聚氯乙烯基和聚偏氟乙烯基共混复合材料结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚偏氟乙烯(PVDF)具有优异的力学性能、热稳定性、抗化学腐蚀和耐老化性能,可用作太阳能电池背膜。但PVDF熔体强度大、不易吹塑成型,且表面粘接能力差,限制其使用范围。聚甲基丙烯酸甲酯(PMMA)具有强的粘结能力和力学性能,可用来改善PVDF。本文采用熔融共混法制备PVDF/PMMA共混物,研究加工条件和组成对其结构与性能的影响,并采用TiO2提高共混物力学性能。论文进一步采用PVDF/PMMA和丙烯腈-苯乙烯-丙烯酸丁酯共聚物(ASA)来改善聚氯乙烯(PVC)的耐紫外老化性能。
     首先研究相形态结构对PVDF/PMMA共混物热行为、力学和抗紫外老化性能的影响。经短时熔融共混后(一次加工),共混物呈相分离结构,其相形态结构与共混物的组成和加工条件密切相关。PMMA含量越大,剪切速率越小,加工温度越高,越易形成相分离结构。经长时熔融共混后(二次加工),共混物呈均相结构。共混物异种分子链缠结几率大于同种分子链,有利于均相结构形成。共混体系仅有一个应力松弛峰,不存在长时松弛平台。固态共混物中存在三种松弛行为:结晶区中无定形态PVDF的αc松弛、无定形区中PVDF的αa松弛、和无定形态共混物的αm松弛。PMMA促进PVDF分子链松弛,降低其结晶度和熔融温度,提高其亲水性。共混物相形态结构决定共混物的综合性能,均相体系的拉伸与耐紫外老化性能更好。
     采用种子乳液聚合法制备具有核-壳结构的TiO2-g-PMMA复合粒子,使TiO2均匀分散在PVDF/PMMA共混物中,降低纳米粒子团聚。TiO2-g-PMMA粒子不改变聚合物基体的玻璃化转变温度和PVDF晶型。TiO2-g-PMMA的PMMA壳使TiO2与基体相的界面极化作用减弱,降低Ti02表面对基体分子链的影响。而TiO2-g-PMMA粒子的复合体系热稳定性高,结构不随热处理(190℃)时间改变。TiO2-g-PMMA复合粒子在共混物中分散性好,其力学增强效果明显优于TiO2。
     PVDF可提高PVC抗紫外老化性能,但二者相容性差,二元共混物的拉伸性能显著低于PVC。PMMA可改善PVC/PVDF共混物相容性,提高共混物拉伸和抗冲击性能。PVC/PVDF/PMMA共混物具有强的抗紫外老化性能。经紫外老化后,含少量PMMA的三元共混体系的拉伸强度、弹性模量和断裂伸长率均高于二元PVC/PVDF共混物。高含量PMMA共混物的拉伸和抗紫外老化性能随PMMA含量增加而降低。
     PVC与ASA相容性好,具有协同增韧效果,共混物出现明显的脆韧转变。随ASA含量增加,PVC/ASA共混物的屈服强度和弹性模量逐渐下降,断裂伸长率不断增大。ASA可提高PVC的静态热分解时间、动态热分解温度和维卡软化温度。ASA具有紫外光吸收作用,可阻碍PVC氧化降解反应。PVC/ASA共混物抗紫外老化能力随ASA含量增加而显著增强。共混物经长时间紫外老化后仍保持较高韧性。
Polyvinylidene fluoride (PVDF) presents good stability to rigorous temperatures, mechanical strength, chemistry stability, and ageing resistance, which can be used as the solar cell back. However, PVDF has the relatively high melt strength, and therefore it is difficult to blow molding. The cost, processibility, and peel strength limit the application of PVDF in some fields. Polymethyl methacrylate (PMMA) has the strong interfacial adhesion and mechanical properties, which is used to improve the properties of PVDF. The processing conditions, morphologies, and properties of PVDF/PMMA blends prepared by melting compounding were investigated. TiO2particles were added into PVDF/PMMA blends to improve the mechanical properties. PVDF and acrylonitrile-styrene-acrylate (ASA) were introduced to improve the anti-ultraviolet irradiation of PVC. The mechanical and anti-ultraviolet properties of PVC/PVDF/PMMA and PVC/ASA blends were analyzed.
