三株海洋真菌次级代谢产物活性成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋真菌作为海洋微生物中的重要一员,其次级代谢产物化学结构新颖、种类繁多,是新活性先导化合物的重要来源。为了寻找抗肿瘤活性先导化合物,本论文采用活性追踪的方法开展了1株南极海泥来源的真菌和2株来源于不同海域的海藻真菌中次级代谢产物抗肿瘤活性次级代谢产物研究工作。
     从6个海藻样品中分离得到了21株真菌,采用海虾生物致死法和MCF7、SF-268、NCI-H460细胞为模型的筛选模型,以细胞周期抑制、细胞凋亡诱导以及坏死性细胞毒为活性指标,结合化学筛选,获得具有活性且次级代谢产物丰富的活性菌株9株。
     采用正相和反相硅胶柱色谱、Sephadex LH-20凝胶柱色谱、半制备反相高压液相色谱等分离方法,从真菌PR19N-1(Penicillium sp.)中分离得到20个化合物(1-20),从黄曲霉c-f-3(Aspergillus flavus)中分离得到18个化合物(21 - 38),从真菌v-3-1中分离得到了6个化合物(39 -44),共计44个化合物。采用现代波谱技术(UV、IR、NMR、MS、CD),并结合其理化性质,阐明了40个化合物的化学结构(化合物结构参见Fig. 1);其中新化合物14个,包括11个艾里莫芬烷型倍半萜(1-6,8-12),利用NOESY谱、偶合常数确定其相对构型,并根据该类化合物的可能生合成途径,结合旋光值,推测了该类化合物部分结构的绝对构型;1个新的二酮哌嗪类化合物(21),利用NOE差谱确定了化合物的相对构型,并通过氨基酸手性分析柱确定了化合物的绝对构型;2个2-吡喃酮类化合物(24、25)。此外还有2个化合物(13、28)为首次从天然来源中分离得到。
     另外发现的其他已知化合物的结构类型主要有甾类(32、33、40、41),倍半萜类(7,14-16),苯的简单衍生物(17、18、19、26),生物碱类(20、22、23、27、28), 2-吡喃酮衍生物(29、30)等。
     利用MTT法、SRB法以及流式细胞术结合形态学检测的方法,对分离获得的单体化合物的抗肿瘤活性进行了初步评价。结果表明:新化合物1对A549、HL-60细胞显示出较强的细胞毒活性;新化合物8对A549显示较强的活性,对HL-60细胞显示中等强度的活性;新化合物10对两种肿瘤细胞都有微弱的活性;新化合物9对A549显示微弱的活性;新化合物11对HL-60细胞显示较弱的活性;新化合物21对HL-60细胞显示微弱的细胞毒活性;化合物28对A549、HL-60及MOLT-4三种肿瘤细胞都显示出一定的抑制活性。
     运用cAMP检测方法对新化合物24、25的GPR12受体结合活性进行了初步评价,结果显示化合物24能促进GPR12-CHO、GPR12-HEK293细胞中的cAMP含量增加,且呈一定的剂量依赖关系。
     综上所述,本文采用组合筛选的方法获得9株海洋活性真菌,并对3株海洋真菌的次级代谢产物的活性部位进行了系统研究,共分离鉴定了40个化合物,其中新化合物14个。其中具有细胞增殖抑制活性的新化合物6个,具有GPR12受体激动活性的新化合物1个。上述研究结果为寻找药物的先导化合物提供了新的化学结构类型,并为海洋真菌药用资源的研究提供了重要的基础。
As an important member of marine microorganism, marine fungus have been considered an important source of bioactive leading compounds, due to their unique living environment. A study on three strains of marine fungal strains was carried out to investigate the potential anti-tumor compounds.
     By combinatory use of brine shrimp bioassay testing, cytometric bioassay against MCF7、SF-268、NCI-H460 cell line, and chemical analysis, 9 bioactive strains have been screened from 21 strains isolated from six marine samples.
     Monitoring by bioassay-guided isolation, the active fraction is chromatographed on silica gel, Sephadex LH-20 and prepared TLC, and preparative reversed phase HPLC, respectively, forty-two compounds were isolated from the three active strains. Twenty compounds (1-20) were isolated from fungus PR19N-1 (Penicillium sp.), eighteen compounds (21-38)) from fungus c-f-3 (Aspergillus flavus), six compounds (39-44) from fungus v-3-1.
