R410A—润滑油混合物管内流动沸腾换热和压降特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环保制冷剂R410A为近共沸混合物,温度滑移微小,具有优良的传热特性和流动特性,是R22的理想替代物。采用小管径换热管是降低R410A空调蒸发器成本和改善能效的重要手段之一。目前外径为7.0 mm和5.0 mm的小管径换热管正在被广泛地应用于R410A空调蒸发器,且有采用更小管径换热管的趋势。润滑油的混入增加了R410A在这类换热管内流动沸腾换热的复杂性。如何计算R410A-油混合物在小管径换热管内的流动沸腾换热系数和压力损失,定量评价润滑油的混入对蒸发器换热管内换热与压降性能的影响,对于设计开发紧凑式蒸发器,促进小管径换热管的工程应用,推动环保制冷剂R410A替代R22的进程,具有重要价值。
     本文从R410A-油混合物在单根换热光管和强化管内的流动沸腾换热特性和压力损失特性等基础性问题的研究入手,以实验为手段,以开发工程应用的换热及压降模型为目的,为预测润滑油对蒸发器换热系数、压力损失以及蒸发器性能等的影响奠定了一定基础。取得了以下几方面的成果:
     1.对R410A-油混合物在7.0 mm和5.0 mm光管内的流动沸腾换热特性进行了实验研究,并对流动型态进行了观测。研究发现润滑油的混入可以促进间歇流的提前形成,并延迟流型从环状流向干涸流的转化,从拍摄的流型可以发现,R410A-油混合物流动沸腾过程中存在发泡现象,这是润滑油增强换热的一个影响因素。基于R410A-油混合物的物性,开发了R410-油混合物在光管内流动沸腾的流型图,并将实验中观测的流型与开发的流型图进行验证,结果表明,实验观测的流型与流型图吻合较好。开发了基于混合物的流型和物性的R410A-油混合物在光管内的两相流动沸腾换热关联式。对于7.0 mm光管内的换热数据,新的关联式预测值与96%的实验数据的误差在±20%以内;对于5.0 mm光管内的换热数据,新的关联式预测值与92%的实验数据的误差在±30%以内,可以很好的预测R410A-油混合物在光管内流动沸腾的换热特性。
     2.对R410A-油混合物在7.0 mm和5.0 mm光管内流动沸腾的压降特性进行了实验研究,研究结果表明,R410A-油混合物的摩擦压降随平均油浓度的增大而增大,而且随着质流密度和干度的增大而增大。随着质流密度的增大,油的存在对摩擦压降的影响减小。与低干度和中等干度工况下相比,高干度工况时润滑油对压降的影响会增大。开发了基于混合物物性的R410A-油混合物在光管内的压降关联式,对于7.0 mm光管,新关联式的预测值与92%的实验数据误差在±20%以内;对于5.0 mm光管,新的关联式预测值与95%的实验数据误差在±25%以内。新的关联式能够很好地预测R410A-油混合物在光管内流动沸腾的压降特性。
     3.对R410A-油混合物在7.0 mm和5.0 mm强化管内流动沸腾的换热特性进行了实验研究,研究结果表明,在低干度工况下,换热系数随平均油浓度的增大而增大,在高干度时,随着干度和平均油浓度的增大,换热系数迅速降低;随着管径的减小,润滑油对强化管内换热系数的恶化作用减小;与光管内的换热特性相比,润滑油的存在对强化管内换热的影响较小,尤其在高干度工况下,润滑油会积聚在强化管的螺纹之间,会弱化强化管内强化结构对换热的扰动,因此在高干度工况下,润滑油的存在会恶化换热。开发了基于混合物物性的R410A-油混合物在强化管内的换热关联式,考虑了螺纹强化结构对换热的增强作用,同时考虑了润滑油的存在对混合物物性的影响。对于7.0 mm强化管内的换热数据,新的关联式预测值与87%的实验数据的误差在±30%以内;对于5.0 mm光管内的换热数据,新的关联式预测值与85%的实验数据的误差在±30%以内。新的关联式可以很好的预测R410A-油混合物在强化管内流动沸腾的换热特性。
     4.对R410A-润滑油混合物在7.0 mm和5.0 mm强化管内流动沸腾过程中的压降特性进行了实验研究,研究结果表明,润滑油的存在会增大压降,在高干度工况下,这种增强作用更明显。润滑油对5 mm强化管内压降的增强作用大于润滑油对7 mm管内压降的增强作用,表明随着管径的减小,润滑油对压降的增强影响变大。与光管内的压降相比,强化管内润滑油对压降的影响较小。开发了基于混合物物性的R410A-油混合物在强化管内的压降关联式,考虑了螺纹强化结构对压降的增强作用,同时考虑了润滑油的存在对混合物物性的影响。新的关联式与95%的实验数据误差在±20%以内;对于5.0 mm强化管,新的关联式预测值与93%的实验数据误差在±20%以内。新关联式能够很好的预测R410A-油混合物在强化管内流动沸腾的压降特性。
     最后给出了由于时间关系本文尚没有深入研究的问题,以及将来应重点关注的相关研究方向。
R410A is one kind of environmentally-friendly refrigerants, and it is an ideal substitute refrigerant for R22 for its small temperature glide and good heat transfer and flow characteristics. It is an important way to utilize small diameter tubes to reduce the cost and improve efficiency of evaporator, and recently, tubes with outside diameter of 5 mm and 7 mm have been used widely in evaporator