     The phase separation behavior appeared in PVDF/PMMA blends after short time melt blending (first processing). Phase morphology was related to the shear rate, processing temperature, and PMMA content. PVDF/PMMA blends were the homogeneous structures after long time melt blending (second processing). The chain entanglements densities of different molecules were greater than the same ones, which were good for the compatibility between PVDF and PMMA. There was only one relaxation peak in the stress relaxation spectrum, and no relaxation platform appeared in the long time region. PVDF/PMMA blends had the synergy effect during the molecular chain relaxation process. The solid PVDF/PMMA blends had three kinds of relaxation behaviors:aa and ac relaxation associated with segmental motions in the amorphous phase and the amorphous portions within the crystalline phase of PVDF, respectively, and am relaxation related to the PVDF/PMMA phase. PMMA facilitated the relaxation process of PVDF. The crystallinity of PVDF reduced gradually with the increasing PMMA content, however, the crystal type of which was not change. PMMA improved the hydrophilicity, processing conditions, and adhesion capability of the blends. The thermal decomposition temperatures of PVDF/PMMA blends reduced gradually with increasing PMMA content, however, the decomposition processes of PVDF and PMMA were independent. The microstructures of PVDF/PMMA blends determine the comprehensive performance. The homogeneous blends had the good tensile properties and anti-ultraviolet aging performance.
     Core-shell structured TiO2-g-PMMA nanoparticles prepared via seeded emulsion polymerization. TiO2-g-PMMA particles were dispersed evenly in PVDF/PMMA blends, which reduced the reunion phenomenon of TiO2nanoparticles. TiO2-g-PMMA particles did not affect the glass transition temperature of polymer matrix, but reducing the PVDF crystallinity. TiO2-g-PMMA was coated with a layer of PMMA, which reduced the interfacial polarization effect between TiO2particles and polymer matrix. TiO2-g-PMMA composites had a good thermal stability, the structures of which did not change under190℃with the increase of heat treatment time. Due to the good dispersion of TiO2-PMMA, the enhancement effect was greater than unmodified TiO2.
     PVDF was introduced to improve the anti-ultraviolet aging ability of PVC. However, the compatibility between PVC and PVDF was poor, which decreased the tensile properties of PVC/PVDF blends. PMMA improved the compatibility of PVC/PVDF blends, and enhanced the tensile properties and impact resistance. PVC/PVDF/PMMA blends had the strong anti-ultraviolet ability. The blends contain small amount of PMMA could keep good tensile strength, elastic modulus, and elongation at break after long time UV irradiation. However, the tensile properties and anti-ultraviolet performance of blends with high PMMA content decreased gradually with increasing PMMA.
     There was a good compatibility between PVC and ASA molecular chains. The synergistic toughening effect appeared in PVC/ASA blends due to the interaction between molecular chains. The elongation at break and toughness of PVC/ASA blends increased with the increasing ASA content. ASA improved the static thermal decomposition time, thermal decomposition temperature, and vicat softening temperature of PVC. ASA had the ultraviolet absorption effect, which hindered the oxidation degradation of PVC. PVC/ASA blends had the strong anti-ultraviolet aging ability with increasing ASA content. After a long time ultraviolet aging, PVC/ASA blends could maintain toughness higher than rigid PVC.
引文
[1]Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H. Crystal structures of three crystalline forms of poly (vinylidene fluoride)[J]. Polymer Journal,1972,3:600-610.
    [2]陈均.聚氯乙烯膜材料改性及其界面性能研究[M].安徽大学,2004.
    [3]沈家瑞,贾德民.聚合物共混物与合金 [M].华南理工大学出版社,1999.
    [4]Kelnar I, Stephan M, Jakisch L, Fortelny L Reactive blending of nylon 6 and modified poly (styrene-maleic anhydride); influence of poly (styrene-maleic anhydride) modification by fatty amine onto blend properties[J]. Journal of applied polymer science,1997,66:555-562.
    [5]Belfiore LA, Lutz TJ, Cheng C, Bronnimann CE. Solid-state phase behavior and molecular-level mixing phenomena in a strongly interacting polymer blend[J]. Journal of Polymer Science Part B: Polymer Physics,1990,28:1261-1274.
    [6]王国全.聚合物共混改性原理与应用[M].中国轻工业出版社,2007.
    [7]Zheng Q, Shangguan Y, Yan S, Song Y, Peng M. Structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys[J]. Polymer,2005,46:3163-3174.
    [8]Wu S. Chain entanglement and melt viscosity of compatible polymer blends:poly (methyl methacrylate) and poly (styrene-acrylonitrile)[J]. Polymer,1987,28:1144-1148.
    [9]Liu TY, Lin WC, Huang LY, Chen SY, Yang MC. Surface characteristics and hemocompatibility of PAN/PVDF blend membranes[J]. Polymers for advanced technologies,2005,16:413-419.
