异氟烷预处理对心脏瓣膜置换术患者心肌蛋白质组的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:1.对异氟烷预处理对人缺血再灌注损伤心肌的保护作用进行临床观察。2.采用蛋白质组学方法研究异氟烷预处理对人缺血再灌注损伤心肌蛋白质表达谱的影响,寻找可能参与异氟烷预处理早期相心肌保护作用的蛋白质。3.用免疫印迹法检测其中某些差异表达的蛋白质,以进一步确定这些差异表达蛋白质在异氟烷预处理心肌保护中的作用。
     研究方法:实验分三部分:(1)择期心肺转流术下行双瓣膜置换术的风湿性心脏联合瓣膜病患者30例,随机分为对照组(n=15)和异氟烷预处理组(异氟烷组,n=15)。异氟烷组在麻醉诱导后吸入1.1%-1.2%(呼气末浓度)异氟烷30 min,洗脱15 min。对照组不吸入异氟烷,其余用药2组无区别。分别于麻醉诱导后吸入异氟烷前(T0)、主动脉开放30min (T1)、关胸后(T2)、主动脉开放6h(T3)、12h(T4)和24h(T5)测量和记录肺动脉导管数据;分别于T0、T1、T3、T4和T5取血测血清肌钙蛋白(cTnI)、肌酸磷酸激酶同工酶(CKMB)浓度。分别于主动脉阻断前(上腔静脉插管时)和主动脉开放后(上腔静脉退管时)取部分右心耳组织,用光学显微镜和电子显微镜观察心肌组织与细胞的结构变化。(2)用双向凝胶电泳法分离异氟烷组和对照组体外循环后心肌组织蛋白质,经图像分析找出差异表达蛋白质,再用基质辅助激光解吸/电离飞行时间质谱鉴定部分差异表达蛋白质。(3)根据第二部分结果,用免疫印迹法(Western Blot)检测其中某些差异表达蛋白质。
     研究结果:1.异氟烷组和对照组MABP在Tl-T4时和T0比较降低,PAOP在T2-T5时降低,SVR在Tl-T5时降低,SV、SI在Tl-T5时升高,CO、CI和LVSWI在T1-T5时升高,差异均有统计学意义(P<0.05或P<0.01)。异氟烷组PAOP在T5时和对照组比较降低,SV和SI在T4-T5时升高,CO, CI和LVSWI在T3-T5时升高,差异均有统计学意义(P<0.05或P<0.01)。异氟烷组和对照组cTnI、CKMB基础值之间无显著性差别,异氟烷组T3后cTnI低于对照组,T1后CKMB低于对照组,2组间比较有显著性差异(P<0.05)。光镜与电镜结果显示异氟烷组心肌细胞损伤轻于对照组。2.蛋白质组学结果:2-DE图像显示对照组有417±15个蛋白点,异氟烷组有454±19个蛋白点。经凝胶图像分析找到差异表达蛋白质点20个,基质辅助激光解析-电离飞行时间对差异表达蛋白质进行鉴定,共鉴定出16个蛋白质。其中,在异氟烷组有6个蛋白质表达上调,3个蛋白质表达下调,有1个新合成的蛋白质,但异氟烷组有10个蛋白质未能得到匹配。这些蛋白质包括细胞骨架蛋白(α-肌动蛋白、α-肌球蛋白重链、结蛋白、波形蛋白)、代谢相关蛋白(醛糖还原酶、3-磷酸甘油醛脱氢酶、线粒体ATP酶)、转录相关蛋白(普通转录因子ⅢC、转录因子AP2、锌指蛋白771)、离子通道蛋白(瞬时型阳离子感受器通道)等。3.采用免疫印迹技术对其中a-肌动蛋白(200号)、α-肌球蛋白重链(277号)、波形蛋白(221号)、线粒体ATP酶(47号)进行验证,发现上述四种蛋白质的表达在异氟烷预处理组明显上调。
     研究结论:1.异氟烷预处理后人心肌组织蛋白质表达谱发生变化,这些差异表达蛋白质可能通过减少细胞骨架破坏、改善能量代谢等发挥异氟烷预处理早期相的心肌保护作用。这是首次发现异氟烷预处理早期相保护作用与α-肌动蛋白、α-肌球蛋白重链、结蛋白、波形蛋白、醛糖还原酶、3-磷酸甘油醛脱氢酶、线粒体ATP酶、普通转录因子ⅢC、转录因子AP2、锌指蛋白771、瞬时型阳离子感受器通道有关。2.结合Western Blot检测,确定异氟烷预处理早期相通过a-肌动蛋白、α-肌球蛋白重链、波形蛋白和线粒体ATP酶参与对人缺血再灌注心肌的保护作用。
Objectives:(1) To investigate the protection of Isoflurane preconditioning on myocardial ischemia reperfusion injury in human. (2) To investigate the changes of myocardial protein expression profiles after Isoflurane pretreatment, and to search for the proteins probably involved in the early phase of preconditioning induced by Isoflurane with proteomics techniques. (3)To identify some different proteins with western blot according the above results.
     Methods:The experiment consists of three parts:(1) Thirty patients undergoing elective cardiac valve replacement with cardiopulmonary by pass (CPB) were randomly assigned to control group (n=15) and isoflurane group (n=15). In the isoflurane group, isoflurane of 1.0 minimum alveolar concentration end-tidal (1.1%~1.2%) was administered for 30 min followed by a 15 min washout period before the CPB. The control group did not inhale isoflurane, and there was no difference in the other drugs in the 2 groups. Pulmonary arterial dates were measured before inhalation isoflurane (T0),30 min after reperfusion(T1), after closing of thorax(T2), and 6h(T3),12h(T4) and 24h(T5) after reperfusion, respectively. Blood samples for serum cTnI and CKMB levels were obtained at To, T1, T3, T4 and T5. Right atria biopsies were collected at the times when inserting catheter into superior vena cava (SVC) and pulling out the catheter from SVC,the tissue and cell injury of myocardium was examined with optical and electron microscope. (2) Proteomic analysis of myocardium of isoflurane pretreatment. The right atria biopsies of isoflurane group or control group were sampled for proteomic analysis. The total proteins were extracted and separated by two dimensional gel electrophoresis(2-DE), and 16 differential expression protein spots were analyzed with matrix-assisted laser desor-ption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS). (3) According the above results, some proteins were identified with western blot.