     By means of modern spectral analysis (UV, IR, NMR, MS, CD) and physico-chemical properties, the structures (see Fig. 1) of forty pure compounds were respectively determined. Among them there are fourteen new compounds, including eleven eremophilane-type sesquiterpenes (1-6,8-12), which were deduced the relative structure by NOESY spectrum and the coupling constants, and some of which were proposed the absolute stereochemistry by analysis their biosynthesis route; one new diketopiperazine (21),which was deduced the relative structure by NOE and determined the absolute stereochemistry by chiral HPLC analysis; two new 2-pyrons (24, 25). Additionally, two compounds (13,28) were isolated from nature source for the first time.
     In addition, the chemical structure types of compounds are mainly involved in Steroides (32、33、40、41), sesquiterpenes (7,14-16), Benzene derivates (17、18、19、26), Alkaloids (20、22、23、27、28), 2-Pyrone (29、30), etc.
     These compounds were evaluated for their cytotoxicities against several cancer cell lines such as HL-60, A549 etc, by the MTT or SRB method. The results indicated that new compounds 1 and 8 showed stronge cytotoxicities on A549 cell lines; new compounds 9 and 10 showed moderate cytotoxicities on A549 cell lines; new compounds 8, 10, 11 showed a certain cytotoxicities on HL-60 cell lines; new compound 21 showed slightly cytotoxicities on HL-60 cell lines; and compound 28 showed cytotoxicities on the three cell lines of A549、HL-60及MOLT-4.
     New compounds 24, 25 were tested the GPR12 receptor binding activity by cAMP assay. The results showed that 24 could promote a small but significant cAMP increase in a dose-dependent manner on both GPR12-CHO cells and GPR12-HEK293 cells, while no significant difference on their vector controls.
     Summarily, this work obtained nine important active strains from six marine alga samples, and forty compounds from three active strains. Among them, fourteen compounds were identified new. Six new compounds with antitumor activities in vitro were discovered, and one new compound with GPR12 receptor binding activity. Studies mentioned above provided novel structures for searching leading compounds and strain resources of great value for further study and development of marine fungus.
引文
1.乐长高,林永成.海洋真菌的化学研究[J].华东地质学院学报,2001,24: 48
    2. Unson M D, Holland M D, Faulkner D J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue [J]. Mar Biol , 1994, 199: 1-11
    3. Claudia Osterhage,Gabriele M.K?nig,Ulrich Holler,and Anthony D.Wright,et al Rare Sesquiterpenes from the Algicious Fungus Drechslera dematioidea[J] J.Nat.Prod. 2002, 65: 306
    4. Christine Klemke,Stefan Kehraus,Anthony D.Wright,and Gabrele M.K?nig,et al New Secondary Metabolites from the Marine Endophytic Fungus Apiospora montagnei[J] J.Nat.Prod., 2004, 67: 1058.
    1. Wang W S, Gao K, Jia Z J. New sesquiterpenes from Ligilariopsis shichuana[J]. J. Chin. Chem. Soc, 2004, 51: 417 - 422.
    2. Zhao Y, Jia Z J, Peng H R. J. Eight new eremophilane derivative from the roots of Ligularia przewalskii[J]. J Nat. Prod. 1995, 58: 1358 - 1364.
    3. Moriyama Y, Takahashi T. New sesquiterpene lactones of eremophilane-type from Ligularia fauriei (Fr.) Koidz[J]. Bull Chem Soc Jpn, 1976, 49 (11): 3196 - 3199.
    4. Tabata Y, Mike N, Hatsu M, et al. PF1092A, B and C, New nonsteroidal progesterone receptor ligands produced by Penicillium oblatum I. Taxonomy of producing strain, fermentation, isolation and biological activities[J]. J Antibiot, 1997, 50(4): 304 - 308.
    5. Tabata Y, Hatsu M, Kurata Y, et al. PF1092A, B and C, New nonsteroidal progesterone receptor ligands produced by Penicillium oblatum II. Physico-chemical properties and structure elucidation[J]. J Antibiot, 1997, 50(4): 309 - 313.