    [10]Hui Z, Jiufu X. The Modification of the Flexibility of Radiation Crosslinked PE by Blending PE with EVA and CPE[J]. Radiation Physics and Chemistry,1993,42:117-119.
    [11]Hiljanen-Vainio M, Varpomaa P, Seppala'J, Tormala P. Modification of poly (L-lactides) by blending:mechanical and hydrolytic behavior[J]. Macromolecular Chemistry and Physics,1996, 197:1503-1523.
    [12]Flory PJ. Thermodynamics of high polymer solutions[J]. The Journal of chemical physics,1942, 10:51.
    [13]Huggins ML. Solutions of long chain compounds[J]. The Journal of chemical physics,1941, 9:440-440.
    [14]刘凤歧,汤心颐.高分子物理[M].高等教育出版社,1995.
    [15]Flory PJ. Thermodynamics of heterogeneous polymers and their solutions[J]. The Journal of chemical physics,1944,12:425.
    [16]Scott RL. The thermodynamics of high polymer solutions. V. Phase equilibria in the ternary system:polymer 1-polymer 2-solvent[J]. The Journal of chemical physics,1949,17:279.
    [17]Moskala E, Varnell D, Coleman M. Concerning the miscibility of poly (vinyl phenol) blends-FTIR study[J]. Polymer,1985,26:228-234.
    [18]吴培熙,张留城.聚合物的共混改性[M].中国轻工业出版社,1996.
    [19]吕亚文.聚偏氟乙烯超滤膜改性及其抗污染性能的研究[M].北京工业大学,2001.
    [20]Hilldebrand J, Scott R. The Solubility of Nonelectrolytes, Reinhold Publ[J]. New York,1950.
    [21]Utracki L. Polymer alloys and blends:thermodynamics and rheologyHanser[J]. New York,1989.
    [22]Onogi S. Rheology for Chemist[J]. Kagaku Dojin, Kyoto,1982.
    [23]张运湘,宋义虎,郑强.相分离对PVDF/PMMA共混物的力学与耐UV老化性能的影响[J].高分子学报.2012,12:1364-1370.
    [24]Dae Han C, Kim JK. On the use of time-temperature superposition in multicomponent/multiphase polymer systems[J]. Polymer,1993,34:2533-2539.
    [25]Bar-Chaput S, Carrot C. Rheology as a tool for the analysis of the dispersion of carbon filler in polymers[J]. Rheologica Acta,2006,45:339-347.
    [26]吴刚,郑强.CB填充聚合物导电复合体系熔体聚集态结构演化[J].高等学校化学学报2006,27(3)583-585.
    [27]Liu Z, Song Y, Shangguan Y, Zheng Q. Simultaneous measurement of normal force and electrical resistance during isothermal crystallization for carbon black filled high-density polyethylene[J]. Journal of Materials Science,2008,43:4828-4833.
    [28]Liu Z, Song Y, Shangguan Y, Zheng Q. Conductive behavior of composites composed of carbon black-filled ethylene-tetrafluoroethylene copolymer[J]. Journal of Materials Science,2007, 42:2903-2906.
    [29]Cao Q, Song Y, Liu Z, Zheng Q. Influence of annealing on rheological and conductive behaviors of high-density polyethylene/carbon black composites[J]. Journal of Materials Science,2009, 44:4241-4245.
    [30]Sun S, Song Y, Zheng Q. Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten[J]. Food Hydrocolloids,2007,21:1005-1013.
    [31]吴刚,郑强,江磊,宋义虎.HDPE氧化交联与动态流变行为[J].高等学校化学学报,2004,25:357-360.
    [32]曹艳霞,郑强,杜淼.EPDM受热氧化与动态流变行为[J].高分子学报,2005,3:407-411.
    [33]何曼君,陈维孝,董西侠.高分子物理学[M].高等教育出版社,1993.
    [34]Iza M, Bousmina M, Jerome R. Rheology of compatibilized immiscible viscoelastic polymer blends[J]. Rheologica Acta,2001,40:10-22.
    [35]Doi M, Edwards S. The theory of polymer dynamics.1986[J]. Clarendon:Oxford,1986.
    [36]Onogi S, Matsumoto T. Rheological properties of polymer solutions and melts containing suspended particles[J]. Polym Eng Rev,1981,1:45-87.
    [37]Song Y, Zheng Q, Cao Q. On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers [J]. Journal of Rheology,2009,53:1379.
    [38]Aranguren MI, Mora E, DeGroot Jr JV, Macosko CW. Effect of reinforcing fillers on the rheology of polymer melts[J]. Journal of Rheology,1992,36:1165.
