H13钢表面激光熔覆改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高H13钢表面的耐磨性能,本文进行了NiCrBSi、NiCrBSi+Ti、NiCrBSi+Ti+C、NiCrBSi+TiC等多种材料的激光熔覆试验。通过对不同材料熔覆层的宏观质量的对比分析,优选了熔覆材料并优化了激光熔覆工艺参数;利用XRD、SEM等手段对熔覆层的微观组织进行了表征;利用HXD-1000型显微硬度计测试了熔覆层的显微硬度;利用M-200型磨损试验机测试了熔覆层的摩擦磨损性能。
     试验结果表明,熔覆材料与激光熔覆工艺参数是影响激光熔覆层宏观质量的主要因素,在优化工艺参数下,可以获得外观光滑,均匀连续的NiCrBSi和NiCrBSi+Ti+C激光熔覆层。
     微观组织分析表明,激光熔覆层存在三个不同的区域,由表及里依次是熔覆层,熔覆层与基底的结合区及基底热影响区。NiCrBSi熔覆层由γ-Ni,Cr_7C_3,CrB等物相组成;NiCrBSi+Ti熔覆层由γ-Ni、Cr、Ni与Ti金属间化合物等相组成;NiCrBSi+Ti+C熔覆层由γ-Ni,Cr_7C_3、原位合成的TiC等相组成;NiCrBSi+TiC熔覆层由γ-Ni、Cr_7C_3、未溶TiC和溶解并重新析出的TiC等相组成。
     激光熔覆层的硬度由熔覆层到热影响区不断下降。NiCrBSi+Ti+C合金熔覆层的最高硬度值为HV850,比H13钢提高了约3倍,NiCrBSi熔覆层的最大硬度为HV700,比H13钢提高了约2倍。
     摩擦磨损试验结果表明,NiCrBSi激光熔覆层的磨损体积约为H13钢合金的1/10,NiCrBSi+Ti+C激光熔覆层的磨损体积约为H3钢合金的1/15,在磨损条件越苛刻的情况下NiCrBSi+Ti+C激光熔覆层的优良耐磨性能越突出。NiCrBSi激光熔覆层的磨损为氧化磨损和磨粒磨损。NiCrBSi+Ti+C激光熔覆层的磨损主要为熔覆层自身TiC颗粒剥落后而产生的磨粒磨损。NiCrBSi+Ti+C激光熔覆层的高硬度和高耐磨性能是由于涂层中存在颗粒强化、细晶强化和固溶强化等多种强化机制。
In order to improve the wear resistance of H13 steel,the laser claddings of H13 steel substrate with NiCrBSi,NiCrBSi+Ti,NiCrBSi+Ti+C and NiCrBSi+TiC were performed.The macroscopic qualities of all kinds of the coatings were analysed and compared,and the process parameters of laser cladding and the materials of coatings were optimized.The microstructure of the laser coatings was characterized by XRD and SEM.The microhardness of the coatings was examined and contrasted using HXD-1000 microhardness tester.The wear properties were examined using M-200 wear test machine.
     The results show that the clad materials and the process parameters are the important factors to influent the quality of laser cladding.In the condition of optimized process parameters,we can obtain the smooth and continuous laser claddings of NiCrBSi and NiCrBSi+Ti+C.
     The miscrostructure analyses show that three regions with different microstructures exist in the surface of coatings:the clad layer,the binding zone of the clad layer with the substrate,and the heat-affected zone in the substrate.The clad layer of NiCrBSi coatings on H13 alloy substrate consists of the phases ofγ-Ni,Cr_7C_3 and CrB.The clad layer of NiCrBSi+Ti coatings on H13 alloy substrate consists of the phases ofγ-Ni,compound of Cr and Ni with Ti.The clad layer of NiCrBSi+Ti+C coatings on H13 alloy substrate consists of the phases ofγ-Ni,Cr_7C_3 and the in-situ synthesized TiC.The clad layer of NiCrBSi+TiC coatings on H13 alloy substrate consists of the phases ofγ-Ni,Cr_7C_3 and the undissolved TiC and the precipitated TiC distributed dispersively.
     The hardness profiles of all the coatings obey the same law.The hardness is decresed from the clad layer to the heat-affected zone.The hardness of the clad layer of NiCrBSi+Ti+C coatings reaches HV850,which is improved by near three times compared with the substrate H13 steel.The hardness of the clad layer of NiCrBSi coatings reaches HV700,which is improved by above twice compared with the substrate H13 steel.