     Results (1) Comparing with To, a significant decrease of mean arterial blood pressure (MABP) was detected at T1~T4(P<0.05或P< 0.01), a significant decrease of mean pulmonary arterial pressure(PAOP) was detected at T2~T5 and systemic vascular resistance(SVR) were detected at T1~T5(P<0.05 or P<0.01), stroke volume(SV) and stroke index(SI) at T1~T5, and cardiac output(CO), cardiac index(CI) and left ventricular stroke work index(LVSWI) at T1~T5 increase significantly in both control and isoflurane group(P<0.05或P<0.01); Comparing with control group, PAOP decreased significantly at T5(P<0.05), and SV, SI at T4~T5, CO, CI and LVSWI at T3~T5 increased significantly(P<0.05 or P<0.01) in isoflurane group. There was a significant decrease of cTnI level on T3~T5 and CKMB level on T1~T5 in isoflurane group (P<0.05) when comparing to control group.The tissue and cell injury of myocardium examined with optical and electron microscope in isoflurane group was decreased compared with the control group. (2) Analysis of 2-DE showed that 417±15 protein spots were seen in control group and 454±19 protein spots in isoflurane group, and that the expression of 20 protein spots were different between the two groups.16 protein spots were chosen to do MS analysis, and 16 proteins were preliminarily identified. Six proteins were up-regulated and three proteins were down-regulated and one protein was appeared in isoflurane group, but ten proteins were disappeared in isoflurane group. These proteins can be classified into four functional groups:Include cytoskeletal protein (Alpha actin、Alpha-myosin heavy chain、mutant desmin、vimentin)、metabolism related proteins (aldehyde reductase、glyceraldehyde-3-phosphate dehydrogenase、mitochondrial ATP synthase)、Transcription associated protein (general transcription factor IIIC、transcription factor AP2、zinc finger protein 771)、and ionophorous protein (transient receptor potential cation channel). (3)We further detected the expression of Alpha actin (200 spot)、Alpha-myosin heavy chain(277 spot)、vimentin (221 spot) and mitochondrial ATP synthase (47 spot) by using immunobltting (Western Blot). It was sure that Alpha actin、Alpha-myosin heavy chain、vimentin and mitochondrial ATP synthase were up-regulated by isoflurane preconditioning.
     Conclusions:(1) Isoflurane pretreatment can result in the changes of protein expression profiles in the myocardium. The differential proteins might function as decreas injury of cytoskeletal proteins and promote the energy metabolism and regulation of genes and proteins of myocardium to confer cardioprotection. Among these differential proteins, we firstly discovered that Alpha actin、Alpha-myosin heavy chain、mutant desmin、vimentin、aldehyde reductase、glyceraldehyde-3-phosphate dehydrogenase、mitochondrial ATP synthase、general transcription factorⅢC、transcription factor AP2、zinc finger protein 771、transient receptor potential cation channel were involved in the isoflurane-induced early phase of preconditioning. (2) It was sured that Alpha actin、Alpha-myosin heavy chain、vimentin and mitochondrial ATP synthase were promoted with early phase of isoflurane preconditioning by using Western Blot.
引文
[1]Aronow WS. Epidemiology, pathophysiology, prognosis, and treatment of systolic and diastolic heart failure. Cardiol Rev.2006.14(3):108-24.
    [2]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation.1986.74(5): 1124-36.
    [3]Bolli R. The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase:an overview. Basic Res Cardiol.1996.91(1):57-63.
    [4]Lee HT, Ota-Setlik A, Fu Y, Nasr SH, Emala CW. Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology.2004.101(6):1313-24.
    [5]Guarracino F, Landoni G, Tritapepe L, et al. Myocardial damage prevented by volatile anesthetics:a multicenter randomized controlled study. J Cardiothorac Vasc Anesth.2006.20(4):477-83.
    [6]Symons JA, Myles PS. Myocardial protection with volatile anaesthetic agents during coronary artery bypass surgery:a meta-analysis. Br J Anaesth.2006. 97(2):127-36.
    [7]Kersten JR, Orth KG, Pagel PS, Mei DA, Gross GJ, Warltier DC. Role of adenosine in isoflurane-induced cardioprotection. Anesthesiology.1997.86(5): 1128-39.
    [8]Novalija E, Fujita S, Kampine JP, Stowe DF. Sevoflurane mimics ischemic preconditioning effects on coronary flow and nitric oxide release in isolated hearts. Anesthesiology.1999.91(3):701-12.
    [9]Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Anesthesiology.2002. 97(1):4-14.
    [10]Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC. Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo:potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology.2004.100(3):532-9.
    [11]Sergeev P, da SR, Lucchinetti E, et al. Trigger-dependent gene expression profiles in cardiac preconditioning:evidence for distinct genetic programs in ischemic and anesthetic preconditioning. Anesthesiology.2004.100(3): 474-88.
    [12]Kalenka A, Maurer MH, Feldmann RE, Kuschinsky W, Waschke KF. Volatile anesthetics evoke prolonged changes in the proteome of the left ventricule myocardium:defining a molecular basis of cardioprotection. Acta Anaesthesiol Scand.2006.50(4):414-27.
    [13]冉珂,邹定全,周建美,江兴华,徐军美,常业恬.异氟醚预处理兔缺血再灌注心肌蛋白质组双向凝胶电泳分析.中国现代手术学杂志.2007.(03):164-167.
    [14]Cason BA, Gamperl AK, Slocum RE, Hickey RE Anesthetic-induced preconditioning:previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology.1997.87(5):1182-90.
    [15]Lee HT, Ota-Setlik A, Fu Y, Nasr SH, Emala CW. Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology.2004.101(6):1313-24.
