引黄水低温低浊期混凝特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温低浊水净化是给水处理中的难点问题,而黄河水体在静沉后表现出的低温低浊特性又有其特殊性,实际工艺运行表明,其混凝特性有待进一步探讨。本课题以实际水厂为研究对象,针对其运行不佳的现状,通过对原水分析、实验室机理探讨、现场中试试验三个阶段进行研究工作,利用物理化学、动力学、形态学阶段控制描述混凝过程,并最后确定最优的控制参数。
     论文通过小试和中试试验进行了混凝剂(PAC、Al2(SO)3、PFC、FeCl3)、助凝剂(PAM、活化硅酸、PAC)的优选及抗冲击负荷试验,确定最佳混凝剂为PAC,投加量5.8mg/L,沉后水浊度和残余铝分别为0.94NTU和0.18mg/L。最佳药剂组合为PAC+PAM,投加量分别为5.8mg/L和0.5mg/L,连续运行表明,沉后水浊度≤0.5NTU,保证率100%,残余铝0.08mg/L。抗冲击负荷试验表明,其处理水量在(0.8~1.4)Q的范围内变化时,沉淀后水质通常可控制在0.5NTU以下,残余铝控制在0.1mg/L以下。以上数据均在原水温度低于5℃的条件下获得,试验工艺对引黄低温低浊原水具有较强的适应性。
     论文以引黄低温低浊水体为代表,通过混凝烧杯试验进行动力学小试研究,采用分形维数、颗粒粒径、浊度等指标进行絮凝效果分析,认为絮凝工艺宜分为三级,并确定了各阶段Fr的最佳值:第一级为0.03,第二级为0.01,第三级为0.003;通过中试试验验证并确定了各级工艺的最佳Fr范围:第一级,0.015~0.05;第二级,0.006~0.022;第三级,0.003~0.009。中试试验证明,在原水温度<5℃、浊度<10NTU且不投加助凝剂的条件下,絮凝池末端絮体分形维数可达1.72,沉淀池出水直径在10μm以下的颗粒占全部颗粒的90%以上,而大于50μm的颗粒不足1%,说明絮凝工艺对系统中形成的颗粒具有较高的去除率。
     论文从工艺学、动力学的角度分析了黄河水厂运行状况不佳的原因,通过试验得出了合理的设计参数,同时证明了合理的工艺分级及动力学参数能解决该原水的混凝问题。在原水温度<5℃、浊度<10NTU且不投加助凝剂的条件下,试验工艺与原工艺对比发现,在絮体分形维数(Df)、颗粒粒径(df)、出水水质、能量消耗、稳定性等方面前者均有较大优势,其中,试验工艺絮凝池末端矾花Df、df分别为1.72、0.52mm,比原工艺提高了8%、63%,沉淀池出水浊度降低了66%,能耗降低了75%,且出水水质稳定。
     论文提出的引黄低温低浊水混凝过程控制理论与方法,为分析、设计和改造混凝工艺提供了科学依据,用于生产实践,不仅可以提高混凝工艺的处理效率和运行稳定性,改善水质,同时还可节约工程占地面积、节省工程投资和降低运行费用,具有很好的社会效益和经济效益。
The low temperature and low turbidity water is a populer concern in water treatment. Yellow River water as a kind of low temperature and low turbidity water body shows special characteristics after static settling, whose coagulation precipitation characteristic waits for further discussing, as the actual process operation indicating. Taking the actual waterworks as object, in view of its operation bad present situation, through three stages of analysising raw water, discussing the laboratory mechanism, and pilot scale test to carry on the research work, descriptes coagulation proess by physical chemistry, dynamics, the morphology stage control, and determines the ptimal controlled parameters finally, in reseach.
     Through the laboratory scale and pilot scale tests in the research about optimization and resistance to impact load of coagulant (PAC, Al2(SO)3, PFC, FeCl3) and coagulant aids (PAM, the activation silicic acid, PAC), to determine that the best coagulant is PAC, whose dosing quantity is 5.8mg/L, the turbidity and the remaining aluminum respectively are 0.94NTU and 0.18mg/L after sinking. The best medicament combination is PAC+PAM, dosing quantity is 5.8mg/L and 0.5mg/L, making turbidity≤0.5NTU, guarantee rate 100%, remaining aluminum 0.08mg/L after sinking, while continuous running indicates. The the experiment of hydraulic and organic shock shows that when treatment capacity change bettwen 0.8Q and 1.4Q, turbidity usually below 0.5NTU and remaining aluminum control below 0.1mg/L after precipitation. The above data are all getted in a temperature lower than 5℃, so the experimental process can well adapt to the low temperature and low turbidity water diverted from the Yellow river.
