulated when cells were dealt with H/R, and cell apoptosis was increased (P<0.05). Cell apoptosis were found to be aggravated after inhibition of miR-21(P<0.05), otherwise it was improved after over-expression of miR-21(P<0.05).4. Rats were treated with TMZ before H/R exhibit increases in Bcl-2/Bax, and decreases Caspase-3protein levels compared H/R rats, and cell apoptosis decreased (P<0.05).When the expression of miR-21was down-regulated after transfected inhibitors, Bcl-2/Bax was decreased, the level of Caspase-3and cell apoptosis rate was increased (P<0.05)
     Conclusion:1.The expression of miR-21was down-regulated and cell apoptosis was increased in ischemic area at the early phase of I/R, and it was aggravated with the prolonged reperfusion period.2. AAV9was an ideal gene vector who can stably and efficiently expressed in rat myocardium without affecting cardiac function.3. Cell apoptosis can be improved by miR-21over-expressed, otherwise it can be exacerbated when miR-21was inhibited.4.miR-21mediated cell apoptosis induced by I/R via modulation of PTEN/AKT pathway.4. The protective effects of TMZ was partly mediated by miR-21.
引文
[1]Scarabelli TM, Knight R, Stephanou A, et al. Clinical implication of apoptosis in ischemic myocardium. Curr Probl Cardiol.2006,31(3):181-264.
    [2]Gottlieb RA, Burleson KO, Kloner RA,et al. Reperfusion injury induces apoptosis in rabbit cardiomyoctyes. J Clin Invest.1994,94(4):1621-8.
    [3]Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res.1996,79(5):949-56.
    [4]Tang Y, Zheng J, Sun Y, et al. Microrna-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J.2009.50(3):377-387.
    [5]Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009,119(17):2357-2366.
    [6]Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction:miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiov Res,2009,82(1):21-29.
    [7]Cheng Y, Zhu P, Yang J, et al. Ischemic preconditioning-regulated miR-21 protects heart against ischemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res.2010,87(3):431-439.
    [8]Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Res,2007,100(11):1579-1588.
    [9]Cheng Y, Liu X, Zhang S. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardial.2009, 47(1):5-14.
    [10]Keyes KT, Xu J, Long B, et al. Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am J Physiol Heart Circ Physiol.2010,298(4):H1198-H1208.
    [11]Mocanu MM, Yellon DM. PTEN, the Achilles'heel of myocardial ischemia/reperfusion injury? Br J Pharmacol.2007,150(7):833-838.
    [12]Ihsan I, Adnan TK, Mazhar E, et al. Trimetazidine May Protect the Myocardium during Cardiac Surgery. The Heart Surgery Forum. 2009,12(3):E 175-179.
    [13]陈韵岱,赵立坤,田峰,等.曲美他嗪对冠状动脉介入治疗患者的心脏保护 作用.中华内科杂志.2010,49(6):473-476.
    [14]Khan M, Meduru S, Mostafa M, et al. Trimetazidine, administered at the onset of reperfusion, ameliorates myocardial dysfunction and injury by activation of p38 mitogen-activated protein kinase and AKT signaling. J Pharmacol Ther.2010, 333(2):421-429.
    [15]Ikizler M, Erkasap N, Dernek S, et al. Trimetazidine-induced enhancement of myocardial recovery during reperfusion:a comparative study in diabetic and non-diabetic rat hearts. Arch Med Res.2006,37(6):700-708.
    [16]Fragasso G, Salerno A, Spoladore R, et al. Metabolic therapy of heart failure. Curr Pharm Des.2008,14(25):2582-2591.
    [17]Tritto I, Wang P, Kappusamy P, et al. The anti-anginal drug trimetazidine reduces neutrophil-mediated cardiac reperfusion injury. J Cardiovasc Pharmacol. 2005,46(1):89-98:
    [18]Vijay KK, Mahmood K, Rajarsi M, et al. Attenuation of myocardial ischemia-reperfusion injury by trimetadizine derivatives functionalized with anti-oxidant properties. J Pharmacol Ther.2006,317(3):921-928.