    [16]Guarracino F, Landoni G, Tritapepe L, et al. Myocardial damage prevented by volatile anesthetics:a multicenter randomized controlled study. J Cardiothorac Vasc Anesth.2006.20(4):477-83.
    [17]Symons JA, Myles PS. Myocardial protection with volatile anaesthetic agents during coronary artery bypass surgery:a meta-analysis. Br J Anaesth.2006. 97(2):127-36.
    [18]Tanaka K, Ludwig LM, Krolikowski JG, et al. Isoflurane produces delayed preconditioning against myocardial ischemia and reperfusion injury:role of cyclooxygenase-2. Anesthesiology.2004.100(3):525-31.
    [19]Chiari PC, Bienengraeber MW, Weihrauch D, et al. Role of endothelial nitric oxide synthase as a trigger and mediator of isoflurane-induced delayed preconditioning in rabbit myocardium. Anesthesiology.2005.103(1):74-83.
    [20]Siracusano L, Girasole V, Alvaro S, Chiavarino ND. Myocardial preconditioning and cardioprotection by volatile anaesthetics. J Cardiovasc Med (Hagerstown).2006.7(2):86-95.
    [21]Pratt PF Jr, Wang C, Weihrauch D, et al. Cardioprotection by volatile anesthetics:new applications for old drugs. Curr Opin Anaesthesiol.2006. 19(4):397-403.
    [22]Belhomme D, Peynet J, Louzy M, Launay JM, Kitakaze M, Menasche P. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation.1999.100(19 Suppl):II340-4.
    [23]Landoni G, Bignami E, Oliviero F, Zangrillo A. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia. Ann Card Anaesth. 2009.12(1):4-9.
    [24]Suleiman MS, Zacharowski K, Angelini GD. Inflammatory response and cardioprotection during open-heart surgery:the importance of anaesthetics. Br J Pharmacol.2008.153(1):21-33.
    [25]Drenger B, Gilon D, Chevion M, et al. Myocardial metabolism altered by ischemic preconditioning and enflurane in off-pump coronary artery surgery. J Cardiothorac Vasc Anesth.2008.22(3):369-76.
    [26]Hemmerling T, Olivier JF, Le N, Prieto I, Bracco D. Myocardial protection by isoflurane vs. sevoflurane in ultra-fast-track anaesthesia for off-pump aortocoronary bypass grafting. Eur J Anaesthesiol.2008.25(3):230-6.
    [27]Lucchinetti E, Hofer C, Bestmann L, et al. Gene regulatory control of myocardial energy metabolism predicts postoperative cardiac function in patients undergoing off-pump coronary artery bypass graft surgery: inhalational versus intravenous anesthetics. Anesthesiology.2007.106(3): 444-57.
    [28]Bignami E, Biondi-Zoccai G, Landoni G, et al. Volatile anesthetics reduce mortality in cardiac surgery. J Cardiothorac Vasc Anesth.2009.23(5):594-9.
    [29]Bignami E, Biondi-Zoccai G, Landoni G, et al. Volatile anesthetics reduce mortality in cardiac surgery. J Cardiothorac Vasc Anesth.2009.23(5):594-9.
    [30]谭嵘,冯华.异氟醚麻醉对体外循环心脏瓣膜置换术患者心肌的保护作用.中华麻醉学杂志.2005.(04):316-318.
    [31]阮文燕,徐军美,李志坚,谭苗,冉珂.异氟烷预处理对心脏换瓣术患者血MMP-9的影响及其对心肌的保护作用.中南大学学报(医学版).2009.(02):158-164.
    [32]Ruan W, Xu J, Li Z, Tan M, Ran K. [Isoflurane preconditioning decreases the plasma concentration of matrix metalloproteinase-9 and protects myocardium against cardiopulmonary bypass in cardiac valve replacement]. Zhong Nan Da Xue Xue Bao Yi Xue Ban.2009.34(2):158-64.
    [33]Vaage J, Valen G. Pathophysiology and mediators of ischemia-reperfusion injury with special reference to cardiac surgery. A review. Scand J Thorac Cardiovasc Surg Suppl.1993.41:1-18.
    [34]Gross GJ, Kersten JR, Warltier DC. Mechanisms of postischemic contractile dysfunction. Ann Thorac Surg.1999.68(5):1898-904.
    [35]Ranucci M. Which cardiac surgical patients can benefit from placement of a pulmonary artery catheter. Crit Care.2006.10 Suppl 3:S6.
    [36]Ni CY. Cardiac troponin I:a biomarker for detection and risk stratification of minor myocardial damage. Clin Lab.2001.47(9-10):483-92.
    [37]付蕾,米明仁.心肌肌钙蛋白Ⅰ测定对心肌损伤判断的临床意义.实验与检验医学.2009.(02):206.
    [38]Ohtake M, Morino S, Kaidoh T, Inoue T. Three-dimensional structural changes in cerebral microvessels after transient focal cerebral ischemia in rats: scanning electron microscopic study of corrosion casts. Neuropathology.2004. 24(3):219-27.
    [39]胡明伦,张东琦.异氟醚预处理对心脏瓣膜置换术病人血清心肌肌钙蛋白与心肌酶学的影响.中华麻醉学杂志.2003.(06):23-26.
    [40]Hu G, Salem MR, Crystal GJ. Role of adenosine receptors in volatile anesthetic preconditioning against neutrophil-induced contractile dysfunction in isolated rat hearts. Anesthesiology.2005.103(2):287-95.
    [41]Cromheecke S, Pepermans V, Hendrickx E, et al. Cardioprotective properties of sevoflurane in patients undergoing aortic valve replacement with cardiopulmonary bypass. Anesth Analg.2006.103(2):289-96, table of contents.
    [42]Kloner RA, Przyklenk K, Whittaker P, Hale S. Preconditioning stimuli and inadvertent preconditioning. J Mol Cell Cardiol.1995.27(2):743-7.
    [43]Kitakaze M, Takashima S, Funaya H, et al. Temporary acidosis during reperfusion limits myocardial infarct size in dogs. Am J Physiol.1997.272(5 Pt 2):H2071-8.