     The paper take the low temperature and low turbidity water diverted from the Yellow river as representative, carries on cationic organic polymer flocculants to study the kinetics, using fractal dimensions, the particle size, turbidity and so on, to be the standard of flocculation efficiency analysising. The flocculation craft divides into suitably third level, and has determined the various stages Fr best value: The first level is 0.03, the second level is 0.01, the third level is 0.003; Confirmed and has determined all levels of craft best Fr through the experimental experiment the scope: The first level, 0.015~0.05; The second level, 0.006~0.022; The third level, 0.003~0.009. Experimental experimental proof, in raw water temperature <5℃, turbidity <10NTU, and does not throw adds the coagulant aids under the condition, the flocculation pond terminal cotton wool body fractal dimension may reach 1.72, the sedimentation pond water leakage diameter, in 10μm the following pellet occupies the complete pellet above 90%, but is bigger than 50μm pellet insufficient 1%, explained that the flocculation craft the pellet which forms to the system in has the high elimination rate.
     The reseach analysis the reason of experimental waterworks working uptight in the view of technology and kinetics, give the most rational design parameters through experimental, and proven that the reasonable craft graduation and dynamics parameter can solve the problem of processing raw water. Under the condition that raw water temperature <5℃, turbidity <10NTU, and without coagulant aids, compareding the experimental process and the original process, found that the experimental process is better than the other, on respects of the cotton wool body fractal dimension (Df), the pellet particle size (df), the water leakage water quality, the energy consumption, the stability and so on. In the experimental process, Df and df of alum blossom on the end of flocculator respectively is 1.72 and 0.52mm, which enhanced 8% and 63% compared to the original craft, the sedimentation pond water leakage turbidity enhanced 66%, the energy consumption reduced 75%., meanwhile the out water quality is stable.
     The control theory and method of coagulation process of low-temperature and low turbidity water from Yellow river was conducted in this study. It would contribute to the analysis,design and improvement of coagulant processes. Advantages would attribute to coagulation in productive process are not only for the improvement of the pollutant removal efficiency,running stability and effluent quality,but also for the saving of the land requirement,construction and maintenance costs,both of which would bring the great social benefits and economic returns.