    [39]Romani F, Corrieri R, Braga V, Ciardelli F. Monitoring the chemical crosslinking of propylene polymers through rheology[J]. Polymer,2002,43:1115-1131.
    [40]Lacroix C, Bousmina M, Carreau P, Favis B, Michel A. Properties of PETG/EVA blends:1. Viscoelastic, morphological and interfacial properties[J]. Polymer,1996,37:2939-2947.
    [41]Vinckier I, Moldenaers P, Mewis J. Relationship between rheology and morphology of model blends in steady shear flow[J]. Journal of Rheology,1996,40:613-631.
    [42]Lacroix C, Grmela M, Carreau P. Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow[J]. Journal of Rheology,1998,42:41-62.
    [43]Colby RH. Breakdown of time-temperature superposition in miscible polymer blends[J]. Polymer, 1989,30:1275-1278.
    [44]Takahashi M, Li L, Masuda T. Nonlinear viscoelasticity of ABS polymers in the molten state[J]. Journal of Rheology,1989,33:709-723.
    [45]Potschke P, Fornes T, Paul D. Rheological behavior of multiwalled carbon nanotube/ polycarbonate composites[J]. Polymer,2002,43:3247-3255.
    [46]Winter HH, Mours M. Rheology of polymers near liquid-solid transitions[M]. Springer,1997, 165-234.
    [47]Cao Q, Song Y, Tan Y, Zheng Q. Thermal-induced percolation in high-density polyethylene/ carbon black composites[J]. Polymer,2009,50:6350-6356.
    [48]Ouali N, Cavaille J, Perez J. Elastic, viscoelastic and plastic behavior of multiphase polymer blends[J]. Plastics, Rubber and Composites Processing and Applications,1991,16:55-60.
    [49]Friedrich C, Scheuchenpflug W, Neuhausler S, Rosch J. Morphological and rheological properties of PS melts filled with grafted and ungrafted glass beads[J]. Journal of applied polymer science, 1995,57:499-508.
    [50]Konishi Y, Cakmak M. Nanoparticle induced network self-assembly in polymer-carbon black composites[J]. Polymer,2006,47:5371-5391.
    [51]Cassagnau P. Melt rheology of organoclay and fumed silica nanocomposites[J]. Polymer,2008, 49:2183-2196.
    [52]Das A, Stockelhuber K, Jurk R. Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends[J]. Polymer,2008, 49:5276-5283.
    [53]Leonov A. On the rheology of filled polymers[J]. Journal of Rheology,1990,34:1039-1068.
    [54]方俊鑫,殷之文.电介持物理学[M].科学出版社,1989.
    [55]时原.聚乙烯基吡咯烷酮的分子运动和电荷存储现象研究[M].中国科学技术大学,2009.
    [56]Cole KS, Cole RH. Dispersion and absorption in dielectrics L Alternating current characteristics[J]. The Journal of chemical physics,1941,9:341.
    [57]Davidson D, Cole R. Dielectric relaxation in glycerine[J]. The Journal of chemical physics,1950, 18:1417-1417.
    [58]Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers[J]. Polymer,1967,8:161-210.
    [59]Havriliak S, Negami S. A complex plane analysis of a-dispersions in some polymer systems. Journal of Polymer Science Part C:Polymer Symposia:Wiley Online Library; 1966. p.99-117.
    [60]McCrum NQ Read BE, Williams G. Anelastic and dielectric effects in polymeric solids[M]. John Wiley & Sons Ltd,1967.
    [61]Tsangaris G, Psarras G, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems[J]. Journal of Materials Science,1998,33:2027-2037.
    [62]Chanmal C, Jog J. Dielectric relaxations in PVDF/BaTiO3 nanocomposites[J]. Express Polymer Letters,2008,2:294-301.
    [63]Sharma M, Sharma K, Bose S. Segmental Relaxations and Crystallization-Induced Phase Separation in PVDF/PMMA Blends in the Presence of Surface-Functionalized Multiwall Carbon Nanotubes[J]. The Journal of Physical Chemistry B,2013,117:8589-8602.
    [64]张永明,李虹,张恒.含氟功能材料[M].化学工业出版社,2008.
    [65]Cortili G, Zerbi G. Further infra-red data on polyvinylidene fluoride[J]. Spectrochimica Acta Part A:Molecular Spectroscopy,1967,23:2216-2218.