of R410A air-conditioner. Smaller and smaller tubes will be used into evaporator in the near future. Heat transfer of refrigerant flow boiling in such scale tubes with oil presence is more complex than that with oil-free. How to predict the heat transfer and pressure drop characteristics of R410A-oil mixture flow boiling inside such scale tubes? How to estimate quantitatively influence of oil on performance of evaporator? To give the reply to these issues is important for promoting practical application of mini-scale tubes in compact evaporator design and promoting the substitute of R22 by R410A.
     This paper investigated influence of oil on characteristics of flow pattern, heat transfer, and pressure drop of R410A-oil mixture flow boiling inside small smooth and enhanced tubes by experimental and theoretical methods. Performance analysis platform is built for this investigation, which is a technical and theoretical foundation to analyze influence of oil on performance of evaporator. The main results and finding are summarized as following.
     1.Experimental study for the heat transfer characteristics of R410A-oil mixture flow boiling inside small smooth tubes was performed, and the flow pattern of R410A-oil was studied. The test results show that the presence of oil promote the the transformation of flow pattern from“Slug”to“Intermittent”, while it delays the transformation of flow pattern from“Annular”to“Dryout”and from“Dryout”to“Mist”; the flow patterns observed during the experiment also show that the foaming was notable for nearly all test conditions, which is one of effect factors for oil to increase the heat transfer coefficient of refrigerant-oil mixture. A new flow pattern map for R410A-oil mixture flow boiling inside small smooth tubes was developed based on the properties of R410A-oil mixture, and the observed flow patterns match well with the flow pattern map. A new correlation to predict the local heat transfer of R410A-oil mixture flow boiling inside small smooth tubes was developed based on flow patterns and local properties of refrigerant-oil mixture, and it agrees with 96% of the experimental data within the deviation of±20% for 7.0 mm smooth tube and with 92% of the experimental data within the deviation of±30% for 5.0 mm smooth tube, respectively. The new correlation can provide satisfied predictions to the heat transfer characteristics of R410A-oil mixture flow boiling inside smooth tubes.