引文
1 Peter Pornmerenk. Adsorption of inorganic and organic ligands on to aluminum hydroxide and its effect. Dissertation for Ph.D. Old Dominion University, 2001
    2 Valade M T, Edzwald J K, Tobiason J E, et al. Particle removal by flotation and filtration: pretreatment effects. JAWWA, 1996, 88(11): 35~47
    3陈翼孙,胡斌.气浮净水技术的研究与应用.上海科学技术出版社, 1983
    4孟凡良,崔福义.低温低浊地表水处理技术的探讨.哈尔滨商业大学学报(自然科学版). 2003, 19(2): 187~190
    5王玉芬,周建军.一次混凝法处理黄河、汾河混合水的试验研究.太原理工大学学报. 1999, 30(3): 281~284
    6李为兵,金雪中,张红春等.处理低温低浊水的混凝剂优选.中国给水排水. 2006, 22(13): 49~52
    7马军,翟学东.高锰酸盐、预臭氧化低温低浊水的效能.中国给水排水. 2004,20(5): 9~12
    8梁恒,李圭白,李星等.中国化学会第七届水处理化学大会暨学术研讨会论文集.济南, 2005, 429~432
    9胡子斌,王向明.聚硅酸铁处理低温低浊水的研究.工业用水与废水. 2004, 35(4): 21~22
    10张锦,李圭白,马军.高锰酸钾复剂对给水处理中混凝的强化效应.工业用水与废水. 2003, 34(3): 12~14
    11包立新,徐淑云.改性活化硅酸在低温低浊水处理中的应用.北方环境
    12王银涛,赫俊国,艾恒雨.改性活化硅酸净化低温抵浊水.中国给水排水. 2002, 18(11): 39~40
    13王冬光,付英.聚硅酸铁混凝剂净水效能及机理.环境工程学报. 2007, 1(6): 6~11
    14陶树新,朱文娜.新型混凝剂聚合硅硫酸铝试验研究.上海水务. 2006, 22(2): 26~29
    15石明岩,崔福义,张海龙等.低温低浊受污染水处理中混凝剂的优化选择.工业水处理. 2002, 22(10): 29~31
    16张跃军,赵晓蕾.处理低温、低浊宁波白溪水库水的混凝剂优化.中国给水排水. 2007, 23(13): 52~55
    17王云波,刘金河,谭万春等. PDA2000监测低温低浊水混凝试验研究.长沙交通学院学报. 2003,19(1): 53~57
    18李潇潇,张跃军,赵晓蕾等.强化混凝处理低温低浊北渡水研究.工业水处理. 2007, 27(7): 42~44,73
    19赫俊国,宋学峰.微涡旋混凝低脉动沉淀技术处理低温低浊水.中国给水排水. 1999, 15(4): 17~19
    20崔福义,徐勇鹏,赫俊国等.南方低浊高藻水的网格絮凝工艺优化中国给水排水. 2004, 20(2): 8~11
    21汪义强,赫俊国.微污染水源水的强化絮凝处理给水排水. 2004, 30(10): 1~4
    22逢国林,孙春华.新型旋流扰流絮凝反应器的生产应用.天津城市建设学院学报. 2004, 10(1): 54~58
    23张硕,徐波,张玉先等.可调式跌水网格混合器的研制及工程应用给水排水. 2005, 31(11): 92~95
    24张晓红.低浊度水的网格絮凝强化试验研究.哈尔滨工业大学硕士学位论文. 2004
    25庞焕岩,于水利,于志伟.新型旋流扰流反应器试验研究哈尔滨商业大学学报(自然科学版). 2007, 23(3): 303~306
    26班云霄,杨庆,丁昀.低温低浊和高浊度黄河水在水旋澄清池中的处理机理研究.净水技术. 2007, 26(2): 10~12
    27王东田,海老江邦雄.低温低浊水混凝沉淀处理研究.给水排水. 2005, 31(11): 32~35
    28常颖,张金松,王宝贞等.强化絮凝工艺中絮凝体特征参数分析与研究.给水排水. 2005, 31(3): 33~36
    29赵钱柱.超滤技术处理低温低浊水试验研究.西安建筑科技大学工程硕士学位论文. 2006.6
    30刘晓飞,杜茂安.低压膜直接过滤处理低温低浊水性能研究.哈尔滨工业大学学报. 2003, 35(8): 982~984,988
    31 Roberto Pianta, Markus Boiler, Marie Laure, etc. Micro-and ultrafiltartion of karstic spring water Desalination. 1998, (117): 61~71
    32 M.J.Pryor, E.P.Jaclbs, etc. A low pressure ultrafiltration membrane system for potable water supply to developing communities in South AfricaDesalination 1998, (119): 103~111
    33栾新晓.西宁市低温低浊水增效澄清池处理动态试验研究.西安建筑科技大学硕士学位论文. 2006.6
    34孙志民,赵洪宾,马军.侧向流斜板浮沉池存在的问题及解决途径.中国给水排水. 2003, 19(6): 87~88
    35孙志民,赵洪宾,马军.新型侧向流斜板浮沉池处理低温低浊水的试验研究.给水排水. 2004, 30(11): 19-21
    36王寅,邬亦俊.一种新型浮沉池的工艺设计.给水排水. 2006, 32(11): 1~2
    37刘洋.活性炭深床浮滤池处理密云水库水的研究.清华大学硕士学位论文. 2004.6
    38丛海兵,黄延林,周楠等.西北高原地区的低温、低浊水处理.中国给水排水. 2003, 19(7): 60~61