    [19]Pericle DN, Sergio C, Alfonso AT, et al. Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. Nitric Oxide.2007,16(2):228-36.
    [20]Mahmood K, Sarath M, Mahmoud M, et al. Trimetazidine, Administered at the Onset of Reperfusion, Ameliorates Myocardial Dysfunction and Injury by Activation of p38 Mitogen-Activated Protein Kinase and AKT Signaling. J Pharmacol Exp Ther.2010,333(2):421-429.
    [21]Wisel S, Khan M, Kuppusamy ML, et al. Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl] piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther.2009, 329(2):543-50.
    [22]Liu F, Yin L, Zhang L, et al. Trimetazidine improves right ventricular function by increasing miR-21 expression. Int J Mol Med.2012,30(4):849-855.
    [23]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanded by adenosines, indicates that thousands of human genes are microRNA targes. Cell, 2005,120(1):15-20.
    [24]Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007,13(4):486-491.
    [25]Xu C,Lu Y,Pan Z,et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci.2007,120(10):3045-3052.
    [26]Ye Y, Hu Z, Lin Y, et al. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res.2010,87(3):535-544.
    [27]Bonauer A, Carmona Q Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science.2009, 324(10):1710-1713.
    [28]Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell.2008,15(2):261-271.
    [29]Bostjancic E, Zidar N, Stajer D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology. 2010 115(3):163-169.
    [30]D'Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J.2010, 31(22):2765-2773.
    [31]PchejetskiD, Kunduzova O, Dayon A, et a.l Ox ida tive stress-dependent sphingosine kinase-1 inhib ition media tes monoam ine ox idase A-assoc iated ca rd iac cell apoptos is[J]. C ircR es,2007,100:41-49.
    [32]D'Alessandra Y, Devanna P, Limana F, et al. Circulation microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010,31(22):2765-2773.
    [33]Wu Y, Yin X, Wijaya C, et al. Acute myocardial infarction in rats. J Vis Exp. 2011,16(48):2464.
    [34]Kim YS, Kwon JS, Cho YK, et al. Curcumin reduces the cardiac ischemia-reperfusion injury:involvement of the toll-like receptor 2 in cardiomyocytes. J Nutr Biochem.2012,23(11):1514-1523.
    [35]Sumida A, Horiba M, Ishiguro H, et al. Midkine gene transfer after myocaridal infarction in rats prevent remodelling and ameliorates cardiac dysfunction. Cardiavasc Res.2010,86(1):113-121.
    [36]Kilbride SM, Prehn JH. Central roles of apoptotic proteins in mitochondrial function. Oncogene.2012,10:1038.
    [37]Laulier C, Lopez BS. The secret life of Bcl-2:apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutat Res.2012,751(2):247-257.
    [38]BagciEZ, VodovotzY, B illiar TR, et al. Bistability in apoptosis:roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophysical Journa,l 2006, 90(10):1546-1559.
    [39]Legewie S, Bluthgen N, Herzel H. Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol,2006,2(9):e120.
    [40]Huang Q, Bu S, Yu Y, e t al. Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bc-12/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology,2007,148(1):81-91.
    [41]Tsukahara S, Yam am oto S, T in-T in-W in-Shw e, e ta l. Inhalation of low-level form aldehyde in creases the Bcl-2/Bax express ion ratio in the hippo campus of immunologically sensitizedmice. Neuroimmunomodulation,2006,13(2): 63-68.
    [42]Wen X, Lin ZQ, Liu B, et al. Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer. Cell prolif.2012,45(3):217-224.
    [43]Fox R, Aubert M. Flow cytometric detection of activated caspase-3. Methods Mol Biol.2008,414:47-56.
    [44]Mazumder S, Plesca D, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol.2008, 414:13-21.