     The tribological properties on M-200 wear test machine show that the wear volume of the NiCrBSi coating is 1/10 of the H13 steel,the wear volume of the NiCrBSi+Ti+C coating is 1/15 of the H13 steel.The wear resistance of the NiCrBSi+Ti+C coating is better in the strict conditions.The wear mechanism of the NiCrBSi clad layer is a mixture of oxidation wear and grain abrasion.The wear of NiCrBSi+Ti+C clad layer is the abrasion,which is caused by the peeling-off TiC particles from the clad layer.The NiCrBSi+Ti+C clad layer which obtains the good wear resistance and microhardness could be strengthened by several mechanisms, including the hard particle strengthening,fine-grain strengthening and solid solution strengthening.
引文
[1]肖红军,彭云,马成勇等,激光表面改性[J],表面技术,2005,34(5):10-12
    [2]关振中,激光加工工艺手册[M],北京:中国计量出版社,1998,265-275
    [3]吴莹,牛焱,激光熔覆添加碳化钨的镍基合金层的组织和硬度研究[J],材料保护,2005,38(2):61-63
    [4]谢颂京,白万金,姚建华,激光熔覆Ni/SiC金属陶瓷涂层组织与耐磨性能[J],金属热处理,2006,31(11):19-21
    [5]李强,欧阳佳虎,雷廷权等,材料表面激光熔覆研究进展[J],材料科学与工艺,1996,4(4):22-36
    [6]郭伟,徐庆鸿,田锡唐,激光熔覆的研究发展状况[J],宇航材料工艺,1998,(1):1-8
    [7]黄瑞芬,罗建民,王春琴,激光熔覆技术的应用及其发展[J],兵器材料科学与工程,2005,28(4):57-58
    [8]闫忠琳,叶宏,激光熔覆技术及其在磨具中的应用[J],激光杂志,2006,27(2):73-74
    [9]郭桂芳,陈芙蓉,李林贺,激光熔覆技术在钛合金表面改性中的应用[J],应用技术,2006,35(1):66-69
    [10]孙荣禄,杨贤金,激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究,光学技术,2006,32(2):287-289
    [11]孙荣禄,杨贤金,TC4合金表面激光熔覆NiCrBSi+TiN粉末涂层的微观组织研究[J],金属热处理,2006,31(3):27-29
    [12]武万良,王振廷,孙俭峰,钛基复合材料激光熔覆层显微组织及其强化机制[J],中国表面工程,2005,18(4):9-12
    [13]张松,张春华,康煜平等,钛合金表面激光熔覆原位生成TiC增强复合涂层[J],中国有色金属学报,2001,12:1026-1030
    [14]张松,王茂才等,激光熔覆TiC/Ti复合材料的组织及摩擦学性能[J],摩擦学学报,1999,19(1):18-22
    [15]张松,张春华等,TiC/Ti复合材料激光熔覆层的冲击磨粒磨损性能[J],金属学报,2002,38(10):1100-1104
    [16]张松,张春华,康煜平等,Ti6Ai4V表面激光熔覆原位自生TiC颗粒增强钛基复合材料及摩擦磨损性能[J],金属学报,2001,37(3):315-320
    [17]陈赤囡,苏梅,TC9激光熔覆TiN涂层的组织与耐磨性的研究[J],北京航空航天大学学报,1998,24(3):253-255
    [18]王彦芳,刘忆,李刚等,钛板表面激光熔覆锆基合金涂层的组织结构[J],复合材料学报,2003,20(3):89-92
    [19]李平,邓永瑞,钛合金表面激光熔覆氧化锆陶瓷过渡区的显微组织[J],稀有金属材料与工程,1995,24(5):18-22
    [20]刘元富,王华明,激光熔覆Ti_5Si_3增强金属间化合物耐磨复合材料涂层组织及耐磨性研究[J],摩擦学学报,2003,23(1):10-13
    [21]刘元富,赵海云,王华明,激光熔覆Ti_5Si_3/NiTi金属间化合物复合材料涂层组织与耐磨性[J],稀有金属材料与工程,2003,32(5):367-371
    [22]刘元富,赵海云,王华明,激光熔覆Ti_5Si_3/(NiTi_2+β+Ti_5Si_3)复合涂层组织及耐磨性[J],材料科学与工程,2002,10(4):337-340