    [44]冉珂,邹定全,周建美,江兴华,徐军美,常业恬.异氟醚预处理兔缺血再灌注心肌蛋白质组双向凝胶电泳分析.中国现代手术学杂志.2007.(03):164-167.
    [45]Kalenka A, Maurer MH, Feldmann RE, Kuschinsky W, Waschke KF. Volatile anesthetics evoke prolonged changes in the proteome of the left ventricule
    myocardium:defining a molecular basis of cardioprotection. Acta Anaesthesiol Scand.2006.50(4):414-27.
    [46]White MY, Cordwell SJ, McCarron HC, et al. Proteomics of ischemia/reperfusion injury in rabbit myocardium reveals alterations to proteins of essential functional systems. Proteomics.2005.5(5):1395-410.
    [47]Vercauteren FG, Clerens S, Roy L, et al. Early dysregulation of hippocampal proteins in transgenic rats with Alzheimer's disease-linked mutations in amyloid precursor protein and presenilin 1. Brain Res Mol Brain Res.2004. 132(2):241-59.
    [48]Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis.2000.21(6): 1037-53.
    [49]Nakanishi T, Oka T, Akagi T. Recent advances in DNA microarrays. Acta Med Okayama.2001.55(6):319-28.
    [50]贾凌云.蛋白质组学技术及其在心血管疾病研究中的应用.生理科学进展.2004.(03):237-239.
    [51]Ouzounian M, Lee DS, Gramolini AO, Emili A, Fukuoka M, Liu PP. Predict, prevent and personalize:Genomic and proteomic approaches to cardiovascular medicine. Can J Cardiol.2007.23 Suppl A:28A-33A.
    [52]Pinet F. [Proteomics in cardiology]. Arch Mal Coeur Vaiss.2007.100(1): 47-51.
    [53]Ferguson PL, Smith RD. Proteome analysis by mass spectrometry. Annu Rev Biophys Biomol Struct.2003.32:399-424.
    [54]Gevaert K, Vandekerckhove J. Protein identification methods in proteomics. Electrophoresis.2000.21(6):1145-54.
    [55]Marinovic J, Bosnjak ZJ, Stadnicka A. Preconditioning by isoflurane induces lasting sensitization of the cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel by a protein kinase C-delta-mediated mechanism. Anesthesiology.2005.103(3):540-7.
    [56]Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC. Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo:potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology.2004.100(3):532-9.
    [57]da SR, Grampp T, Pasch T, Schaub MC, Zaugg M. Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology.2004.100(1):59-69.
    [58]Raphael J, Rivo J, Gozal Y. Isoflurane-induced myocardial preconditioning is dependent on phosphatidylinositol-3-kinase/Akt signalling. Br J Anaesth.2005. 95(6):756-63.
    [59]Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Anesthesiology.2002. 97(1):4-14.
    [60]An J, Bosnjak ZJ, Jiang MT. Myocardial protection by isoflurane preconditioning preserves Ca2+ cycling proteins independent of sarcolemmal and mitochondrial KATP channels. Anesth Analg.2007.105(5):1207-13, table of contents.
    [61]Raphael J, Abedat S, Rivo J, et al. Volatile anesthetic preconditioning attenuates myocardial apoptosis in rabbits after regional ischemia and reperfusion via Akt signaling and modulation of Bcl-2 family proteins. J Pharmacol Exp Ther.2006.318(1):186-94.
    [62]Lucchinetti E, da SR, Pasch T, Schaub MC, Zaugg M. Anaesthetic preconditioning but not postconditioning prevents early activation of the deleterious cardiac remodelling programme:evidence of opposing genomic responses in cardioprotection by pre- and postconditioning. Br J Anaesth.2005. 95(2):140-52.
    [63]Kalenka A, Maurer MH, Feldmann RE, Kuschinsky W, Waschke KF. Volatile anesthetics evoke prolonged changes in the proteome of the left ventricule myocardium:defining a molecular basis of cardioprotection. Acta Anaesthesiol Scand.2006.50(4):414-27.
    [64]Tsutsumi YM, Patel HH, Lai NC, Takahashi T, Head BP, Roth DM. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice. Anesthesiology.2006.104(3):495-502.
    [65]Toda N, Toda H, Hatano Y. Nitric oxide:involvement in the effects of anesthetic agents. Anesthesiology.2007.107(5):822-42.
    [66]Amour J, Brzezinska AK, Weihrauch D, et al. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology.2009.110(2):317-25.
    [67]Sergeev P, da SR, Lucchinetti E, et al. Trigger-dependent gene expression profiles in cardiac preconditioning:evidence for distinct genetic programs in ischemic and anesthetic preconditioning. Anesthesiology.2004.100(3): 474-88.
    [68]Hein S, Scheffold T, Schaper J. Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J Thorac Cardiovasc Surg.1995.110(1):89-98.
    [69]Glyn MC, Ward BJ. Changes in the actin cytoskeleton of cardiac capillary endothelial cells during ischaemia and reperfusion:the effect of phalloidin on cell shape. J Vase Res.2002.39(1):72-82.
    [70]Hein S, Scheffold T, Schaper J. Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J Thorac Cardiovasc Surg.1995.110(1):89-98.
    [71]杨海玉,黄占军.曲美他嗪对心肌缺血时细胞骨架损伤的作用.中国心血管杂志.2003.(06):424-425+428.
    [72]Van Eyk JE, Powers F, Law W, Larue C, Hodges RS, Solaro RJ. Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts:identification of degradation products and effects on the pCa-force relation. Circ Res.1998.82(2):261-71.
    [73]Sashida H, Abiko Y. Inhibition with NCO-700, a protease inhibitor, of degradation of cardiac myofibrillar proteins during ischemia in dogs. Biochem Pharmacol.1985.34(21):3875-80.
    [74]Nishida S, Hiruma S, Hashimoto S. Immunohistochemical change of actin in experimental myocardial ischemia. Its usefulness to detect very early myocardial damages. Histol Histopathol.1987.2(4):417-28.
    [75]Fu C, Song Y, Zhu J. Immunocytochemical study with anti-muscle actin antibody (HHF35) on myocardial ischaemia and reperfusion injury in rats. Forensic Sci Int.1993.59(1):25-34.