    [45]Sykes MC, Mowbray AL, Jo H. Reversible glutathiolation of caspase-3 by glutaredoxin as a novel redox signaling mechanism in tumor necrosis factor-alpha-induced cell death. Circ Res.2007,100(2):152-154.
    [46]Park YM, Hwang SJ, Masuda K, et al. Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4. Mol Cell Biol.2012,32(20):4237-4244.
    [47]Qian X, Ren Y, Shi Z, et al. Sequence-dependent synergistic inhibition of human glioma cell lines by combined temozolomide and miR-21 inhibitor gene therapy. Mol Pharm.2012,9(9):2636-2645.
    [48]Dong CG, Wu WK, Feng SY, et al. Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. Int J Oncol.2012,41(3):1005-1012.
    [49]Niu J, Shi Y, Tan G, et al. DNA damage induces NF-κB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J Biol Chem. 2012,287(26):21783-21795.
    [50]Xu X, Kriegel AJ, Liu Y, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int.2012, 82(11):1167-1175.
    [51]E1-Achkar TM. Modulation of apoptosis by ischemic preconditioning:an emerging role for miR-21. Kidney Int.2012,82(11):1149-1151.
    [52]Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009,284(43):29514-29525.
    [53]Inagaki K, Fuess S, Storm TA, et al. Robust systemic transduction with AAV9 vectors in mice:efficient global cardiac gene transfer superior to that of AAV8[J]. Molec Ther,2006,14(l):45-53.
    [54]Zincarelli C, Soltys S, Rengo G,et al.Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection[J].Mol Ther, 2008,16(6):1073-1080.
    [55]Oudit GY, Sun H, Kerfant BG, et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. Journal of Molecular and Cellular Cardiology.2004; 37(2):449-471.
    [56]Leslie NR and Downes CP. PTEN:The down side of PI3-kinase signaling. Cellular Signalling.2002;14(4):285-295.
    [57]Pendaries C, Tronchere H, Plantavid M, et al. Phosphoinositide signaling disorders in human diseases.FEBS Letters.2003;546(1):25-31.
    [58]Palomeque J, Chemaly ER, Colosi P,et al.Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo[J].Gene Ther,2007,14(13):989-997.
    [59]Pacak CA, Mah CS, Thattaliyath BD, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo[J]. Circ Res, 2006,99(4):e3-9.
    [60]Lawrence TB, Kevin M, Meg MS,et al.Adeno-Associated Virus (AAV) Serotype 9 Provides Global Cardiac Gene Transfer Superior to AAV1,AAV6, AAV7, and AAV8 in the Mouse and Rat[J].Hum Gene Ther,2008,19(12):1359-1368.
    [61]Han J, Lee Y, Yeom KH, et al. Molecular basis for the recongnition of primary microRNAs by the Drosha-DGCR8 complex. Cell,2006125:887-901.
    [62]Lund E, Guttionger S, Calado A, et al. Nuclear export of microRNA precursors. Science,2004,303(5654):95-98.
    [63]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004,10(2):185-191.
    [64]Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005,436(7051):740-744.
    [65]Gregory RI, Chendrimada TP, Cooch NS, et al. Human RISC couples microRNA biogenesis and post-transcriptional gene silencing. Cell,2005, 1239(4):631-640.
    [66]Bostick B, Ghosh A, Yue Y,et al.Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration[J].Gene Ther, 2007,14(22):1605-1609.
    [67]Vandendriessche T, Thorrez L, Acosta-Sanchez A, et al.Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy[J]. J Thromb Haemost.2007,5(1):16-24.
    [68]谭文鹏,杨侃,李安莹,杨琼。腺相关病毒载体介导ZsGreen基因通过3种转染途径在心肌组织转染效果的比较[J]。重庆医科大学学报,2012,37(6):522-524.
    [69]Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics,2005,37(7):766-770.
    [70]Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNA. Genes Dev,2003,17(24):3011-3016.
    [71]David PB. MicroRNA:Genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297.