    [23]Y.Wang,H.M.Wang.Wear resistance of laser clad Ti_5Si_3/NiTi_2 reinforced intermetallic composite coatings on titanium alloy[J].Applied Surface Science,2004,229:81-86
    [24]Y.Xue,H.M.Wang.Microstruxture and wear properties of laser clad TiCo/Ti_2Co intermetallic coatings on titanium alloy[J].Applied Surface Science,2005,243:278-286
    [25]杨森,钟敏霖,刘文今,激光熔覆制备原位自生TiC颗粒强化Ni基合金复合涂层的研究[J],航空材料学报,2002,22(1):26-30
    [26]E.Pleshakov,Ya.Senyavs'kyi,R.Filip.Laser surface modification of Ti-6Al-4V alloy with silicon carbide[J].Materials Science,2002,138(5):646-652
    [27]P.A.Molian,L.Hualun.Laser Cladding of Ti-6Al-4V with BN for Improved Wear Performance[J].Wear,1989,130:337-352
    [28]J.H.Abboud,D.R.F.West.Ceramic-Metal Composites Produced by Laser Surface Treatment[J].Materials Science and Technology.1989,5:725-72
    [29]J.A.Folkes,K.Shibata,Laser cladding of Ti-6Al-4V with various carbide powders[J].Journal of Laser Applications,1996,6,88-94
    [30]Rongxiang Liu,Lixin Guo,Tingquan Lei.Microscopic morphology and microstructure of Ti-N and Ti-Ni phase between the dilution zone and the clad zone in laser remelting NICrBSi/TiN layer on Ti-6Al-4V alloy surface[J].Surface Review and Letters,2004,11(6):497-502.
    [31]Wu Wanliang.Microstructure of TiC dendrites reinforced titanium matrix composite layer by laser cladding[J].Journal of materials science letters,2003,22:1169-1171
    [32]刘荣祥,雷廷权,郭立新,钛合金激光表面熔覆的研究与进展[J],材料科学与工艺,2004,12(5):524-528
    [33]李会山,杨洗陈,王惠滨等,铝合金表面激光熔覆SiC复合涂层工艺研究[J],表面技术,2005,34(6):60-61
    [34]郑双七,王豫,45钢激光熔凝的组织与性能研究[J],热处理技术与装备, 2006,27(3):34-36
    [35]赵海信,莫易敏,余先涛,铝合金表面激光熔凝Ni基金属粉末的特性研究[J],表面技术,2005,34(5):46-48
    [36]高亚丽,王存山,刘红宾等,AZ91HP镁合金真空激光熔凝的微观组织与性能[J],应用激光,2005,25(3):148-150
    [37]苏云鹏,王猛,林鑫等,激光快速熔凝Zn-2%Cu包晶合金的显微组织[J],金属学报,2005,41(1):67-72
    [38]李双寿,陆劲昆,边庆月等,球墨铸铁凸轮轴的激光表面熔凝处理[J],金属热处理,2005,30(2):4-7
    [39]张春华,李春彦,张松等,H13模具钢激光熔凝层的组织及性能[J],金属热处理,2004,29(10):14-16
    [40]李会山,杨洗陈,于滨,激光熔凝铸铁凸轮轴工艺的研究[J],汽车工艺与材料,2003,(10):16-18
    [41]崔红卫,ZL108合金激光熔凝工艺的研究[J],特种铸造及有色合金,2002,(3):15-17
    [42]姚国凤,陈光南,激光熔凝加工中瞬时温度场及残余应力数值模拟[J],应用激光,2002,22(2):241-243
    [43]徐子文,黄正,阮中健,合金激光表面熔凝组织的超塑扩散连接机理[J],焊接技术,2002,31(5):6-7