    [76]王蕾,郭子新,席丰,孙雷,王波.肌动蛋白、肌钙蛋白及纤维连接蛋白在心肌缺血中的研究.实用心脑肺血管病杂志.2006.(08):615-617.
    [77]刘双,蒋磊,肖献忠.HSP25对小鼠心肌缺血-再灌注所致肌动蛋白损伤的保护作用.中国现代医学杂志.2002.(16):29-31.
    [78]Vivien B, Lecarpentier Y, Riou B, Coirault C. Halothane and isoflurane do not directly interact with cardiac cross-bridge function. Anesthesiology.2005. 102(2):364-70.
    [79]Vale RD, Milligan RA. The way things move:looking under the hood of molecular motor proteins. Science.2000.288(5463):88-95.
    [80]Rundell VL, Manaves V, Martin AF, de Tombe PP. Impact of beta-myosin heavy chain isoform expression on cross-bridge cycling kinetics. Am J Physiol Heart Circ Physiol.2005.288(2):H896-903.
    [81]Ohga Y, Sakata S, Takenaka C, et al. Cardiac dysfunction in terms of left ventricular mechanical work and energetics in hypothyroid rats. Am J Physiol Heart Circ Physiol.2002.283(2):H631-41.
    [82]Blair E, Redwood C, de Jesus Oliveira M, et al. Mutations of the light meromyosin domain of the beta-myosin heavy chain rod in hypertrophic cardiomyopathy. Circ Res.2002.90(3):263-9.
    [83]Krumenacker JS, Katsuki S, Kots A, Murad F. Differential expression of genes involved in cGMP-dependent nitric oxide signaling in murine embryonic stem (ES) cells and ES cell-derived cardiomyocytes. Nitric Oxide.2006.14(1): 1-11.
    [84]Sakurai S, Ashida T, Ieki K, Takahashi N, Fujii J. Left ventricular regional variations in myosin isoform shift in Dahl salt-sensitive hypertensive rats. Hypertens Res.2003.26(3):251-5.
    [85]James J, Martin L, Krenz M, et al. Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions. Circulation.2005.111(18):2339-46.
    [86]戴闺柱.我国在心力衰竭研究的主要成就.中华心血管病杂志.1999.(04):31-32.
    [87]Maddika S, Elimban V, Chapman D, Dhalla NS. Role of oxidative stress in ischemia-reperfusion-induced alterations in myofibrillar ATPase activities and gene expression in the heart. Can J Physiol Pharmacol.2009.87(2):120-9.
    [88]Ambler SK, Hodges YK, Jones GM, Long CS, Horwitz LD. Prolonged administration of a dithiol antioxidant protects against ventricular remodeling due to ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol.2008. 295(3):H1303-H1310.
    [89]Herron TJ, Devaney E, Mundada L, et al. Ca2+-independent positive molecular inotropy for failing rabbit and human cardiac muscle by alpha-myosin motor gene transfer. FASEB J.2010.24(2):415-24.
    [90]Pillai JB, Chen M, Rajamohan SB, et al. Activation of SIRT1, a class Ⅲ histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am J Physiol Heart Circ Physiol.2008. 294(3):H1388-97.
    [91]Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D. Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol.1997.29(8): 2107-24.
    [92]Balogh J, Merisckay M, Li Z, Paulin D, Arner A. Hearts from mice lacking desmin have a myopathy with impaired active force generation and unaltered wall compliance. Cardiovasc Res.2002.53(2):439-50.
    [93]Ouyang J, Guzman M, Desoto-Lapaix F, Pincus MR, Wieczorek R. Utility of desmin and a Masson's trichrome method to detect early acute myocardial infarction in autopsy tissues. Int J Clin Exp Pathol.2009.3(1):98-105.
    [95]Chang H, Chu XY, Zou J, Chang TH. Effect of dl-praeruptorin A on desmin and vimentin content in rat ischemia/reperfusion myocardiocytes. Chin Med J (Engl).2007.120(24):2256-9.
    [96]Blunt BC, Creek AT, Henderson DC, Hofmann PA. H2O2 activation of HSP25/27 protects desmin from calpain proteolysis in rat ventricular myocytes. Am J Physiol Heart Circ Physiol.2007.293(3):H1518-25.
    [97]Hwang YC, Kaneko M, Bakr S, et al. Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J.2004.18(11):1192-9.
    [98]Hwang YC, Sato S, Tsai JY, et al. Aldose reductase activation is a key component of myocardial response to ischemia. FASEB J.2002.16(2):243-5.
    [99]Hwang YC, Shaw S, Kaneko M, Redd H, Marrero MB, Ramasamy R. Aldose reductase pathway mediates JAK-STAT signaling:a novel axis in myocardial ischemic injury. FASEB J.2005.19(7):795-7.
    [100]Trueblood N, Ramasamy R. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol.1998.275(1 Pt 2):H75-83.
    [101]Ramasamy R, Trueblood N, Schaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. Am J Physiol.1998. 275(1 Pt2):H195-203.
    [102]Kaneko M, Ramasamy R. Aldose reductase:a key player in myocardial ischemic injury. Exerc Sport Sci Rev.2004.32(1):19-23.
    [103]Hwang YC, Sato S, Tsai JY, et al. Aldose reductase activation is a key component of myocardial response to ischemia. FASEB J.2002.16(2):243-5.
    [104]Kaiserova K, Srivastava S, Hoetker JD, et al. Redox activation of aldose reductase in the ischemic heart. J Biol Chem.2006.281(22):15110-20.
    [105]Ananthakrishnan R, Kaneko M, Hwang YC, et al. Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol.2009.296(2): H333-41.
    [106]Ananthakrishnan R, Kaneko M, Hwang YC, et al. Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol.2009.296(2): H333-41.
    [107]Keith RJ, Haberzettl P, Vladykovskaya E, et al. Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chem Biol Interact.2009. 178(1-3):242-9.
    [108]Trueblood N, Ramasamy R. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol.1998.275(1 Pt 2):H75-83.