    [72]Pushparaj PN, Aarthi JJ, Kumar SD, et al. RNAi and RNAa-the yin and yang of RNAome. Bioinformation,2(6):235-237.
    [73]Bartel DP. MicroRNAs:genomics, biogenesis, mechamism, and function. Cell,116(2):281-297.
    [74]Farh K.K., Grimson A., Jan C. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science,2005, 310(5755):1817-1821.
    [75]Jin H O,An S,Lee H C,et al.Hypoxic condition-and high celldensity-induced expression of redd 1 is regulated by activation of hypoxia-inducible factor-1αand Sp1 through the phosphati-dylinositol 3-kinase/AKT signaling pathway [J]. Cell Signal,2007,19(7):1393-1403.
    [76]Lee B L,Kim W H,Jung J,et al.A hypoxia-independent up-regulation of hypoxia-inducible factor-1 by AKT contributes to angiogenesis in human gastric cancer.Carcinogenesis,2008,29(1):44-51.
    [77]Hudson C C,Liu M,Chiang G G,et al.Regulation of hypoxia-inducible factor 1 alpha expression and function by the mam-malian target of rapamycin. Mol Cell Biol,2002,22(20):7004-7014.
    [78]ZhangKR, Liu HT, ZhangHF,et al. Long-term aerobic exercise protects the heartagainst ischemia/reperfusion injury via PI3 kinase-dependent and AKT-mediated mechanism.Apoptosis,2007,12(9):1579-1588.
    [79]Matsui T,Tao J Z,Del Monte F,et al.AKT activation pre-serves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation,2001, 104(3):330-335.
    [80]Mocanu MM, Yellon DM. PTEN, the Achilles' heel of myocardial ischemia/reperfusion injury? Br J Pharmacol.2007,150(7):833-838.
    [81]Jin HO, An S, Lee HC, et al. Hypoxic condition-and high cell density-induced expression of redd1 is regulated by activation of hypoxia-inducible factor-laand Spl through the phosphati-dylinositol 3-kinase/AKT signaling pathway. Cell Signal,2007,19(7):1393-1403.
    [82]Tian Y, Daoud A, Shang J. Effects of bpV(pic) and bpV(phen) on H9C2 cardiomyoblasts during both hypoxia/reoxygenation and H2O2-induced injuries. Mol Med Report.2012,5(3):852-858.
    [83]Park M, Youn B, Zheng XL, et al. Sweeney G. Globular adiponectin, acting via AdipoR1/APPL1, protects H9C2 cells from hypoxia/reoxygenation induced apoptosis. PLoS One.2011;6(4):e19143.
    [84]Sakamoto K, Nakahara T, Ishii K. Rho-Rho kinase pathway is involved in the protective effect of early ischemic preconditioning in the rat heart. Biol Pharm Bull.2011; 34(1):156-159.
    [85]Gurusamy N, Lekli I, Mukherjee S, et al. Cardioprotection by resveratrol:a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res. 2010;86(1):103-112.
    [86]Meister G,Landthaler M, Dorsett Y, et al.Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing.RNA.2004;10(3):544-550.
    [87]Chung AC,Huang XR, Meng X, et al.miR-192 Mediates TGF-{beta}/Smad3-Driven Renal Fibrosis.J Am Soc Nephrol.2010;21(8):1317-1325.
    [88]Menghini R, Casagrande V, Cardellini M, et al.MicroRNA217 Modulates Endothelial Cell Senescence via Silent Information Regulator 1. Circulation.2009; 120(15):1524-1532.
    [89]Hong S, Noh H, Chen H, et al. Signaling by p38 MAPK Stimulates Nuclear Localization of the Microprocessor Component p68 for Processing of Selected Primary MicroRNAs. Sci Signal.2013; 6(266):ral6.
    [90]Girousse A, Tavernier G, Valle C, et al. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol.2013;11(2):e1001485.
    [91]Xu B, Hsu PK, Stark KL, et al. Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion.Cell.2013; 152(1-2):262-275.