    [44]李刚,王存山,夏元良等,灰口铸铁的激光表面熔凝硬化[J],金属热处理,2002,27(1):16-17
    [45]苗柏和,张艳,常小惠等,激光表面熔凝CuCr50粉末冶金材料[J],应用激光,1999,19(5):253-255
    [46]黄须强,吕朝阳,Fe-Ni-Si-B-V激光表面快速熔凝非晶化[J],焊接学报,2000,21(1):64-67
    [47]韩培德,武小雷,H13激光熔凝组织及耐磨性研究[J],机械工程师,1999,(9):52-53
    [48]王贵,周新初,顾永强等,搭接参数对激光熔凝处理层显微组织和性能的影响[J],金属热处理,2001,(6):16-18
    [49]赵玉珍,刘建萍,史耀武,高碳高合金钢激光熔凝处理的性能研究[J],激光技术,2003,27(3):205-207
    [50]邓忠民,赵亦兵,洪友士等,激光熔凝覆盖率对材料表面力学性能影响的模拟[J],固体力学学报,2002,23(2):212-216
    [51]徐子文,黄正,阮中建,激光熔凝过程中低碳钢组织的形成及熔凝组织加热转变规律[J],金属热处理,2003,28(10):22-25
    [52]胡芳友,温景林,王茂才,铸造铝合金表面激光熔凝合金化改性[J],东北大学学报,2002,23(10):964-967
    [53]戚龙,顾林喻,30CrNi2MoVA钢激光相变硬化技术[J],热加工工艺,2007,36(2):47-48
    [54]姚建华,陈智君,熊缨等,40Cr钢大面积激光相变硬化中的硬度分布特征[J],浙江工业大学学报,2002,30(4):319-322
    [55]李同道,王勇,赫庆坤等,45钢多次激光相变硬化组织与性能研究[J],中国表面工程,2007,20(2):33-36
    [56]骆有东,冯爱新,QT600-3凸轮轴表面激光相变硬化的实验研究[J]。激光杂志,2006,27(3):23-25
    [57]刘其斌,魏远翔,李海等,T10钢宽带激光相变硬化的组织与性能研究[J],现代机械,2003,(6):85-87
    [58]樊湘芳,邹湘军,石世宏,采用激光相变硬化工艺提高凹模寿命[J],模具工业,2002,(5):46-47
    [59]石岩,张宏,徐春鹰,齿轮激光相变硬化处理技术[J],新技术新工艺,2003,(6):39-40
    [60]徐洪烟,袁国定,周建忠,激光相变硬化带的理论预测[J],福建农林大学学报,2003,32(3):403-405
    [61]刘宁,激光相变硬化高速钢的摩擦磨损特性研究[J],矿冶工程,2003,23(2):80-83
    [62]杨柳青,丁阳喜,激光相变硬化技术的研究现状及进展[J],热加工工艺,2006,35(4):8-3
    [63]骆有东,激光相变硬化提高旋转接头的耐磨性[J],材料保护,2006,39(2):56-58
    [64]周健,温宗胤,李新华,激光相变硬化在Cr12汽车模具材料表面强化中的应用研究[J],模具工业,2007,33(4):67-70
    [65]王秀彦,安国平,林道盛等,激光相变硬化在模具表面强化中的应用研究[J],锻压机械,2001,2:42-46
    [66]范勇,王声波,7050航空铝合金激光冲击强化残余压应力研究[J],应用激光,2003,23(1):6-8
    [67]廉影,钱鸣,邹世坤等,7050铝合金激光冲击强化形貌光学表征与表面残余应力分布的研究[J],中国材料科技与设备,2006,(4):51-54
    [68]任旭东,张永康,QT700球墨铸铁曲轴的激光冲击强化试验[J],江苏大学学报,2007,28(4):289-292
    [69]李粤,杜建军,齿轮表面激光冲击强化残余应力场的有限元分析[J],制造业信息化,2006,(3):133-134
    [70]张兴权,周建忠,杨泽腾等,改善零件疲劳寿命的激光冲击强化技术[J],汽轮机技术,2005,47(3):238-240
    [71]范勇,王声波等,航空铝合金材料激光冲击强化实验研究[J],激光技术, 2003,27(4):273-275
    [72]邹世坤,激光冲击处理技术的最新发展[J],新技术新工艺,2005,(4):44-46
    [73]鲁金忠,张永康,孔德军等,激光冲击强化对TC4电子束焊缝机械性能的影响[J],江苏大学学报,2006,27(3):207-210
    [74]武敬伟,花银群,陈瑞芳,激光冲击强化对金属显微组织及其机械性能的影响[J],新技术新工艺,2007,(6):54-56
    [75]杨建风,周建树,冯爱新,激光冲击强化区的残余应力测试分析[J],应用激光,2006,26(3):157-160
    [76]文伟琦,唐静,2Cr13钢激光表面合金化的组织和性能分析[J],理化检验-物理分册,2006,42(9):441-443
    [77]樊丁,戴景杰等,激光表面合金化制备 TiC/Ti 复合涂层的组织与性能[J],兰州理工大学学报,2006,32(4):13-15
    [78]李新,刘卫,余先涛,ZL108的激光表面合金化[J],武汉理工大学学报,2006,28(4):38-40