     2.Experimental study for the pressure drop characteristics of R410A-oil mixture flow boiling inside small smooth tubes was performed. The test results show that the frictional pressure drop of R410A-oil mixture flow boiling inside smooth tubes increases with the increase of nominal oil concentration, mass flux and vapor quality; the effect of oil on frictional pressure drop decreases with the increase of mass flux, and the effects at low and intermediate vapor qualities is higher than that at high vapor qualities. A new correlation to predict the frictional pressure drop of R410A-oil mixture flow boiling inside small smooth tubes was developed based on the experimental data and the local properties of R410A-oil mixture, and it agrees with 92% of the experimental data within the deviation of±20% for 7.0 mm smooth tube and with 95% of the experimental data within the deviation of±25% for 5.0 mm smooth tube, respectively. The new correlation can provide satisfied predictions to the pressure drop characteristics of R410A-oil mixture flow boiling inside smooth tubes.
     3.Experimental study for the heat transfer characteristics of R410A-oil mixture flow boiling inside small enhanced tubes was performed. The test results show that the heat transfer coefficient of R410A-oil mixture flow boiling inside small enhanced tubes increases with the increase of nominal oil concentration at low nominal oil concentration, while it decreases rapidly with the increase of vapor quality and nominal oil concentration; the effect of oil on the heat transfer coefficient for enhanced tubes is small than that for smooth tubes, especially at high vapor quality, the oil may be retained between the microfins, and then reduce the disturbing effect of microfin on fluids, which reduces the convective heat transfer at high vapor quality. A new correlation to predict the local heat transfer of R410A-oil mixture flow boiling inside small enhanced tubes was developed based on the local properties of refrigerant-oil mixture, and it agrees with 87% of the experimental data within the deviation of±30% for 7.0 mm enhanced tube and with 85% of the experimental data within the deviation of±30% for 5.0 mm enhanced tube, respectively. The new correlation can provide satisfied predictions to the heat transfer characteristics of R410A-oil mixture flow boiling inside enhanced tubes.
     4.Experimental study for the pressure drop characteristics of R410A-oil mixture flow boiling inside small enhanced tubes was performed. The test results show that the presence of oil increase the frictional pressure drop, and the enhanced effect at high vapor quality is evidence than that at low and intermediate vapor qualities; the effect of oil on frictional pressure drop for 5 mm enhanced tube is higher than that for 7 mm enhanced tube, which means that the effect of oil on frictional pressure drop increases with the decrease of the tube diameter; the effect of oil on frictional pressure drop for enhanced tubes is small than that for smooth tubes. A new correlation to predict the frictional pressure drop of R410A-oil mixture flow boiling inside small enhanced tubes was developed based on the experimental data and the local properties of R410A-oil mixture, and it agrees with 95% of the experimental data within the deviation of±20% for 7.0 mm enhanced tube and with 93% of the experimental data within the deviation of±20% for 5.0 mm enhanced tube, respectively. The new correlation can provide satisfied predictions to the pressure drop characteristics of R410A-oil mixture flow boiling inside enhanced tubes.
     At the end of this dissertation, the author presented the main weakness and the further key points should be focused on in the near future.
引文
[1] B. Shen, E.A. Groll, A critical review of the influence of lubricants on the heat transfer and pressure drop of refrigerants, Part I: Lubricant influence on pool and flow boiling, HVAC&R Research 11(3) (2005) 341-359.
    [2] J.R. Thome, Boiling of new refrigerants: a state-of-the-are review, International Journal of Refrigeration (19) (1996) 435-457.
    [3] ASHRAE Standard Committee, Standard Method for Measurement of Proportion of Lubricant of Liquid Refrigerant, ANSI/ASHRAE 41.4-1996.
    [4]魏文建,胡海涛,丁国良,王凯建.含油制冷剂在小管径换热管内流动沸腾换热特性实验研究,上海交通大学学报,40 (2), 2006, 286-290.
    [5] C.Y. Park, P.S. Hrnjak, CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube, International Journal of Refrigeration (30) (2007) 166-178.
    [6] A.S. Pamitran, K. Choi, J.T. Oh, H.K. Oh, Forced convective boiling heat transfer of R-410A in horizontal minichannels, International Journal of Refrigeration (30) (2007) 155-165.
    [7] R. Yun, H.J. Heo, Y.C. Kim, Evaporative heat transfer and pressure drop of R410A in microchannels, International Journal of Refrigeration (29) (2006) 92-100.