    6.李厚金,林永成,王立,等.南海海洋真菌Hypoxylon oceanicum的代谢产物.中山大学学报(自然科学版), 2001, 40 (4): 70 - 72, 80.
    7. McDonald L A, Barbieri L R, Bernan V S, et al. 07H239-A, a new cytotoxic eremophilane sesquiterpene from the marine-derived fungus LL-07H239[J]. J Nat Prod, 2004, 67: 1565 - 1567.
    8. Yamada T, Iritani M, Minoura K, et al. Peribysin A-D, potent cell-adhesion inhibitors from a sea hare-derived culture of Periconia species[J]. J Org Biomol Chem, 2004: 2131 - 2135.
    9. Yamada T, Doi M, Miura A, et al. Absolute stereostructures of cell-adhesion inhibitors, Peribysins A, E, F and G, produced by a sea hare-derived Periconia sp[J]. J Antibiot, 2005, 58 (3): 185 - 191.
    10. S?rensen D, Raditsis A, Trimble L A, et al. Isolation and structure elucidation by LC-MS-SPE/NMR: PR toxin- and cuspidatol-related eremophilane sesquiterpenes from Penicillium roqueforti[J]. J Nat Prod, 2007, 70: 121 - 123.
    11. Pérez-Castorena A L, Arciniegas A, Guzmán S L, Villase?or J L, de Vivar A R. Eremophilanes from Senecio mairetianus and some reaction products[J]. J. Nat. Prod. 2006, 69: 1471 - 1475.
    12. Sugawara F, Hallock Y F, Bunkers G D, Kenfield D S, Strobel G, Yoshida S. Phytoactive eremophilanes produced by the weed pathogen Drechslera gigantean[J]. Biosci. Biotech. Biochem, 1993, 57: 236 - 239.
    13. Moreau S, Cacan, M. J. Org. Chem. 1977, 42: 2632 - 2633.
    14. et J. Biguet S M. Structures et stereochimie des sesquiterpenes de Penicillium roquerorti pr toxine et ereofortines A, B, C, D, E[J]. Tetrahedron 1980, 36: 2989 - 2997.
    15. Wu Q X, Yang A M and Shi Y P. Sesquiterpenoids from Ligularia virgaurea spp. Oligocephala[J]. Tetrahedron, 2005, 61: 10529 - 10535.
    16. Kurihara K, Shinei R, Tanabe K,et al. Nonsteroidal progesterone receptor ligands (II); synthesis and SAR of new tetrahydrobenzindolone derivatives[J]. Bioorg Med Chem, 2006, 14: 4862 - 4878.
    17. Shinei R, Kurihara K, Tanabe K, et al. Nonsteroidal progesterone receptor ligands (I): Synthesis and SAR of new tetrahydronaphthofuranone derivatives[J]. Bioorg. Med. Chem, 2006, 14: 4850 - 4861.
    18. Antonio G, Vincenzo C, Fortunato V, et al. A novel glyceryl ester (glyceryl dendryphiellate A), a trinoreremophilane (dendryphiellin A1), and eremophilanes (dendryphiellin E1 and E2) from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot[J]. Helvetica Chimica Acta, 1990, 73(8): 2090 - 2096.
    19. Srivastava RM, Brinn IM, Juan O, et al. Benzamidoximes: structural, conformational and spectroscopic studies[J]. I Journal of Molecular Structure, 1997, 406: 159 - 167.
    20. Masanobu Munekata,Haruo Seto. Isolation of 0-Acetylbenzeneamidinocarboxylic Acid, a New Meta- bolites of Gibberellasaubinet W[J]. Agric. Biol. Chem, 1982, 46 (6): 1711-1713.
    21. Everaere K, Scheffler JL, Mortreux A, Carpentier JF. Stereoselective synthesis of 3-substituted phthalides via asymmetric transfer-hydrogenation using well-defined ruthenium catalysts under neutral conditions[J]. Tetrahedron Letters. 2001, 42(10): 1899 - 1901.
    22.王双明,谭宁华,杨亚滨,等.三七环二肽成分[J].天然产物研究与开发, 2004, 16 (5): 383 - 386.