    [92]David PB. MicroRNA:Genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297.
    [93]Pushparaj PN, Aarthi JJ, Kumar SD, et al. RNAi and RNAa-the yin and yang of RNAome. Bioinformation,2(6):235-237.
    [94]Bartel DP. MicroRNAs:genomics, biogenesis, mechamism, and function. Cell,116(2):281-297.
    [95]Xu J, Tian W, Ma X, et al. The molecular mechanism underlying morphine-induced AKT activation:roles of protein phosphatases and reactive oxygen species. Cell Biochem Biophys.2011; 61(2):303-11.
    [96]Klawitter J, Klawitter J, Agardi E, et al. Association of DJ-1/PTEN/AKT-and ASK1/p38-mediated cell signalling with ischaemic cardiomyopathy. Cardiovasc Res. 2013,97(1):66-76.
    [97]Zhou X, Li C, Xu W, Chen J. Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation. PLoS One.2012; 7(7):e40424.
    [98]Ruixing Y, Wenwu L, Al-Ghazali R. Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion. Transl Res.2007; 149(3):152-60.
    [99]Xu H, Zhu G, Tian Y. Protective effects of trimetazidine on bone marrow mesenchymal stem cells viability in an ex vivo model of hypoxia and in vivo model of locally myocardial ischemia.J Huazhong Univ Sci Technolog Med Sci.2012; 32(1):36-41.
    [100]Kuralay F, Altekin E, Yazlar AS, et al. Suppression of angioplasty-related inflammation by pre-procedural treatment with trimetazidine. Tohoku J Exp Med. 2006; 208(3):203-212.
    [101]Liu X, Gai Y, Liu F, et al. Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase-ROS-CTGF pathway. Cardiovasc Res. 2010;88(1):150-158.
    [102]Ruixing Y, Wenwu L, Al-Ghazali R. Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion. Transl Res.2007,149(3):152-160.
    [103]Argaud L, Gomez L, Gateau-Roesch O, et al. Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J Mol Cell Cardiol.2005,39(6):893-839.
    [104]Marazzi G, Gebara O, Vitale C, et al. Effect of trimetazidine on quality of life in elderly patients with ischemic dilated cardiomyopathy. Adv Ther,2009, 26(4):455-461.
    [105]Fragasso G, Piatti P M, Monti L, et al. Acute effects of heparin administration on the ischemic threshold of patients with coronary artery disease: evaluation of the protective role of the metabolic modulator trimetazidine. J Am Coll Cardiol.2002,39(3):413-419.
    [106]Szwed H, Sadowski Z, Elikowski W, et al. Efficacy and safety of trimetazidine in combination with metoprolol in patients with stable effort angina pectoris. TRIMPOL 1Idouble-blind, randomized, placebo-controlled, multicentre trial. Eur Heart J,2000,21(5):363.
    [107]Polonski L, Dec I, Wojnar R, et al. Trimetazidine limits the effects of myocardial ischaemia during percutaneous coronary angioplasty. Curr Med Res Opin. 2002,18(7):389-396.
    [108]Vitale C, Wajngaten M, Sposato B, et al:Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart 2004.25(20):1814-1821.
    [109]D i Napoli P, Taccardi AA and Barsotti A. Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart.2005,91(2):161-165.
    [110]Fragasso G, Palloshi A, Puccetti P, et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor,in patients with heart failure. J Am Coll Cardiol.2006,48(5):992-998.
    [111]Tuunanen H, Engblom E, Naum A, et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation.2008 118(12):1250-1258.
    [112]Liu X, Gai Y, Liu F, et al. Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase-ROS-CTGF pathway. Cardiovasc Res.2010, 88(1):150-158.
    [1]Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993,75(5):843-854.
    [2]Wightman B, Ha I, Ruvkun G Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans. Cell,1993,75(5):855-862.
    [3]Lagos QM, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858.
    [4]Friedman JM, Jones PA. MicroRNAs:critical mediators of differentiation, development and disease. Swiss Medical Weekly,2008,139 (33-34):466-472.