    [8] M.H. Kim, J.S. Shin, Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes, International Journal of Refrigerant (28) (2005) 940-948.
    [9] S. Wellsandt, L. Vamling, Evaporation of R407C and R410A in a horizontal herringbone microfin tube: heat transfer and pressure drop, International Journal of Refrigerant (28) (2005) 901-911.
    [10] A. Greco, G.P. Vanoli, Flow boiling heat transfer with HFC mixtures in a smooth horizontal tube. Part I: Experimental investigations, Experimental Thermal and Fluid Science (29) (2005) 189-198.
    [11] A. Greco, G.P. Vanoli, Flow boiling heat transfer with HFC mixtures in a smooth horizontal tube. Part II: Assessment of predictive methods, Experimental Thermal and Fluid Science (29) (2005) 199-208.
    [12] A. Greco, G.P. Vanoli, Flow-boiling of R22, R134a, R507, R404A and R410A inside a smooth horizontal tube, International Journal of Refrigeration (28) (2005) 872-880.
    [13] Y. Kim, K. Seo, J.K. Chung, Evaporation heat transfer characteristics of R-410A in 7 and 9.52 mm smooth/micro-fin tubes, International Journal of Refrigerant (25) (2002) 716-730.
    [14] M. Goto, N. Inoue, N. Ishiwatari, Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes, International Journal of Refrigeration (24) (2001) 628-638.
    [15] C.C. Wang, J.G. Yu, S.P. Lin, D.C. Lu, An experimental study of convective boiling ofrefrigerants of R-22 and R-410A, ASHRAE Transactions 19 (2) (1998) 1144-1150.
    [16] T. Ebisu, K. Torikoshi, Heat transfer characteristics and correlations for R410A flowing inside a horizontal smooth tube, ASHRAE Transactions 19 (2) (1998) 556–561.
    [17]段雪涛,马虎根,邬志敏,王芳,李长生. R410A的流动沸腾换热性能.化工学报,57(10) (2006) 2289-2292.
    [18] Duan xuetao(段雪涛), Ma hugen(马虎根),Wu Zhimin(邬志敏),Wang Fang(王芳). Convective Boiling of Near-Azeotropic Refrigerant R410A in the Horizontal Micro-fin Tube. Journal of Shanghai Jiaotong University (Science) , E212 (1) (2007) 73-75.
    [19]武永强,罗忠. R410A和R22在水平强化管内的蒸发和冷凝特性。工程热物理学报,27(2) (2006) 292-294.
    [20] G.H. Green, The effect of oil on evaporator performance, ASHRAE Symp. Bull., 71(2) (1971) 23-27.
    [21] J.T. McMullan, N.J. Hewitt, A.J. Masson, N.E. Murphy, The influence of oil viscosity on evaporator performance, Int. J. Energy Res., 16(7) (1992) 567-582.
    [22] J.T. McMllan, N. Murphy, D.W. Hughes, The effect of oil on the performance of heat pumps and refrigerators---Part I: experimental test facility, Heat Recovery Systems & CHP, 8(1) (1988a) 53-68.
    [23] J.T. McMllan, N. Murphy, D.W. Hughes, The effect of oil on the performance of heat pumps and refrigerators---Part II: experimental results, Heat Recovery Systems & CHP, 8(2) (1988a) 95-124.
    [24] J.J. Grebner, The effects of oil on the thermodynamic properties of dichlorodifluoromethane (R12) and tetrafluoroethane (R134a), Master of Science thesis, University of Illions, 1992.
    [25] J.J. Grebner, R.R. Crawford, The effects of lubricant on evaporator capacity for systems using mixtures of R12/mineral oil and R134a/synthetic oil, ASHRAE Transactions, 99(1) (1993) 380-386.