    23. Torres P, Ayala J, Grande C, et al. Furanoeremophilane derivatives from Senecio flavus[J]. Phytochemistry, 1999, 52: 1507 - 1513.
    24. Wang C M, Yang H, Wei Y M, et al. In vitro effects on proliferation, telomerase activity and apoptosis of an eremophilanoid sesquiterpene from Senecio oldhamianus Maxim in cultured human tumor cell lines[J]. Pharmazie, 2004, 59 (10): 802 - 806.
    25. Gu J Q, Wang Y, Franzblau S G, et al. Constituents of Senecio chionophilus with potential antitubercular activity[J]. J Nat Prod, 2004, 67 (9): 1483 - 1487.
    26. Wu Q X, Yang A M and Shi Y P. Sesquiterpenoids from Ligularia virgaurea spp. 0Oligocephala[J]. Tetrahedron, 2005, 61: 10529 - 10535.
    27. Liu J X, Wei X N, Shi Y P, et al. Two new eremophilane sesquiterpene lactones from Ligularia myriocephala Ling[J]. Chin Chem Lett, 2005, 16(12): 1618 -1620.
    28. Liu X and Shi Y P. Two novel epimeric eremophilane sesquiterpenes from the flower of Cacalia tangutica[J]. Chin Chem Lett, 2005, 16(6): 774 - 776.
    29. Liu Z L and Tian X. The sesquiterpenes from Cacalia tangutica[J]. Bull Korean Chem Soc, 2007, 28 (2): 292– 294.
    1. Young C P, Sarath P, Gunasekera, Jose V, Lopez, Peter J, McCarthy, Amy E. W. Metabolites from the Marine-Derived Fungus Chromocleista sp. Isolated from a Deep-Water Sediment Sample Collected in the Gulf of Mexico[J]. J Nat Prod , 2006, 69: 580 - 584.
    2. Santamaria A, Cabezas N, Avendafio C. Synthesis of Tryptophan-dehydrobutyrine Diketopiperazines and Analogues[J]. Tetrahedron, 1999, 55: 1173 - 1186.
    3. Springer J P, Büchi G, Kobbe B, et al. The structure of ditryptophenalin, A new metabolite of Aspergillus flavus[J]. Tetrahedron Lett, 1977: 2403– 2406.
    4. Solov'eva TF, Baskunov BP, Reshitov TA. Puberulin A: a new diketopiperazine alkaloid of the fungus Penicillium rugulosum Thom VKM F-352.Prikladnaya Biokhimiya i[J]. Mikrobiologiya, 1997, 33(1): 66 - 69.
    5. Wang D X, Liang M T, Tian G J, et al. A facile pathway to synthesize diketopiperazine derivatives[J]. Tetrahedron Letters, 2002, 43(5): 865 - 867.
    6. Yasuyuki H. Isolation of 5-hydroxy-α-pyrone and itsβ-D-glucoside from Erigeron and their use as aging inhibitors for plants and glycosidase inhibitors[J]. JP, 04198177, July 17 (1992).
    7.李蕾,罗氘芸,刘勇.云南琵琶甲抗菌活性成分的研究[J].中草药,2001,32(3):197-199.
    8. Holzapfel C W, The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicilliun cyclopium westling[J]. Tetrahedron, 1968, 24: 2101-2119.
    9. Luk K C, Kobbe B, Townsend J. M., Production of cyclopiazonic acid by Aspergillus flavus link[J]. Appl. Environ. Microb, 1977, 33: 211 - 212.
    10. Chalmers A A, Gorst-Allman C P, Steyn P S. Biosynthesis ofα-cyclopiazonic acid: stereochemical aspects of D-ring formation, J. Chem. Soc., Chem[J]. Commun, 1982: 1369 - 1368.
    11. Moss E J, Judah D J, Przybylskit M, et al. Some mass-spectral and n.m.r. analytical studies of a glutathione conjugate of aflatoxin B1[J]. Biochem. J,1983: 210, 227-233.
    12. Kamdem L K, Meineke I, G?dtel- Armbrust U, Brockm?ller J, et al. Dominant Contribution of P450 3A4 to the Hepatic Carcinogenic Activation of Aflatoxin B1, Chem. Res[J]. Toxicol, 2006, 19: 577 - 586.