    [5]Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics,2005,37(7):766-770.
    [6]Perera RJ, Ray A. MicroRNAs in the search for understanding human diseases. BioDrugs,2007,21:97-104.
    [7]Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer,2006,94(6):776-780.
    [8]Kim VN. MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol.2005; 6:376-385.
    [9]Wu W, Sun M, Zou GM, et al. MicroRNA and cancer:Current status and prospective. Int J Cancer,2007,120(5):953-960.
    [10]Han J, Lee Y, Yeom KH, et al. Molecular basis for the recongnition of primary microRNAs by the Drosha-DGCR8 complex. Cell,2006125:887-901.
    [11]Lund E, Guttionger S, Calado A, et al. Nuclear export of microRNA precursors. Science,2004,303(5654):95-98.
    [12]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004,10(2):185-191.
    [13]Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005,436(7051):740-744.
    [14]Gregory RI, Chendrimada TP, Cooch NS, et al. Human RISC couples microRNA biogenesis and post-transcriptional gene silencing. Cell,2005, 1239(4):631-640.
    [15]Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNA. Genes Dev,2003,17(24):3011-3016.
    [16]David PB. MicroRNA:Genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297.
    [17]Pushparaj PN, Aarthi JJ, Kumar SD, et al. RNAi and RNAa-the yin and yang of RNAome. Bioinformation,2(6):235-237.
    [18]Bartel DP. MicroRNAs:genomics, biogenesis, mechamism, and function. Cell,116(2):281-297.
    [19]Farh K.K., Grimson A., Jan C. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science,2005, 310(5755):1817-1821.
    [20]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanded by adenosines, indicates that thousands of human genes are microRNA targes. Cell, 2005,120(1):15-20.
    [21]Zaug AJ, Cech TR. The intervening sequence RNA of Tetrahymena is an enzyme. Science.1986; 231:470-475.
    [22]Kong Y, Han JH. MicroRNA:biological and computational perspective. Genomics Proteomics Bioinformatics.2005; 3:62-72.
    [23]Krichevsky AM, Gabriely G MicroRNA-21:a small multifaceted RNA. J of Cellular and Molecular Medicine.2009,13(1):39-53.
    [24]Selcuklu SD, Donoghue MT, Spillane C. MicroRNA-21 as a key regulator of oncogenic processes. Biochemical Society Transaction.2009,37(pt4):918-925.
    [25]Fujita S, Ito T, Mizutani T, et al. MiR-21 gene exression triggered by AP-1 is sustained through a double-negative feedback mechanism. Journal of Molecuar Biology.2008,378(3):492-504.
    [26]Wu GJ, SinclairCS, Paape J, et al.17q23 amplifications in breast cancer involve the PAT1, RAD51C,PS6K, and SIGmal B genes. Cancer Res. 2000,60:5371-5375.
    [27]Chui DT, Hammond D, Baird M, et al. Classical Hodgkin lymphoma is associated weth frequent gains of 17q. Genes Chromosomes Cancer. 2003,38:126-136.
    [28]Zhang C. MicroRNomics:a newly emerging approach for disease biology. Physiological Genomics,2008,33(2):139-147.
    [29]Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Res,2007,100(11):1579-1588.
    [30]Suarez Y, Fernandez C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research,2007,100(8):1164-1173.
    [31]Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart:do they play a role in cardiac hypertrophy? Am J Pathol, 2007,170(6):1831-1840.
    [32]Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction:miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiov Res,2009,82(1):21-29.
    [33]Frame S, Balmain A. Integration of positive and negative growth signals during ras pathway activation in vivo. Curr Opin Genet Dev.2000,10(1):106-113.
    [34]Minamino T, Yoshida T, Tateno K, et al. Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation, 2003,108(18):2264-2269.
    [35]Fenton M, Barker S, Kurz DJ, et al. Cellular senescence after single and repeated ballon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol.2001,21(2):220-226.