    [66]Natta Q Allegra G, Bassi I, Sianesi D, Caporiccio G, Torti E. Isomorphism phenomena in systems containing fluorinated polymers and in new fluorinated copolymers[J]. Journal of Polymer Science Part A:General Papers,1965,3:4263-4278.
    [67]张军英,李新开,王清海,冀克俭,王树伦.聚偏氟乙烯的晶体结构及应用[J].工程塑料应用,2008,36:79-81.
    [68]Bachmann M, Lando J. A reexamination of the crystal structure of phase II of poly (vinylidene fluoride)[J]. Macromolecules,1981,14:40-46.
    [69]Takahashi S, Murata E, Kariya M, Sonogashira K, Hagihara N. A New Liquid-Crystalline Material. Transition Metal-Poly (yne) Polymers[J]. Macromolecules,1979,12:1016-1018.
    [70]Lovinger AJ. Annealing of poly (vinylidene fluoride) and formation of a fifth phase[J]. Macromolecules,1982,15:40-44.
    [71]李宸.TiO2纳米粒子改性PVDF/PMMA复合薄膜的制备及性质[M].东华大学,2013.
    [72]Da Silva AB, Wisniewski C, Esteves JVA, Gregorio Jr R. Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films[J]. Journal of Materials Science, 2010,45:4206-4215.
    [73]Lovinger AJ. Ferroelectric transition in a copolymer of vinylidene fluoride and tetrafluoroethylene[J]. Macromolecules,1983,16:1529-1534.
    [74]公莉萍.聚偏氟乙烯氟碳树脂在高耐候涂料中的应用[J].内蒙古石油化工,2009:24-25.
    [75]治明.可加工成型的支化聚偏氟乙烯[J].国外塑料,2007,25:58-60.
    [76]余磊.Kynar-氟聚合物在聚烯烃薄膜加工中的应用一提高产量,减少停机时间[J].塑料包装,2012:36-37.
    [77]Ross G, Watts J, Hill M, Morrissey P. Surface modification of poly (vinylidene fluoride) by alkaline treatment Part 2. Process modification by the use of phase transfer catalysts[J]. Polymer, 2001,42:403-413.
    [78]Ross G, Watts J, Hill M, Morrissey P. Surface modification of poly (vinylidene fluoride) by alkaline treatmentl. The degradation mechanism[J]. Polymer,2000,41:1685-1696.
    [79]Bottino A, Capannelli G, Comite A. Novel porous membranes from chemically modified poly (vinylidene fluoride)[J]. Journal of membrane science,2006,273:20-24.
    [80]Ying L, Kang E, Neoh K. Characterization of membranes prepared from blends of poly (acrylic acid)-graft-poly (vinylidene fluoride) with poly (N-isopropylacrylamide) and their temperature-and pH-sensitive microfiltration[J]. Journal of membrane science,2003,224:93-106.
    [81]Diiputell D, Staude E. Heterogeneous modification of ultrafiltration membranes made from poly (vinylidene fluoride) and their characterization[J]. Journal of membrane science,1993,78:45-51.
    [82]Chang CL, Chang PY. Performance enhancement of silicone/PVDF composite membranes for pervaporation by reducing cross-linking density of the active silicone layer[J]. Desalination,2006, 192:241-245.
    [83]Yan L, Li YS, Xiang CB. Preparation of poly (vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (A12O3) and its antifouling research[J]. Polymer,2005, 46:7701-7706.
    [84]Mokrini A, Huneault M. Proton exchange membranes based on PVDF/SEBS blends[J]. Journal of power sources,2006,154:51-58.
    [85]Yang C, Zhang Q Xu N, Shi J. Preparation and application in oil-water separation of ZrO2/a-Al2O3 MF membrane[J]. Journal of membrane science,1998,142:235-243.
    [86]Wang P, Tan K, Kang E, Neoh K. Plasma-induced immobilization of poly (ethylene glycol) onto poly (vinylidene fluoride) microporous membrane[J]. Journal of membrane science,2002, 195:103-114.
    [87]Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli HJ. Surface modification of poly (vinylidenefluoride) to improve the osteoblast adhesion[J]. Biomaterials,2003,24:3663-3670.
    [88]Hsueh CL, Peng YJ, Wang CC, Chen CY. Bipolar membrane prepared by grafting and plasma polymerization[J]. Journal of membrane science,2003,219:1-13.
    [89]Clochard MC, Begue J, Lafon A. Tailoring bulk and surface grafting of poly (acrylic acid) in electron-irradiated PVDF[J]. Polymer,2004,45:8683-8694.
    [90]Adem E, Burillo G, Munoz E, Rickards J, Cota L, Avalos-Borja M. Electron and proton irradiation of poly (vinylidene fluoride):characterization by electron paramagnetic resonance[J]. Polymer degradation and stability,2003,81:75-79.