    [109]Tracey WR, Magee WP, Ellery CA, et al. Aldose reductase inhibition alone or combined with an adenosine A(3) agonist reduces ischemic myocardial injury. Am J Physiol Heart Circ Physiol.2000.279(4):H1447-52.
    [110]Hwang YC, Kaneko M, Bakr S, et al. Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J.2004.18(11):1192-9.
    [111]Iwata K, Matsuno K, Nishinaka T, Persson C, Yabe-Nishimura C. Aldose reductase inhibitors improve myocardial reperfusion injury in mice by a dual mechanism. J Pharmacol Sci.2006.102(1):37-46.
    [112]Eaton P, Wright N, Hearse DJ, Shattock MJ. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol.2002.34(11):1549-60.
    [113]Graven KK, Molvar C, Roncarati JS, Klahn BD, Lowrey S, Farber HW. Identification of protein disulfide isomerase as an endothelial hypoxic stress protein. Am J Physiol Lung Cell Mol Physiol.2002.282(5):L996-1003.
    [114]Prescott M, Nowakowski S, Gavin P, Nagley P, Whisstock JC, Devenish RJ. Subunit gamma-green fluorescent protein fusions are functionally incorporated into mitochondrial FIFO-ATP synthase, arguing against a rigid cap structure at the top of F1. J Biol Chem.2003.278(1):251-6.
    [115]Duvezin-Caubet S, Caron M, Giraud MF, Velours J, di RJP. The two rotor components of yeast mitochondrial ATP synthase are mechanically coupled by subunit delta. Proc Natl Acad Sci U S A.2003.100(23):13235-40.
    [116]Silvester JA, Dickson VK, Runswick MJ, Leslie AG, Walker JE. The expression, purification, crystallization and preliminary X-ray analysis of a subcomplex of the peripheral stalk of ATP synthase from bovine mitochondria. Acta Crystallogr Sect F Struct Biol Cryst Commun.2006.62(Pt 6):530-3.
    [117]Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. Structure of the Fl-binding domain of the stator of bovine FIFo-ATPase and how it binds an alpha-subunit. J Mol Biol.2005.351(4):824-38.
    [118]Walker JE, Dickson VK. The peripheral stalk of the mitochondrial ATP synthase. Biochim Biophys Acta.2006.1757(5-6):286-96.
    [119]Iino R, Noji H. Fl-ATPase:a highly coupled reversible rotary motor. Biochem Soc Trans.2006.34(Pt 5):993-6.
    [120]Junge W, Panke O, Cherepanov DA, Gumbiowski K, Muller M, Engelbrecht S. Inter-subunit rotation and elastic power transmission in FOF1-ATPase. FEBS Lett.2001.504(3):152-60.
    [121]Weber J. ATP synthase:subunit-subunit interactions in the stator stalk. Biochim Biophys Acta.2006.1757(9-10):1162-70.
    [122]Panke O, Gumbiowski K, Junge W, Engelbrecht S. F-ATPase:specific observation of the rotating c subunit oligomer of EF(o)EF(1). FEBS Lett.2000. 472(1):34-8.
    [123]Wong R, Aponte AM, Steenbergen C, Murphy E. Cardioprotection leads to novel changes in the mitochondrial proteome. Am J Physiol Heart Circ Physiol. 2010.298(1):H75-91.
    [124]Arrell DK, Elliott ST, Kane LA, et al. Proteomic analysis of pharmacological preconditioning:novel protein targets converge to mitochondrial metabolism pathways. Circ Res.2006.99(7):706-14.
    [125]吴艳娜.雷米普利诱导大鼠延迟相心脏保护作用及蛋白质组学研究.天津医科大学学报.2004.(01):5-10.
    [126]Chen CH, Liu K, Chan JY. Anesthetic preconditioning confers acute cardioprotection via up-regulation of manganese superoxide dismutase and preservation of mitochondrial respiratory enzyme activity. Shock.2008.29(2): 300-8.
    [127]Williams T, Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev.1991.5(4):670-82.
    [128]Williams T, Tjian R. Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science.1991.251(4997): 1067-71.
    [129]Zhang J, Hagopian-Donaldson S, Serbedzija G, et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature.1996. 381(6579):238-41.
    [130]Moser M, Pscherer A, Roth C, et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2beta. Genes Dev.1997. 11(15):1938-48.
    [131]Auman HJ, Nottoli T, Lakiza O, Winger Q, Donaldson S, Williams T. Transcription factor AP-2gamma is essential in the extra-embryonic lineages for early postimplantation development. Development.2002.129(11): 2733-47.
    [132]Heimberger AB, McGary EC, Suki D, et al. Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. Clin Cancer Res.2005.11(1):267-72.
    [133]Pellikainen J, Kataja V, Ropponen K, et al. Reduced nuclear expression of transcription factor AP-2 associates with aggressive breast cancer. Clin Cancer Res.2002.8(11):3487-95.
    [134]Lee MS, Gippert GP, Soman KV, Case DA, Wright PE. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science.1989. 245(4918):635-7.
    [135]Frankel AD, Pabo CO. Fingering too many proteins. Cell.1988.53(5):675.
    [136]Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res.2003.31(2):532-50.
    [137]Nagaoka M, Sugiura Y. Artificial zinc finger peptides:creation, DNA recognition, and gene regulation. J Inorg Biochem.2000.82(1-4):57-63.
    [138]Bach FH, Hancock WW, Ferran C. Protective genes expressed in endothelial cells:a regulatory response to injury. Immunol Today.1997.18(10):483-6.
    [139]Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics.2004.4(12):3665-85.
    [140]Chang J, Van Remmen H, Ward WF, Regnier FE, Richardson A, Cornell J. Processing of data generated by 2-dimensional gel electrophoresis for statistical analysis:missing data, normalization, and statistics. J Proteome Res. 2004.3(6):1210-8.
    [141]Giorgianni F, Desiderio DM, Beranova-Giorgianni S. Proteome analysis using isoelectric focusing in immobilized pH gradient gels followed by mass spectrometry. Electrophoresis.2003.24(1-2):253-9.