    [26] J.J. Grebner, R.R. Crawford, Measurement of pressure-temperature-concentration relations for mixtures of R-12/mineral oil and R-134a synthetic oil, ASHRAE Trans. 99(1) (1993) 387-396
    [27] N.J. Hewitt, J.T. McMullan, A.J. Masson, The influence of oil viscosity on evaporator performance, Int. J. Energy Res., 16(7) (1992) 567-582.
    [28] N.J. Hewitt, J.T. Mcmullan, B. Mongey, R.H. Evans, From pure fluids to zertropic and azertropic mixtures: the effects of refrigerant-oil solubility on system performance, Int. J. of Energy Research, (20) (1996) 57-67.
    [29] O. Lottin, P. Guillemet, J.-M. Lebreton, Effects of synthetic oil in a compression refrigeration system using R410A. Part I: modelling of the whole system and analysis of its response to an increase in the amount of circulating oil, International Journal of Refrigeration, 26(7) (2003) 772-782.
    [30] O. Lottin, P. Guillemet, J.-M. Lebreton, Effects of synthetic oil in a compression refrigeration system using R410A. Part II: quality of heat transfer and pressure losses within the heat exchangers, International Journal of Refrigeration, 26(7) (2003) 783-794.
    [31] M. Youbi-Idrissia, J. Bonjoura, M.-F. Terriera, C. Marvilletb, F. Meuniera, Oil presence in anevaporator: experimental validation of a refrigerant/oil mixture enthalpy calculation model, International Journal of Refrigeration 27 (2004) 215–22
    [32]曹晓林,黄东,刘春雨,油/制冷剂蒸气压、比容和粘度的计算[J],流体机械,1999,27(5):57-59。
    [33] J.R. Thome, Comprehensive thermodynamic approach to modeling refrigerant-lubricating oil mixtures. HVAC&R Research, (4) (1995) 110-126.
    [34] S.J. Eckels, S.C. Zoz, M.B. Pate, Using solubility data for HFC-134a and ester lubricant mixtures to model an in-tube evaporator or condenser, ASHRAE Transactions, 99(2) (1993) 383-391.
    [35] R.H. Thomas, H.T. Pham, Solubility and miscibility of environmentally safer refrigerant/ lubricant mixtures. ASHRAE Trans, 98(1) (1992) 783-788.
    [36] M.R. Conde, Estimation of thermophsical properties of lubricant oils and their solutions with refrigerants: an appraisal of existing methods, Applied Thermal Engineering, 16(1) (1996) 51-61.
    [37] Y. Mermond, M. Feidt, C. Marvillet, Thermodynamic and physical properties of mixtures of refrigerants and oils, Int. J. of Refrig., 22(3) (1999) 569-579.
    [38] M.A. Kedzierski, The effect of lubricant concentration, miscibility, and viscosity on R134a pool boiling, Int. J. of Refrig., 24(4) (2001) 348-366.
    [39] P.E. Liley, W.R. Gambill, Physical and chemical data. In: Perry, Chilton, editors. Chemical Engineering Hand-book, 5th ed., New York: Mc Graw-Hill, 1973, 226-250.
    [40] K.I. Bell, G.F. Hewitt, S.D. Morris, Nucleate pool boiling of refrigerant/oil mixtures, Experimental Heat Transfer, (1) (1987) 71-86.
    [41] R.C. Reid, J.M. Prausnitz, B.C. Poling, The properties of gases and liquids. 4th ed. New York: Mc Graw-Hill, 1987, 182-198.
    [42] M.K. Jensen, D.L. Jackman, Prediction of nucleate pool boiling heat transfer coefficients of refrigerant-oil mixtures, Trans of ASME, Journal of heat transfer, 106 (1984) 184-190.
    [43] J.J. Baustian, M.B. Pate, A.E. Bergles, Properties of oil-refrigerant liquid mixtures with applications to oil concentration measurement: part I: thermo physical and transport properties, ASHRAE Transaction, 92 (1986) 55-73.
    [44] J.R. Barbosa, V.T. Lacerda, A.T. Prata, Prediction of pressure drop in refrigerant-lubricant oil flows with high contents of oil and refrigerant outgassing in small diameter tubes, Int. J. of Refrig., 27(3) (2004) 129-139.