    [91]Nasef MM, Saidi H, Dahlan KZM. Investigation of electron irradiation induced-changes in poly (vinylidene fluoride) films[J]. Polymer degradation and stability,2002,75:85-92.
    [92]曾汉民,杨晨.聚苯硫醚及其聚醚砜共混物结晶形态的研究[J].高分子学报,1989,4:409-414.
    [93]吴培熙.结晶/非晶聚合物共混体系的形态[J].塑料科技,1994,100:25-29.
    [94]莫志深,薛小芙,郭其鹏.聚环氧乙烷(PEO)与聚双酚A羟基醚(PBHE)共混体系的研究[J].高分子学报,1991,1:104-109.
    [95]Stein R, Khambatta F, Warner F, Russell T, Escala A, Balizer E. X-ray and optical studies of the morphology of polymer blends. Journal of Polymer Science:Polymer Symposia:Wiley Online Library; 1978,313-328.
    [96]Martuscelli E, Pracella M, Wang PY. Influence of composition and molecular mass on the morphology, crystallization and melting behaviour of poly (ethylene oxide)/poly (methyl methacrylate) blends[J]. Polymer,1984,25:1097-1106.
    [97]杨少华,孙国庆.平板式共混超滤膜的研究[J].水处理技术,1994,20:365-369.
    [98]王国全,王秀芬.聚合物改性[M].中国轻工业出版社,2000.
    [99]Murff S, Barlow J, Paul D. Environmental-Stress Crazing and Cracking of Poly (methyl Methacrylate)-Poly (vinylidene Fluoride) Blends[J]. Adv Chem Ser,1986,211:313-324.
    [100]Mijovic J, Luo HL, Han CD. Property-morphology relationships of polymethylmethacrylate/ polyvinylidenefluoride blends[J]. Polymer Engineering & Science,1982,22:234-240.
    [101]Noland J, Hsu N, Saxon R, Schmitt J. Compatible high polymers:Poly (vinylidene fluoride) blends with homopolymers of methyl and ethyl methacrylate[J]. Adv Chem Ser,1971,99:15-28.
    [102]胥伟清,田军,林晓,徐纪平,黄葆同.PP-g-PMMA在PP/PVDF共混体系中的应用[J].应用化学,1996,13:10-13.
    [103]Zhou X, Cakmak M. Phase Behavior of Rapidly Quenched PVDF/PMMA Blends as Characterized by Raman Spectroscopy, X-Ray Diffraction and Thermal Techniques [J]. Journal of Macromolecular Science, Part B:Physics,2007,46:667-682.
    [104]武利顺,王敬佩.聚偏氟乙烯的晶型及其影响因素[J].化工新型材料,2008,36:59-61.
    [105]陈晔,杨德才.聚甲基丙烯酸酯类对高取向PVF2薄膜β相结晶的影响[J].应用化学,1993, 1:86-88.
    [106]陈晔,杨德才.聚甲基丙烯酸甲酯分子量对高取向聚偏氟乙烯薄膜β相结晶的影响[J].科学通报,1990,8:595-597.
    [107]Schneider S, Drujon X, Wittmann J, Lotz B. Impact of nucleating agents of PVDF on the crystallization of PVDF/PMMAblends[J]. Polymer,2001,42:8799-8806.
    [108]李卫.PVDF/PMMA和PVDF/PMMA/TiO2共混体系结构与性能研究[M].上海交通大学,2009.
    [109]Freire E, Bianchi O, Monteiro EE, Reis Nunes RC, Forte MC. Processability of PVDF/PMMA blends studied by torque rheometry[J]. Materials Science and Engineering:C,2009,29:657-661.
    [110]Gu X, Michaels CA, Nguyen D, Jean YC, Martin JW, Nguyen T. Surface and interfacial properties of PVDF/acrylic copolymer blends before and after UV exposure[J]. Applied surface science,2006,252:5168-5181.
    [111]Moussaif N, Groeninckx G. Nanocomposites based on layered silicate and miscible PVDF/PMMA blends:melt preparation, nanophase morphology and rheological behaviour[J]. Polymer,2003,44:7899-7906.
    [112]Jin Z, Pramoda K, Goh SH, Xu G. Poly (vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly (methyl methacrylate) composites[J]. Materials Research Bulletin,2002,37:271-278.
    [113]Meng Q, Li W, Zheng Y, Zhang Z. Effect of poly (methyl methacrylate) addition on the dielectric and energy storage properties of poly (vinylidene fluoride)[J]. Journal of applied polymer science, 2010,116:2674-2684.