    13. Gengan1 R M, Chuturgoon A A, Mulholland D A, et al. Synthesis of sterigmatocystin derivatives and their biotransformation to aflatoxins by a blocked mutant of Aspergillus parasiticus[J]. Mycopathologia, 1999, 144: 115 - 122.
    14.姚新生,陈英杰,吴立军,等.超导核磁共振渡谱分析[M].北京:中国医药科技出版社, 1991: 39– 40.
    15. Aiello A, Ciminiello P, Fattorusso E, Magno S. 3β,5α-Dihydroxy-6β-methoxy- cholest-7-enes from the marine sponge Spongia agaricina[J]. J. Nat. Prod., 1988, 51 (5): 999 - 1002.
    16. Kawagishi H, Katsumi R, Sazawa T, et al. Cytotoxic steroids from the mushroom Agaricus blazei[J]. Phytochemistry, 1988, 27 (9): 2777 - 2779.
    17. Yang S P, Xu J, Yue J M. Sterols from the fungus Catathelasma imperiale[J]. Chinese Journal of Chemistry, 2003, 21: 1390-1394.
    18. Madyastha K M and Sridhar G R. .Highly efficient C-8 oxidation of substituted xanthines with substitution at the 1-, 3-, and 7- positions using biocatalysts[J]. J. Chem. Soc., Perkin Trans. 1, 1999: 677 - 680.
    19.于德泉,杨峻山等.分析化学手册(第二版).北京:化学工业出版社, 1999
    20.苑辉卿,左春旭.地梢瓜化学成分的研究.药学学报,1992,27 (8): 589.
    21. Drews J. Drug discovery: a historical perspective[J]. Science, 2000, 287: 1960–1964.
    22. Tanaka S, Ishii K, Kasai K, Yoon SO, Saeki Y. Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth[J]. J Biol Chem, 2007, 282: 10506–10515.
    1. Takaishi Y, Uda M, Ohashi T, et al. Glycosides of ergosterol derivatives from Hericum erinacens[J]. Phytochemstry, 1991, 30 (12): 4117-4120.
    2.严小红,宋国强,周秀红,等.一种南海海绵(Acanthella sp.)的化学成分研究.天然产物研究与开发, 2003, 15 (3): 199-202.
    3. Akihisa T, Wijeratne E M K, Tokuda H, et al. Eupha-7,9(11),24-trien-3β-ol (“Antiquol C”) and other triterpenes from Euphorbia antiquorum Latex and their inhibitory effects on Epstein-Barr virus activation[J]. J Nat Prod, 2002, 65: 158-162.
    4.汉利,张悦,张勇慧,等.湖北大戟化学成分研究.中国中药杂志,2006,31(9):742-744.
    5. Li H J, Lin Y C, Liu X H, Zhou S N, et al. Studies on the secondary metabolites of marine fungus Fusarium sp. (#2489) from the south China sea[J]. Marine sci, 2002, 26: 57-59.
    1. Skehan P, Storeng R, Scudiero D, Monks A, Mc Mahon J, Vistica D W, Bokesch H, Kenney S, Boyd M R. New colorimetric cytotoxicity assay for anticancer drug screening[J]. J. Natl. Cancer Inst, 1990, 82 (13): 1107-1112.
    2. Voigh W. Sulforhodamine B assay and chemosensitivity[J]. Methods Mol. Med, 2005, 110: 39-48.
    3. Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay[J]. J.Immunol. Meth, 1983, 65: 55-63.
    4.张龙翔,张庭芳,李令媛。生化实验方法和技术。高等教育出版社。
    5. Meyer B N, Ferrigni N R, Putnam J E, et al. Brine shrimp: a convenient general bioassay for active plant constituents[J]. Planta Medica, 1982, 45 (1): 31-34.
    6. Solis P N, Wright C W, Anderson M M, et al. A microwell cytotoxicity assay using Artemia salina (brine shrimp)[J]. Planta Med, 1993, 59 (3): 250-252.
    7.张永杰,王建锋,黄耀坚,等。4种裸子植物内生真菌抗肿瘤菌株的筛选.厦门大学学报,2002, 41 (6): 804-809.