    [45] J.R. Lloyd, S. Limbach, Effect of oil contamination on the surface tension of R-12 and R-134a. ASME-HTD, National Heat Transfer Conference, 1995, 8: 157-163.
    [46] K. Mohrlok, K. Spindler, E. Hahne, Influence of a low viscosity oil on the pool boiling heat transfer of the refrigerant R507, Int. J. of Refrig., 24 (1) (2001) 25-40。
    [47]魏文建,丁国良,胡海涛,王凯建,R410A制冷剂和POE VG 68润滑油混合物热物性模型,制冷学报,28(1) (2007) 37-44。
    [48] R.L. Webb, W.F. McQuade, Pool boiling of R-11 and R-123 oil-refrigerant mixtures on plain and enhanced tube geometries, ASHRAE Trans., 99(1) (1993) 1225-1236。
    [49] S.B. Memory, D.C. Sugiyama, P.J. Marto, Nucleate pool boiling of R-114 and R-114-oil mixtures from smooth and enhanced surfaces-II. Tube bundles, Int. J Heat Mass transfer, 38(8) (1995) 1363-1376.
    [50] J.A. Tichy, W.M.B. Duval, N.A. Macken, EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER IN FORCED-CONVECTION EVAPORATION OF OIL-REFRIGERANT MIXTURES, ASHRAE Trans., 92 (2A) (1986) 450-460.
    [51] L.M. Schlager, A.E. Bergles, M.B. Pate, A survey of refrigerant heat transfer and pressure drop emphasizing oil effects and in-tube augmentation, ASHRAE Trans., 93(1) (1987) 392-416.
    [52] L.M. Schlager, M.B. Pate, A.E. Bergles, Performance predictions of refrigerant-oil mixtures in smooth and internally finned tubes-part I: literature review, ASHRAE Trans., 96(1) (1990) 160-169.
    [53] L.M. Schlager, M.B. Pate, A.E. Bergles, heat transfer and pressure drop performance of smooth and internally finned tubes with oil and refrigerant 22 mixtures, ASHRAE Trans., 95(2) (1989) 160-169.
    [54] K. Hambraeus, Heat transfer coefficient during two-phase flow boiling of HFC-134a., Int. J. of Refrig., 14(6) (1991) 357-362.
    [55] R.L. Webb, W.F. McQuade, Pool boiling of R-11 and R-123 oil-refrigerant mixtures on plain and enhanced tube geometries, ASHRAE Transactions. Publ. by ASHRAE, Atlanta, GA, USA. 99(1) (1993) 1225-1236.
    [56] Webb. Ralph L, Principles of enhanced heat transfer, New York : John Wiley & Sons, c1994.
    [57] S.J. Eckels, T.M. Doerr, M.B. Pate, In-tube heat transfer and pressure drop of R-134a and ester lubricant mixtures in a smooth tube and a micro-fin tube: part I– evaporation, ASHRAE Trans., 100(2) 1994 265-282
    [58] S.J. Eckels, T.M. Doerr, M.B. Pate, Heat transfer coefficients and pressure drops for R-134a and an ester lubricant mixture in a smooth tube and a micro-fin tube, ASHRAE Trans., 104 (1A) (1998) 366-375
    [59] S.J. Eckels, T.M. Doerr, M.B. Pate, A comparison of the heat transfer and pressure drop performance of R134a-lubricant mixtures in different diameter smooth tubes and micro-fin tubes, ASHRAE Trans., 104(1A) (1998) 376-386
    [60] S.J. Eckels, S.C. Zoz, M.B. Pate, Using solubility data for HFC-134a and ester lubricant mixtures to model an in-tube evaporator or condenser, ASHRAE Trans., 99(2) (1993) 383-391.
    [61] J.G. Collier, J.R. Thome, Convective boiling and condensation, third ed., Clarendon, Oxford, 1994, pp.117-192.