    39傅金祥,梁建浩,杨涛等.臭氧预氧化与混凝联用工艺处理低温微污染水的试验研究.沈阳建筑大学学报(自然科学版). 2005, 21(5): 539~542
    40 Robert C. Cheng, ect. Enhanced coagulation:a Preliminary Evaluation. JAWWA. 1995, 87(2): 78~89
    41 Robert C. Cheng, Thomas R. Hundt, ect. Enhanced coagulation. A Preliminary evaluation. JAWWA. 1997, 2(91): 103
    42 Gil Grozes. Enhanced flocculation of colloidal dispersions by polymer mixtures. Chem. Eng. J. 2000, 80, 43~49
    43 G.Joseph, et al. Removing particles and THM precutsorsby enhanced coagulation. J AWWA. 2000, (4):139~150
    44黄廷林.强化絮凝法去除水中DBP先质研究.环境科学学报. 1999, (4):399~404
    45汤鸿霄.环境水质学的进展—颗粒物与表面络合.环境科学进展. 1993, l(1): 25~41
    46王晓昌,金鹏康,周兰.水中天然有机物混凝过程的光学在线监测及控制.环镜科学学报. 2002, 22 (l): 6~11
    47柯水洲,张勇,张云等.受微污染湘江原水强化水处理工艺研究净水技术. 2006, 25(3): 26~29
    48刘成,高乃云,蔡云龙.强化混凝去除黄浦江原水中有机物研究.中国给水排水. 2006, 22(1): 84~87
    49曲艳明.活性炭生物强化工艺处理低温低浊黄河水源水的试验研究.哈尔滨工业大学工学硕士学位论文2006.6
    50左金龙,崔福义,赵志伟等. PAC-SMBR处理低温低浊微污染原水的研究沈阳建筑大学学报(自然科学版). 2006, 22(2): 311~314
    51武道吉,谭凤训.紊流絮凝动力初探.工业水处理. 1999, 19 (6):6~7
    52王晓昌,曹雪中.絮凝池综合指标GT、Re物理意义的探讨.中国给水排水. 1989, 15 (4):18~23
    53唐文浩,夏福君.涡旋絮凝气浮的理论及应用研究.环境工程. 2002, 20 (3): 16~17
    54 A. Amirharajah, M. Asce, S. L. Trusler. Detablization of particles by turbulent mixing. J. Envir. Eng. Div, ASCE. 2003, 112, 1085~1095
    55 Rosen JM. A statistcal description of coagulation J. Colloid Interface Sci 1994, 99, 919
    56 Rajat K. Chakrabortia. Kinetics of fine particle aggreation in turbulence. Adv. Colloid Interface Sci. 1998, 78, 197~235
    57谭凤训,陈淑芬,刘静等.水处理混合设计指标试验研究.环境科学与技术. 2007, 30(4): 21-22
    58武道吉,马军,谭凤训.水动力学条件对絮体形成的影响.工业用水与废水. 2007, 38(1): 4~8
    59贺玉环,冯建平,余承烈.混凝动力学对混凝工艺实践的指导意义.工业用水与废水. 2006: 37(1): 10~13
    60邹琳.水处理絮凝动力学的试验研究和数值模拟.河海大学环境科学与工程学院.中国南京, 2007: 4~5
    61 Miroslav Soos, Amgad S. Moussa, Lyonel Ehrl, ect. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. Journal of Colloid and Interface Science. 2008, 319(2): 577~589
    62张济忠.分形.清华大学出版社, 1995
    63 H.O.派特根等著,井竹君等译.分形——美的科学.科学出版社, 1994
    64辛厚文.分形介质反应动力学.上海科技教育出版社, 1997
    65 Chakraborti R K.etal. Characterization of alum floc by image analysis. Environmental Science & Technology. 2000, 34(18): 3969~3976
    66王晓昌,单保宪仁.絮凝体形态学和密度的探讨——I从絮凝体分形构造谈起.环境科学学报, 2000, 20(3): 257~262
    67金鹏康,王晓昌,郭坤.絮凝体的DLA分形模拟及其分形维数的计算方法环境化学. 2007, 26(1): 5~9
    68王峰,李义久,倪亚明.分形理论发展及在混凝过程中的应用.同济大学学报(自然科学版). 2003, 31(5): 614-618
    69 Chunwoo Lee and Timothy A. Kramer. Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates. Advances in Colloid and Interface Science, 2004, 112(13): 49~57
    70 Tao Li, Zhe Zhu, Dongsheng Wang. Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technology, 2006, 168(2): 104~110