    8.杰利·L·麦克劳林,顾哲明.两种简易的抗肿瘤活性初筛方法.中国中药杂志,1997, 22 (10): 617-619.
    9. Uhlenbrock K, Gassenhuber H, Kostenis E. Sphingosine 1-phosphate is a ligand of the human GPR3,GPR6 and GPR12 family of constitutively active G protein-coupled receptors[J]. Cell Signal, 2002, 14: 941– 953.
    1.杨峻山.《实用天然产物手册—萜类化合物.化学工业出版社,2005,4: 1
    2.徐任生.《天然产物化学》(第二版).北京:科学出版社,2004, 196
    3.中国科学院植物研究所.中国高等植物科属检索表[M].北京:科学出版社,1985,445
    4.吴斌,吴立军.千里光属植物的化学成分研究进展[J].中国中药杂志,2003,28(2):97-100.
    5. Torres P, Ayala J, Grande C, et al. Furanoeremophilane derivatives from Senecio flavus[J]. Phytochemistry, 1999, 52, 1507 -1513.
    6. El-Shazly A, Doral G and Wink M. Chemical composition and biological activity of the essential oils of Senecioaegyptius var. discoideus Boiss. Z Naturforsch., 2002, 57c, 434 - 439.
    7. Yang H, Zhu Q X and Jia Z J. A new eremophilanoid sesquiterpene from Senecio oldhamianus[J]. Chin Chem Lett, 2002, 13 (2):139 - 140.
    8. Zhao Y, Wang P, Parsons S, et al. Saluenolide A, a novel eremophilanolide from Senecio saluenensis[J].Chin Chem Lett, 2002, 13 (4): 333 - 334.
    9. Zhao Y, Wang P, Hao X J, et al. Enantiomeric sesquiterpene lactones from Senecio tsoongianus[J]. Chin Chem Lett, 2002, 13 (8): 754 - 757.
    10. Wang C M, Yang H, Wei Y M, et al. In vitro effects on proliferation, telomerase activity and apoptosis of an eremophilanoid sesquiterpene from Senecio oldhamianus Maxim in cultured human tumor cell lines[J]. Pharmazie, 2004, 59 (10): 802 - 806.
    11. Gu J Q, Wang Y, Franzblau S G, et al. Constituents of Senecio chionophilus with potential antitubercular activity[J]. J Nat Prod, 2004, 67 (9), 1483 - 1487.
    12. Pérez-Castorena A, Arciniegas A, Guzmán S L, et al. Eremophilanes from Seneciomairetianus and Some Reaction Products[J]. J. Nat. Prod, 2006, 69, 1471-1475.
    13. Fei D Q, Zhang Z X, Chen J J, et al. Eremophilane-type sesquiterpenes from Senecio nemorensis[J]. Planta Med, 2007, 73:1292 -1297.
    14. Li Y, Wang Z, Zhang M, et al. Study on the terpene compounds from Ligularia kanaitzensis[J]. J Chin Pharmaceu Sci, 2002, 11 (3): 115 -117
    15. Wu Q X, Shi Y P and Yang L. Three novel eremophilanolides from Ligularia virgaurea spp. Oligocephala[J]. Chin Chem Lett, 2004, 15(12):1441-1444
    16. Wu Q X, Liu X and Shi Y P. A novel dimeric eremophilane from Ligularia virgaurea spp. Oligocephala[J]. Chin Chem Lett, 2005, 16(11): 1477 - 1480
    17. Wu Q X, Yang A M and Shi Y P. Sesquiterpenoids from Ligularia virgaurea spp. 0Oligocephala[J]. Tetrahedron, 2005, 61: 10529 - 10535.
    18. Liu J X, Wei X N, Shi Y P, et al. Two new eremophilane sesquiterpene lactones from Ligularia myriocephala Ling[J]. Chin Chem Lett, 2005, 16(12): 1618 -1620.
    19. Shen T, Xie W D and Jia Z J. Two new eremophilane sesquiterpenes from Ligularia myriocephala[J]. Chin Chem Lett, 2005, 16(9): 1220 -1222.