    [36]Tsui LV, Camrud A, Mondesir J. p27-pl6 fusion gene inhibits angioplasty-induced neointimal hyperplasia and coronary artery occlusion. Circ Res. 2001,89(4):323-328.
    [37]George J, Sack J, Barshack I, et al. Inhibition of intimal thickening in the rat carotid artery injury model by a nontoxic ras inhibitor. Arterioscler Thromb Vasc Biol, 2004,24(2):363-368.
    [38]Hanke H. Proliferative response of sooth muscle cells after experimental balloon angioplasy. Circulation.1996,93(1):202.
    [39]Braun DR, Mann MJ, Dzau VJ. Cell cycle progression:New therapeutic target for vascular proliferative disease. Circulation.1998,98(1):82-89.
    [40]Casscells W. Migration of smooth muscle cells and endothelial cell:Critical events in restenosis. Circulation,1992,86(3):723-729.
    [41]Lin Y, Liu X, Cheng Y, et al. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem,2009,284(12):7903-7913.
    [42]Cordes KR, Shehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature,2009,460(7256):705-710.
    [43]Matsumoto T, Hwang PM. Resizing the genomic regulation of restenosis. Circulation Research,2007,100(11):1537-1539.
    [44]Oudit GY, Sun H, Kerfant BG, et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J of Molecular and Cellular Cardiology,2004,37(2):449-471.
    [45]Lankat B, Goke R. The tumour suppressor PDCD4:recent advances in the elucidation of funciion and regulation. Biology of the Cell.2009,101(6):309-317.
    [46]Cheng Y, Liu X, Zhang S, et al. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via tis target gene PDCD4. J of Molecular and Cellular Cardiology.2009,479(1):5-14.
    [47]Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogensesis. Circ Res.2007,101(1):59-68.
    [48]Suarez Y, Femandez-Henando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res,2007,100(8):1164-1173.
    [49]Dewey CF JR. Effects of fluid flow on living vascular Cells.J Biomech Eng,1984,106(1):31-35.
    [50]Ives C, LEkin SG, Mcintire LV. Mechanical effects on endothelial cell morphology. In vitro assessment. In Vitro Cell Dev Biol,1986,22(9):00-507.
    [51]Dewey CF Jr,Bussolari SR, Gimbrone MA Jr, et al. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng,1981,103(3):177-185.
    [52]Sholley MM, Gimbrone MA Jr, Controm RS. Cellular migration and replication in endothelial regeneration:study using imadiated endothelial valture. Lab Invest,1997,36(1):18-25.
    [53]Grabouski EF, Jaffe EA, Weksler BB. Prostacydin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med,1985,105(1):36-43.
    [54]Weber M, Baker MB, Moore JP, et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun.2010,393(4):643-648.
    [55]Wagner-Ecker M, Schwager C, Wirkner U, et al. MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol.2010,5(1):25.
    [56]Zhang C. MicroRNAs:role in cardiovascular biology and disease. Clinical Science,2008,114(2):699-706.
    [57]Mudd JO, Kass DA. Tackling heart failure in the twenty-first century. Nature, 2008,451(7181):919-928.
    [58]Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research,2007,100(3):416-424.
    [59]Van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the USA, 2006,103(48):18255-18260.
    [60]Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nature Medicine,2007,13(5):613-618.
    [61]Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol and Cell Cardio. 2007,42(6):1137-1141.
    [62]Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008,456(7224):980-984.
    [63]Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart:a clue to fetal gene reprogramming in heart failure. Circulation,2007,116(3):258-267.
    [64]Dong S, Cheng Y, Yang J, et al. MicroRAN expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Bio Chemi, 2009,284(43):29514-29525.
    [65]Sayed D, Rane S, Lypowy J, et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Moleular Biology of the Cell,2008,19(8):3272-3282.
    [66]Cheng Y, Zhu P, Yang J, et al. Ischemic preconditioning-regulated miR-21 protects heart against ischemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res.2010,87(3):431-439.