    [62] S.G. Sundaresan, M.B. Pate, T.M. Doerr, D.T. Ray. A comparison of the effects of different lubricants on the in-tube evaporation of an HFC-blend refrigerant. International Refrigeration Conference at Purdue University. (1994) 323-328
    [63] W.J. Wei, G.L. Ding, H.T. Hu, K.J. Wang, Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes, Part I: experimental study, Experiment Thermal Fluid and Science. 32 (2007) 67-76.
    [64] K. Hambraeus, Heat transfer of oil-contaminated HFC134a in a horizontal evaporator.International Journal of Refrigeration (18) (1995) 87-99.
    [65] H. Cawte, D.A. Sanders, P.G. Anthony, Effect of lubricating oil contamination on evaporation in refrigerants R12 and R22, Int. J. of Energy Research, 20 (1996) 663-679.
    [66] O. Zurcher, J.R. Thome, D. Favrat, In-tube flow boiling of R-407C and R-407C/oil mixtures. Part II: plain tube results and predictions, HVAC&R Research, 4(4) (1998) 373-399.
    [67] O. Zurcher, J.R. Thome, D. Favrat, Flow boiling and pressure drop measurements for R-134a/oil mixtures Part 2: evaporation in a plain tube, HVAC&R Research, 3(1) (1997) 54-64.
    [68] W.J. Wei, G.L. Ding, H.T. Hu, K.J. Wang, Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes, Part II: Correlation, Experiment Thermal Fluid and Science, 32 (2007) 77-84.
    [69] B. Sur, N.Z. Azer, Effect of oil on heat transfer and pressure drop during condensation of Refrigerant-113 inside smooth and internally finned tubes, ASHRAE Trans., 97 (1) (1991) 365-373
    [70] N. Kattan, J.R. Thome, D. Favrat, Flow boiling in horizontal tubes: Part 1 - development of a diabatic two-phase flow pattern map, Journal of Heat Transfer, 120(1) (1998) 140-147
    [71] N. Kattan, J.R. Thome, D. Favrat, Flow boiling in horizontal tubes: Part 3 - development of a new heat transfer model based on flow pattern, J. of Heat Transfer, 120(1) (1998) 156-165.
    [72] M.M. Shah, Chart correlation for saturated boiling heat transfer: Equations and farther study. ASHRAE Trans. 88 (1) (1982) 185-196.
    [73] G.I. Usmani, T.S. Ravigururajan, Two-phase flow heat transfer correlations for refrigerant-oil mixture flows inside augmented tubes, Enhanced heat transfer, 6 (1999) 405-418.
    [74] J.A. Tichy, J. Duque-Rivera, N.A. Macken, W.M.B. Duval, EXPERIMENTAL INVESTIGATION OF PRESSURE DROP IN FORCED-CONVECTION CONDENSATION AND EVAPORATION OF OIL-REFRIGERANT MIXTURES., ASHRAE Trans., 92(2A) (1986) 461-472.
    [75] O. Zurcher, J.R. Thome, D. Favrat, In-tube flow boiling of R-407C and R-407C/oil mixtures. Part I: microfin tube, HVAC&R Research, 4(4) (1998) 347-372
    [76] E. Nidegger, J.R. Thome, D. Favrat, Flow boiling and pressure drop measurements for R-134a/oil mixtures. Part 1: Evaporation in a microfin tube, HVAC&R Research 3 (1) (1997) 38-53.
    [77] W. Targanski, J.T. Cieslinski, Evaporation of R407C/oil mixtures inside corrugated and micro-fin tubes, Applied Thermal Engineering 27 (13) (2005) 2226-2232.
    [78] W.J. Wei, G.L. Ding, H.T. Hu, K.J. Wang, Measurement and correlation of two-phase frictional performance of refrigerant-oil mixture inside small tubes, HVAC&R Research 13(2) (2007) 397-411.
    [79] D.J. Alofs, M.M. Hasan. Influence of oil on pressure drop in refrigerant compressor suction lines, ASHARE Transactions 96(1) (1990) 249-255.