    [114]Rashmi, Narula G, Pillai P. Dielectric and structural properties of the solution-mixed polyblends of poly (vinylidene fluoride) and poly (methyl methacrylate)[J]. Journal of Macromolecular Science-Physics,1987,26:185-200.
    [115]Hahn B, Wendorff J, Yoon DY. Dielectric relaxation of the crystal-amorphous interphase in poly (vinylidene fluoride) and its blends with poly (methyl methacrylate)[J]. Macromolecules,1985, 18:718-721.
    [116]Mijovic J, Sy JW, Kwei T. Reorientational dynamics of dipoles in poly (vinylidene fluoride)/poly (methyl methacrylate)(PVDF/PMMA) blends by dielectric spectroscopy[J]. Macromolecules, 1997,30:3042-3050.
    [117]Sy JW, Mijovic J. Reorientational dynamics of poly (vinylidene fluoride)/poly (methyl methacrylate) blends by broad-band dielectric relaxation spectroscopy[J]. Macromolecules,2000, 33:933-946.
    [118]Kato AUI-NH-M, Usik A. Polymer-clay nanocomposites[J]. Inorganic Polymeric Nanocomposites and Membranes,2005,179:135-195.
    [119]Sun Y, Hao E, Zhang X. Buildup of composite films containing TiO2/PbS nanoparticles and polyelectrolytes based on electrostatic interaction[J]. Langmuir,1997,13:5168-5174.
    [120]邓捷,吴立峰.钛白粉应用手册嗍.化学工业出版社,2005.
    [121]Cao X, Ma J, Shi X, Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane[J]. Applied surface science,2006,253:2003-2010.
    [122]Smillie B, Lenges G Multi-layer sheet having a weatherable surface layer. WO Patent 2,007,050,756; 2007.
    [123]Laachachi A, Ferriol M, Cochez M, Ruch D, Lopez-Cuesta JM. The catalytic role of oxide in the thermooxidative degradation of poly (methyl methacrylate)-TiO2 nanocomposites[J]. Polymer degradation and stability,2008,93:1131-1137.
    [124]Lee JQ Kim SH. Structure development of PVDF/PMMA/TiO2 composite film with casting conditions[J]. Macromolecular Research,2011,19:72-78.
    [125]Li W, Li H, Zhang YM. Preparation and investigation of PVDF/PMMA/TiO2 composite film[J]. Journal of Materials Science,2009,44:2977-2984.
    [126]赵德仁.高聚物合成工艺学[M].化学工业出版社,1981.
    [127]司业光,韩光信,吴国贞.聚氯乙烯糊树脂及其加工应用[M].化学工业出版社,1993.
    [128]董丽华,胡永琪.氯化聚乙烯的生产工艺及其应用前景[J].河北化工,2004,27:21-23.
    [129]谢建玲,桂祖桐,蔡绪福.聚氯乙烯树脂及其应用[M].化学工业出版社,2007.
    [130]Gomez IL. Engineering with rigid PVC:processability and applications[M]. CRC Press,1984.
    [131]Hartwig G Fracture behavior of polymers. Polymer properties at room and cryogenic temperatures:Springer; 1994. p.187-218.
    [132]Bicerano J, Seitz JT. Molecular Origins of Toughness in Polymers'[J]. Polymer Toughening Marcel Dekker, Inc, P O Box 5005, Monticello, NY 12701-5185, USA,1996,1996:1-59.
    [133]Lutz JT. Impact modifiers for PVC[J]. Journal of Vinyl Technology,1993,15:82-99.
    [134]Wu S. Control of intrinsic brittleness and toughness of polymers and blends by chemical structure:a review[J]. polymer international,1992,29:229-247.
    [135]Wu S. Chain structure, phase morphology, and toughness relationships in polymers and blends[J]. Polymer Engineering & Science,1990,30:753-761.
    [136]Davenas J, Tran V, Boiteux G Ion beam induced conversion of PVC into a conducting polyene[J]. Synthetic Metals,1995,69:583-584.
    [137]Rabek JF. Polymer photodegradation:mechanisms and experimental methods[M]. Springer, 1995.
    [138]Ivan B, Kelen T, Tudos F. Degradation and stabilization of poly (vinyl chloride)[J]. Elsevier Science Publishers, Degradation and Stabilization of Polymers:a Series of Comprehensive Reviews,1989,2:483-714.
    [139]Owen E. Degradation and Stabilisation of PVC[M]. Elsevier Science & Technology,1984.