    [1]Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res.2003.93(4):292-301.
    [2]Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev.1996.13:19-50.
    [3]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis.1995. 16(7):1090-4.
    [4]Nakanishi T, Oka T, Akagi T. Recent advances in DNA microarrays. Acta Med Okayama.2001.55(6):319-28.
    [5]Anderson NL, Anderson NG Proteome and proteomics:new technologies, new concepts, and new words. Electrophoresis.1998.19(11):1853-61.
    [6]Giorgianni F, Desiderio DM, Beranova-Giorgianni S. Proteome analysis using isoelectric focusing in immobilized pH gradient gels followed by mass spectrometry. Electrophoresis.2003.24(1-2):253-9.
    [7]Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics.2004.4(12):3665-85.
    [8]Chang J, Van Remmen H, Ward WF, Regnier FE, Richardson A, Cornell J. Processing of data generated by 2-dimensional gel electrophoresis for statistical analysis:missing data, normalization, and statistics. J Proteome Res. 2004.3(6):1210-8.
    [9]Honore B, Ostergaard M, Vorum H. Functional genomics studied by proteomics. Bioessays.2004.26(8):901-15.
    [10]Cutillas P, Burlingame A, Unwin R. Proteomic strategies and their application in studies of renal function. News Physiol Sci.2004.19:114-9.
    [11]Gevaert K, Vandekerckhove J. Protein identification methods in proteomics. Electrophoresis.2000.21(6):1145-54.
    [12]Blueggel M, Chamrad D, Meyer HE. Bioinformatics in proteomics. Curr Pharm Biotechnol.2004.5(1):79-88.
    [13]Arrell DK, Neverova I, Fraser H, Marban E, Van Eyk JE. Proteomic analysis of pharmacologically preconditioned cardiomyocytes reveals novel phosphorylation of myosin light chain 1. Circ Res.2001.89(6):480-7.
    [14]Hein S, Scheffold T, Schaper J. Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J Thorac Cardiovasc Surg.1995.110(1):89-98.
    [15]Glyn MC, Ward BJ. Changes in the actin cytoskeleton of cardiac capillary endothelial cells during ischaemia and reperfusion:the effect of phalloidin on cell shape. J Vasc Res.2002.39(1):72-82.
    [16]Hein S, Scheffold T, Schaper J. Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J Thorac Cardiovasc Surg.1995.110(1):89-98.
    [17]杨海玉,黄占军.曲美他嗪对心肌缺血时细胞骨架损伤的作用.中国心血管杂志.2003.(06):424-425+428.
    [18]Van Eyk JE, Powers F, Law W, Larue C, Hodges RS, Solaro RJ. Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts:identification of degradation products and effects on the pCa-force relation. Circ Res.1998.82(2):261-71.
    [19]Sashida H, Abiko Y. Inhibition with NCO-700, a protease inhibitor, of degradation of cardiac myofibrillar proteins during ischemia in dogs. Biochem Pharmacol.1985.34(21):3875-80.
    [20]Nishida S, Hiruma S, Hashimoto S. Immunohistochemical change of actin in experimental myocardial ischemia. Its usefulness to detect very early myocardial damages. Histol Histopathol.1987.2(4):417-28.
    [21]Nishida S, Hiruma S, Hashimoto S. Immunohistochemical change of actin in experimental myocardial ischemia. Its usefulness to detect very early myocardial damages. Histol Histopathol.1987.2(4):417-28.
    [22]Fu C, Song Y, Zhu J. Immunocytochemical study with anti-muscle actin antibody (HHF35) on myocardial ischaemia and reperfusion injury in rats. Forensic Sci Int.1993.59(1):25-34.
    [23]王蕾,郭子新,席丰,孙雷,王波.肌动蛋白、肌钙蛋白及纤维连接蛋白在心肌缺血中的研究.实用心脑肺血管病杂志.2006.(08):615-617.
    [24]吴艳娜.雷米普利诱导大鼠延迟相心脏保护作用及蛋白质组学研究.天津医科大学学报.2004.(01):5-10.
    [25]刘双,蒋磊,肖献忠.HSP25对小鼠心肌缺血-再灌注所致肌动蛋白损伤的保护作用.中国现代医学杂志.2002.(16):29-31.
    [26]Maddika S, Elimban V, Chapman D, Dhalla NS. Role of oxidative stress in ischemia-reperfusion-induced alterations in myofibrillar ATPase activities and gene expression in the heart. Can J Physiol Pharmacol.2009.87(2):120-9.
    [27]Ambler SK, Hodges YK, Jones GM, Long CS, Horwitz LD. Prolonged administration of a dithiol antioxidant protects against ventricular remodeling due to ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol.2008. 295(3):H1303-H1310.
    [28]Herron TJ, Devaney E, Mundada L, et al. Ca2+-independent positive molecular inotropy for failing rabbit and human cardiac muscle by alpha-myosin motor gene transfer. FASEB J.2010.24(2):415-24.
    [29]Vivien B, Lecarpentier Y, Riou B, Coirault C. Halothane and isoflurane do not directly interact with cardiac cross-bridge function. Anesthesiology.2005. 102(2):364-70.
    [30]Pillai JB, Chen M, Rajamohan SB, et al. Activation of SIRT1, a class Ⅲ histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am J Physiol Heart Circ Physiol.2008. 294(3):H1388-97.
    [31]Pillai JB, Chen M, Rajamohan SB, et al. Activation of SIRT1, a class Ⅲ histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am J Physiol Heart Circ Physiol.2008. 294(3):H1388-97.
    [32]Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D. Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol.1997.29(8): 2107-24.
    [33]Balogh J, Merisckay M, Li Z, Paulin D, Arner A. Hearts from mice lacking desmin have a myopathy with impaired active force generation and unaltered wall compliance. Cardiovasc Res.2002.53(2):439-50.
    [34]Ouyang J, Guzman M, Desoto-Lapaix F, Pincus MR, Wieczorek R. Utility of desmin and a Masson's trichrome method to detect early acute myocardial infarction in autopsy tissues. Int J Clin Exp Pathol.2009.3(1):98-105.