    20. Tori M, Honda K, Nakamizo H, et al. Chemical constituents of Ligularia virgaurea and its diversity in southwestern Sichuan of China[J]. Tetrahedron, 2006, 62: 4988- 4995.
    21. Fei D Q, Li S G, Liu C M, et al. Eremophilane-type sesquiterpene derivatives from the roots of Ligularia lapathifolia[J]. J Nat Prod, 2007, 70, 241-245.
    22.沈彤,李平林,袁呈山,等.大叶橐吾中三个新的艾里莫芬型倍半萜[J].化学学报,2007,65(16):1638 -1642.
    23. Wang Q, Mu Q, Shibano M, et al. Eremophilane Sesquiterpenes from Ligularia macrophylla[J]. J. Nat. Prod, 2007, 70, 1259-1262.
    24. Jiangsu college of new medicine, A dictionary of traditional Chinese medicine, Shanghai Science and Technology press, Shanghai, 1977, p.22.
    25. Mao M and Jia Z. Eremophilane sesquiterpenes from Cacalia ainsliaeflora[J]. Planta Med, 2002, 68: 55-59.
    26. Mao M J, Yuan C S and Jia Z J. New eremophilanes from Cacalia ainsliaeflora[J]. Chin Chem Lett, 2004, 15(7): 794-796.
    27. Liu X and Shi Y P. Two novel epimeric eremophilane sesquiterpenes from the flower ofCacalia tangutica[J]. Chin Chem Lett, 2005, 16(6): 774 - 776.
    28. Liu Z L and Tian X. The sesquiterpenes from Cacalia tangutica[J]. Bull Korean Chem Soc, 2007, 28 (2):292 -294.
    29. Wang W S, Gao K and Jia Z J. A new highly oxygenated eremophilenolide from Ligulariopsis shichuana[J]. Chin Chem Lett, 2002, 13(8): 734- 735.
    30. Wang W S, Gao K and Jia Z J. New eremophilenolides from Ligulariopsis shichuana[J]. J Nat Prod, 2002, 65 (5), 714-717.
    31. Wang W S, Gao K and Jia Z J. New sesquiterpenes from Ligulariopsis shichuana[J]. J Chin Chem Soc, 2004, 51(2): 417 -422.
    32. Jiang T F, Wang Y H, Lv Z H, et al. Separation and determination of eremophilenolides from Ligulariopsis shichuana by capillary zone electrophiresis[J]. Chromatographia, 2007, 65, 101 -104.
    33. Tabata Y, Mike N, Hatsu M, et al. PF1092A, B and C, New nonsteroidal progesterone receptor ligands produced by Penicillium oblatum I. Taxonomy of producing strain, fermentation, isolation and biological activities[J]. J Antibiot, 1997, 50(4): 304 -308.
    34. Tabata Y, Hatsu M, Kurata Y, et al. PF1092A, B and C, New nonsteroidal progesterone receptor ligands produced by Penicillium oblatum II. Physico-chemical properties and structure elucidation[J]. J Antibiot, 1997, 50(4): 309 -313.
    35.李厚金,林永成,王立,等.南海海洋真菌Hypoxylon oceanicum的代谢产物.中山大学学报(自然科学版), 2001, 40 (4), 70 -72, 80.
    36. McDonald, L A, Barbieri L R, Bernan V S, et al. 07H239-A, a new cytotoxic eremophilane sesquiterpene from the marine-derived fungus LL-07H239[J]. J Nat Prod, 2004, 67, 1565-1567.
    37. Yamada T, Iritani M, Minoura K, et al. Peribysin A-D, potent cell-adhesion inhibitors from a sea hare-derived culture of Periconia species[J]. J Org Biomol Chem, 2004, 2131-2135.
    38. Yamada T, Doi M, Miura A, et al. Absolute stereostructures of cell-adhesion inhibitors, Peribysins A, E, F and G, produced by a sea hare-derived Periconia sp[J]. J Antibiot, 2005, 58 (3): 185 -191.
    39. S?rensen D, Raditsis A, Trimble L A, et al. Isolation and structure elucidation by LC-MS-SPE/NMR: PR toxin- and cuspidatol-related eremophilane sesquiterpenes from Penicillium roqueforti[J]. J Nat Prod, 2007, 70, 121-123.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.