    [79]吴志明,姚建华,沈乃璋等,螺杆的激光表面合金化强化研究[J],化工生产与技术,2005,12(5):16-17
    [80]周龙早,刘顺洪,黄安国等,铸造铝合金激光表面合金化的研究[J],激光技术,2004,28(6):565-568
    [81]王福德,胡乾午,曾晓雁,ZL108镍基粉末激光表面合金化气孔与裂纹的研究[J],应用激光,2004,24(5):265-268
    [82]卢云,铁基材料激光表面合金化研究进展[J],安徽工业大学学报,2002,19(3):181-185
    [83]叶宏,闫忠琳,激光表面合金化裂纹的研究[J],机械设计与制造工程,2001,30(3):60-61
    [84]刘其斌,朱维东,邹龙江,宽带激光熔覆工艺参数对梯度生物陶瓷复合涂层组织与烧结性的影响[J],生物医学工程学杂志,22(6):1193-1196
    [85]孙荣禄,杨德庄,郭立新等,激光工艺参数对钛合金表面NiCrBSi合金熔覆组织及硬度的影响[J],光学技术,2001,27(1):34-36
    [86]J A Vaccali.The laser as a cladding tool[J].American Machinist,1990,2:49-52
    [87]K Mikame.Application of laser material processing in TOYOTA Motor Corporation.In:Proc.LAMP'92,Nagaoka,June,1992:947-952
    [88]W Aihua,T Zengyi,Z Beidi.Layer beam cladding of seating surfaces on exhaust valves[J].Welding Research Supplement,1991,4:106-109
    [89]闫忠琳,叶宏,激光熔覆技术及其在模具中的应用[J],激光杂志,2006,27(2):73-74
    [90]S Wolf,R Volz.Use of the laser beam cladding-process in plastics processing machine design[J].Laser and Optoelektronik,1995,27(2):47-53
    [91]J L Koch,J Mazumder.Rapid prototyping by laser cladding.ICALEO'93:Laser Materials Processing,Proceedings of SPIE-The International Society for Optical Engineering,V 1990,1993,Odando,FL,USA,1993:556-562
    [92]周龙昌,于凤兰,激光快速成型技术在胎体PDC钻头制造中的应用[J],石油钻探技术,2005,33(2):44-45
    [93]胡名玺,高万玉等,基于反求工程和激光快速成型技术的呼吸面罩设计[J],中国医疗器械杂志,2006,30(3):1921-210
    [94]李风,丁培道等,稀土和铝合金化对穿孔顶头综合性能的影响[J],钢铁,1996,10(10):81
    [95]张富生,任晨星等,抗磨耐热球墨铸铁热轧无缝钢管顶头的研制[J],铸造技术,2003,24(3):217-219
    [96]杨之地,无缝钢管穿孔顶头氧化机理的研究[J],四川联合大学学报,1998,9(5):45-51
    [97]邓世均,高性能陶瓷涂层[M],北京:化学工业出版社,2004,166,167,179
    [98]黄伯云,李成功,石力开等,中国材料工程大典第4卷,有色金属材料工程(上)[M],北京:化学工业出版社,2005,50
    [99]郭秀文等,金相技术问答[M],北京:国防工业出版社,1987,76-77
    [100]Wong T T,Liang G Y,et al.Wear resistance of laser-clad Ni-Cr-B-Si alloy on aluminium alloy[J].Journal of Materials Processing Technology,2000,10(3):142-146
    [101]任颂赞,张静江,陈质如等,钢铁金相图谱[M],上海:上海科学技术文献出版社,2003
    [102]杨阳,铝及铝合金a-Al晶粒细化方法的进展[J],上海有色金属,1993,3(18):99-105
    [103]T.Toshihiko et al.,Composites Part A:Appied Science Manufacturing.1999,30(4):419 D.Lewrs et al.,Advanced Materials & Processes.1995,7:29
    [104]孙家枢,金属的磨损[M],冶金工业出版社,1992,118-122
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.