    [35]Chang H, Chu XY, Zou J, Chang TH. Effect of dl-praeruptorin A on desmin and vimentin content in rat ischemia/reperfusion myocardiocytes. Chin Med J (Engl).2007.120(24):2256-9.
    [36]Blunt BC, Creek AT, Henderson DC, Hofmann PA. H2O2 activation of HSP25/27 protects desmin from calpain proteolysis in rat ventricular myocytes. Am J Physiol Heart Circ Physiol.2007.293(3):H1518-25.
    [37]McDonough JL, Arrell DK, Van Eyk JE. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res.1999.84(1):9-20.
    [38]Golenhofen N, Ness W, Koob R, Htun P, Schaper W, Drenckhahn D. Ischemia-induced phosphorylation and translocation of stress protein alpha B-crystallin to Z lines of myocardium. Am J Physiol.1998.274(5 Pt 2): H1457-64.
    [39]Yoshida K, Aki T, Harada K, et al. Translocation of HSP27 and MKBP in ischemic heart. Cell Struct Funct.1999.24(4):181-5.
    [40]Schwertz H, Langin T, Platsch H, et al. Two-dimensional analysis of myocardial protein expression following myocardial ischemia and reperfusion in rabbits. Proteomics.2002.2(8):988-95.
    [41]Edmondson RD, Vondriska TM, Biederman KJ, et al. Protein kinase C epsilon signaling complexes include metabolism- and transcription/translation-related proteins:complimentary separation techniques with LC/MS/MS. Mol Cell Proteomics.2002.1(6):421-33.
    [42]Zhang J, Baines CP, Zong C, et al. Functional proteomic analysis of a three-tier PKCepsilon-Akt-eNOS signaling module in cardiac protection. Am J Physiol Heart Circ Physiol.2005.288(2):H954-61.
    [43]Zhang J, Baines CP, Zong C, et al. Functional proteomic analysis of a three-tier PKCepsilon-Akt-eNOS signaling module in cardiac protection. Am J Physiol Heart Circ Physiol.2005.288(2):H954-61.
    [44]Mizukami Y, Iwamatsu A, Aki T, et al. ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem.2004.279(48):50120-31.
    [45]Hwang YC, Kaneko M, Bakr S, et al. Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J.2004.18(11):1192-9.
    [46]Hwang YC, Sato S, Tsai JY, et al. Aldose reductase activation is a key component of myocardial response to ischemia. FASEB J.2002.16(2):243-5.
    [47]Hwang YC, Shaw S, Kaneko M, Redd H, Marrero MB, Ramasamy R. Aldose reductase pathway mediates JAK-STAT signaling:a novel axis in myocardial ischemic injury. FASEB J.2005.19(7):795-7.
    [48]Trueblood N, Ramasamy R. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol.1998.275(1 Pt 2):H75-83.
    [49]Ramasamy R, Trueblood N, Schaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. Am J Physiol.1998. 275(1 Pt2):H195-203.
    [50]Hwang YC, Sato S, Tsai JY, et al. Aldose reductase activation is a key component of myocardial response to ischemia. FASEB J.2002.16(2):243-5.
    [51]Kaiserova K, Srivastava S, Hoetker JD, et al. Redox activation of aldose reductase in the ischemic heart. J Biol Chem.2006.281(22):15110-20.
    [52]Ananthakrishnan R, Kaneko M, Hwang YC, et al. Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol.2009.296(2): H333-41.
    [53]Ananthakrishnan R, Kaneko M, Hwang YC, et al. Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol.2009.296(2): H333-41.
    [54]Keith RJ, Haberzettl P, Vladykovskaya E, et al. Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chem Biol Interact.2009. 178(1-3):242-9.
    [55]Trueblood N, Ramasamy R. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol.1998.275(1 Pt 2):H75-83.
    [56]Tracey WR, Magee WP, Ellery CA, et al. Aldose reductase inhibition alone or combined with an adenosine A(3) agonist reduces ischemic myocardial injury. Am J Physiol Heart Circ Physiol.2000.279(4):H1447-52.
    [57]Hwang YC, Kaneko M, Bakr S, et al. Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J.2004.18(11):1192-9.
    [58]Iwata K, Matsuno K, Nishinaka T, Persson C, Yabe-Nishimura C. Aldose reductase inhibitors improve myocardial reperfusion injury in mice by a dual mechanism. J Pharmacol Sci.2006.102(1):37-46.
    [59]Eaton P, Wright N, Hearse DJ, Shattock MJ. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol.2002.34(11):1549-60.
    [60]Graven KK, Molvar C, Roncarati JS, Klahn BD, Lowrey S, Farber HW. Identification of protein disulfide isomerase as an endothelial hypoxic stress protein. Am J Physiol Lung Cell Mol Physiol.2002.282(5):L996-1003.
    [61]Prescott M, Nowakowski S, Gavin P, Nagley P, Whisstock JC, Devenish RJ. Subunit gamma-green fluorescent protein fusions are functionally incorporated into mitochondrial FIFO-ATP synthase, arguing against a rigid cap structure at the top of F1. J Biol Chem.2003.278(1):251-6.
    [62]Jugdutt BI, Sawicki G. AT1 receptor blockade alters metabolic, functional and structural proteins after reperfused myocardial infarction:detection using proteomics. Mol Cell Biochem.2004.263(1-2):179-88.
    [63]Wong R, Aponte AM, Steenbergen C, Murphy E. Cardioprotection leads to novel changes in the mitochondrial proteome. Am J Physiol Heart Circ Physiol. 2010.298(1):H75-91.
    [64]Arrell DK, Elliott ST, Kane LA, et al. Proteomic analysis of pharmacological preconditioning:novel protein targets converge to mitochondrial metabolism pathways. Circ Res.2006.99(7):706-14.
    [65]Chen CH, Liu K, Chan JY. Anesthetic preconditioning confers acute cardioprotection via up-regulation of manganese superoxide dismutase and preservation of mitochondrial respiratory enzyme activity. Shock.2008.29(2): 300-8.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.