    71 T. Harif, A. Adin. Characteristics of aggregates formed by electro flocculation of a colloidal suspension. Water Research, 2007, 41(23): 2951~2961
    72 Jinwook Kim,Timothy A. Kramer. Improved orthokinetic coagulation model for fractal colloids:Aggregation and breakup. Chemical Engineering Science, 2006, 61(1): 45~53
    73 Daisuke Sato, Motoyoshi Kobayashi, Yasuhisa Adachi. Effect of floc structure on the rate of shear coagulation. Journal of Colloid and Interface Science, 2004, 272(2): 345~351
    74 Ali Reza Gheisi, Ali Reza Keshavarzi. Quantifying flow structure in vortex chamber using fractal dimension. Chaos, Solitons & Fractals, 2008, 36(2): 314~321
    75 Miroslav Soos, Amgad S. Moussa, Lyonel Ehrl. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. Journal of Colloid and Interface Science, 2008, 319(2): 577~589
    76王广华.无机悬浮颗粒的混凝特性及絮凝体形态学研究.西安建筑科技大学硕士学位论文2003.6
    77李冬梅,谭万春,黄明珠等.絮凝体的分形特性研究.给水排水. 2004, 30(5): 5~10
    78李冬梅,施周,梅胜等.絮凝条件对絮体分形结构的影响.环境科学. 2006, 27(3): 488~492
    79李冬梅,施周,梅胜等.高浓度悬浊液架桥絮凝分形体的形态学研究.中国给水排水. 2006, 22(19): 95~99
    80李冬梅,金同轨,梅胜等.含沙高浊水架桥絮体的质量分形.中国给水排水. 2004, 20(11): 52~54
    81李冬梅,梅胜,金同轨等.黄河泥沙架桥絮体分形结构的动态演变研究.给水排水. 2004, 30 (11): 1~5
    82李孟,陆谢娟,黄功洛.絮凝分形技术处理有机微污染物原水的研究.武汉理工大学学报. 2004, 26(2): 21~22
    83张彬,李涛,刘会娟等.模拟扰动条件下太湖水体悬浮物的结构特性.环境科学. 2007, 28(1): 70~74
    84金鹏康,王晓昌,郭坤.絮凝体的DLA分形模拟及其分形维数的计算方法环境化学. 2007, 26(1): 5~9
    85 Pyung-Kyu Park, Chung-Hak Lee, Sangho Lee. Variation of specific cake resistance according to size and fractal dimension of chemical flocs in a coagulation-microfiltration process. Desalination, 2006, 199(13): 213~215
    86 Min-Ho Cho, Chung-Hak Lee, Sangho Lee. Effect of flocculation conditions on membrane permeability in coagulation–microfiltration. Desalination, 2006, 191(13): 386~396
    87 A. G. Bhole. Relative evalution of a few natural coagulants. Water SRT, Aqua, 1995, 44(6): 284~290
    88 R. F. Packham. Some studies of coagulation of dispersed clays with hydrolyzed salts. J. Colloid Sci. 1965, 20: 81
    89 S. K. Dentel. Application of the precipitation, charge Neutralization Model of coagulation. Envir. Sci. Technol. 1988, 22(7): 825~840
    90 Elimelech, M. Gregory, J. Williams. Particle deposition and aggregation measurement. Butterworth Heinemann, Oxford. 1997, 6
    91赫俊国.混凝工艺控制过程分析与试验研究.哈尔滨工业大学博士论文. 2005
    92 Tambo N, Watanabe Y. Physical aspects of flocculation process I. The floc density function and aluminum floc. Water research. 1979, 13 (5): 409~419
    93李凯,李润生,宁寻安等.不同聚氯化铝系列的水解聚合形态研究.中国给水排水. 2003, 19(10): 55~57
    94栾兆坤.水中铝的形态及其形态研究方法.环境化学. 1987, 6(1): 46~56
    95宁寻安,李润生,温琰茂.聚合氯化铝中Alb和Al13的形态分布规律.环境化学. 2007, 26(3): 352~356
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.