    [80] J.R. Barbosa, V.T. Lacersa, A.T. Prata. Prediction of pressure drop in refrigerant-lubricant oil flows with high contents of oil and refrigerant outgassing in small diameter tubes. InternationalJournal of Refrigeration 27 (2004) 129-139.
    [81] B. Pierre, Flow resistance with boiling refrigerants-part 1, ASHRAE J 6 (9) (1964) 58–65.
    [82] J.Y. Choi, M.A. Kedzierski, P.A. Domanski, Generalized pressure drop correlation for evaporation and condensation in smooth and micro-fin tubes, In: Proc. of IIF-IIR Commision B1, Paderborn, Germany, B4 (2001) 9–16.
    [83] M.B. Ould Didi, N. Kattan, J.R. Thome, Prediction of two-phase pressure gradients of refrigerants in horizontal tubes, International Journal of Refrigeration, 25 (2002) 935-947.
    [84] Steiner D., VDI-Warmeatlas (VDI Heat Atlas), Verein Deutscher Ingenieure, VDI-Gesellschaft Verfahrenstechnik und Chenieingenieurwesen (GCV), Dusseldorf, 1993, Chapter Hbb.
    [85] Z. Rouhani, E. Axelsson. Calculation of void volume fraction in the subcooled and quality boiling regions. International Journal of Heat and Mass Transfer 13 (1970) 383-93.
    [86] R.J. Moffat, Describing the uncertainties in experimental results, Experimental Fluid and Thermal Science 1(1), 1998, 3-17.
    [87] L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part I - A new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer (48) (2005) 2955-2969.
    [88] D. Jung, R. Radermacher, Prediction of evaporation heat transfer coefficient and pressure drop of refrigerant mixtures, Int. J.of Refrig., 16(5) (1993) 330-338.
    [89] I.Y. Chen, C.L. Won, C.C. Wang. Influence of oil on R410A two-phase frictional pressure drop in a small U-type wavy tube. International Communications in Heat and Mass Transfer, 32 (2005) 797-808.
    [90] R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem. Eng. Progr., 45(1949) 39-45.
    [91]吴志光,马虎根,蔡祖恢. R32/R134a在水平内螺纹管内流动沸腾强化特性的分析与研究.化工学报, 2 (56) (2005) 239-242
    [92] Dittus FW, Boelter LMK. Univ. calif. (Berkeley) Publs. Eng. 1930; 2:443.
    [93] E.W. Lemmon, M.O. McLinden, M.L. Huber, Refprop 7.1 (Reference Fluid Thermodynamic and Transport Properties). NIST Standard Reference Database 23, Version 7.1: National Institute of Standards and Technology, 2003.
    [94] J.R. Thome, N. Kattan, D. Favrat, Evaporation in microfin tubes: a generalized prediction model//Lehner M, Mayinger F. Convective Flow and Pool Boiling Conference. Kloster Irsee, Germany: Professional Engineering Publishing, 1997: Paper VII-4
    [95] A. Cavallini, D. Del Col, L. Doretti, G.A. Longo, L. Rosetto, A new model for refrigerant vaporisation inside enhanced tubes. In: Third international conference on multiphase flow, ICMF’98; 1998, Lyon.
    [96] S.G. Kandlikar, T. Raykoff, Predicting flow boiling heat transfer of refrigerants in micro-fin tubes, J. Enhanced Heat Transfer 4 (1997) 257–268.
    [97] K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer, 29 (3) (1986) 351-358.
    [98] T.S. Ravigururajan, A.E. Bergles, General correlations for pressure drop and heat transfer forsingle-phase turbulent flow in internally ribbed tubes, Augmentation of Heat Transfer in Energy Systems, 52 (1985) 9-20.
    [99]徐济鋆,沸腾传热和气液两相流,原子能出版社,2001.
    [100]林宗虎,王树众,王栋,气液两相流和沸腾传热,西安交通大学出版社, 2003.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.