    [67]Yin C, Wang XY, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS,2008,582:4137-4142.
    [68]Yin C, Salloum FN, Kukreja RC. A Novel role of microRNA in late preconditioning upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res,2009,104(5):572-575.
    [69]Qin Y, Yu Y, Dong H, et al. MicroRNA 21 inhibits left ventricular remodeling in the early phase of rat model with ischemia-reperfusion injury by suppressing cell apoptosis[J]. Int J Med Sci,2012,9(6):413-423.
    [70]Liu F, Yin L, Zhang L, et al. TrimetaZidine improves right ventricular function by increasing miR-21 expression[J]. Int J Mol Med,2012, 30(4):849-855.
    [71]Xu X, Kriegel AJ, Liu Y, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21 [J]. Kidney Int,2012, 82(11):1167-1175.
    [72]Naraba H, Iwai N.Assessment of the microRNA system in salt-sensitive hypertension. Hypertens Res,2005,28(10):819-820.
    [73]Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res,2008,18(3):350-359.
    [74]Fichtlscherer S, De Rosa S, Fox H, et al. Circulation microRNAs in patients with coronary artery disease. Circ Res,2010,107(5):677-684.
    [75]D Alessandra Y, Devanna P, Limana F, et al. Circulation microRNAS are new and sensitive biomarkers of myocardial infarction. Eur Heart J,2010,31(22): 2766-2773.
    [76]Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post_transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene,2008,27(15):2128-2136.
    [77]Frankel LB, Christoffersen NR, Jacobsen A, et al.rogrammed cell death 4(PDCD4) is an important functional target of the miR-21 in breast cancer cells. J Biol Chem,2008,283(2):1026-1033.
    [78]Davis BN, Hilyard AC, Lagna G, et al. SMAD proteins control DROSHA mediated microRNA maturation. Nature,2008,454(7200):56-61.
    [79]Chen Y, Liu W, Chao T, et al. MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett, 2008,272(2):197-205.
    [80]Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1(TPM1). J Biol Chem.2007,282(19):14328-14336.
    [81]Gabriely G, Wurdinger T, Kesari S, et al.MicroRNA-21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008,28(17):5369-5380.
    [82]Papagiannakopoulos T, Shapiro A, Kosik KS. M icroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancet Res. 2008,68(19):8164-8172.
    [83]Li T, Li D, Sha J, et al. MicroRNA-21 directly target ARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun,2009,383 (3):280-285.
    [84]Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 up-regulated in allergic airway inflammation and regulates IL-12p3 expression. J Immunol,2009,182(8):4994-5002.
    [85]Hashimi ST, Fulcher JA, Chang MH, et al. MicroRNA profiling identifies miR-34a and miR-21 and their target gene JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood,2009,114(2):404-414.
    [86]Liu M, Wu H, Liu T, et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res,2009,19(7):828-837.
    [87]Li Y, Li W, Yang Y, et al. MicroRNA-21 targets LRRFIP and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res,2009,1286:13-18.
    [88]Qin W, Zhao B, Shi Y, et al. BMPRII is a direct target of miR-21. Acta Biochim Biophys Sin (Shanghai),2009,4(7):618-623.
    [89]Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with "antagomirs". Nature,2005,438(7068):685-689.
    [90]Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis nd functional recovery of ischemia tissues in mice. Science, 2009,324(5935):1710-1713.
    [91]Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells. Nat Methods,2007,4(9):721-726.
    [92]Xiao J, Yang B, Lin H, et al. Novel approaches for gene-specific interference via manipulating actions of microRNAs:examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol,2007,212(2):285-292.
    [93]Fasnanro p, Greco S, Ivan M, et al. MicroRNA:emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther,2010,125(1):92-104.
    [94]Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell,2009, 137(6):1005-1017.
    [95]Ye Y, Hu Z, Lin Y, et al. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-{gamma} agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res,2010,87(3):535-544.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.