    [140]钟世云,许乾慰,王公善.聚合物降解与稳定化[M].化学工业出版社,2002.
    [141]Rabek JF. Photostabilization of polymers:principles and applications[M]. Elsevier applied science,1990.
    [142]Chang ST, Chou PL. Photodiscoloration inhibition of wood coated with UV-curable acrylic clear coatings and its elucidation[J]. Polymer degradation and stability,2000,69:355-360.
    [143]Day R. The role of titanium dioxide pigments in the degradation and stabilisation of polymers in the plastics industry[J]. Polymer degradation and stability,1990,29:73-92.
    [144]Strat G New stabilizers for poly (vinyl chloride) based on 2-hydroxybenzalacetophenone[J]. Polymer degradation and stability,2002,76:79-83.
    [145]Braun D, Richter E, Rabie S, Nada A, Abd-El-Ghaffar M, Yassin A. Glucoside derivatives as novel photostabilizers for rigid PVC[J]. Die Angewandte Makromolekulare Chemie,1999, 271:93-100.
    [146]Kaczmarek H, Drag R, Swiatek M, Oldak D. The influence of UV-irradiation on poly (vinyl chloride) modified by poly (vinyl acetate)[J]. Surface science,2002,507:877-882.
    [147]皮红,陈深情,郭少云.强紫外光作用下PVC/增韧剂体系结构与性能的演变[J].高等学校化学学报,2009,30:1029-1034.
    [1]Wu L, Sun J, Wang Q. Poly (vinylidene fluoride)/polyethersulfone blend membranes:effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology[J]. Journal of membrane science,2006,285:290-298.
    [2]Young TH, Cheng LP, Lin DJ, Fane L, Chuang WY. Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents[J]. Polymer,1999, 40:5315-5323.
    [3]张运湘,宋义虎,郑强.相分离对PVDF/PMMA共混物的力学与耐UV老化性能的影响[J].高分子学报.2012,12:1364-1370.
    [4]Hirata Y, Kotaka T. Phase separation and viscoelastic behavior of semicompatible polymer blends: poly (vinylidene fluoride)/poly (methyl methacrylate) system[J]. Polymer J,1981,13:273-281.
    [5]Hahn B, Herrmann-Schorherr O, Wendorff J. Evidence for a crystal-amorphous interphase in PVDF and PVDF/PMMAblends[J]. Polymer,1987,28:201-208.
    [6]Yang HH, Han CD, Kim JK. Rheology of miscible blends of poly (methyl methacrylate) with poly (styrene-co-acrylonitrile) and with poly (vinylidene fluoride)[J]. Polymer,1994,35:1503-1511.
    [7]Ochoa N, Masuelli M, Marchese J. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes[J]. Journal of membrane science,2003,226:203-211.
    [8]Mijovic J, Sy JW, Kwei T. Reorientational dynamics of dipoles in poly (vinylidene fluoride)/poly (methyl methacrylate)(PVDF/PMMA) blends by dielectric spectroscopy[J]. Macromolecules, 1997,30:3042-3050.
    [9]Garcia JL, Koelling KW, Seghi RR. Mechanical and wear properties of polymethylmethacrylate and polyvinylidene fluoride blends[J]. Polymer,1998,39:1559-1567.
    [10]Du CH, Zhu BK, Xu YY. The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends[J]. Journal of Materials Science,2006,41:417-421.
    [11]Zhao X, Cheng J, Zhang J, Chen S, Wang X. Crystallization behavior of PVDF/PMMA blends prepared by in situ polymerization from DMF and ethanol[J]. Journal of materials science, 2012:1-9.
    [12]Zhou X, Cakmak M. Phase behavior of rapidly quenched PVDF/PMMA blends as characterized by raman spectroscopy, X-Ray diffraction and thermal techniques[J]. Journal of Macromolecular Science, Part B:Physics,2007,46:667-682.
    [13]Linares A, Acosta JL. Tensile and dynamic mechanical behaviour of polymer blends based on PVDF[J]. European Polymer Journal,1997,33:467-473.
    [14]Bauduin Q Boutevin B, Gramain P, Malinova A. Poly(vinylidene fluoride)/poly(vinyl alcohol-co-vinyl acetate) blends:1. compatibility study by differential scanning calorimetry (DSC)[J]. European polymer journal,1999,35:285-292.
    [15]De Gennes PG Scaling concepts in polymer physics[M]. Cornell university press,1979.
    [16]Doi M, Edwards S. The theory of polymer dynamics[M]. Clarendon:Oxford,1986.
    [17]Wu S. Chain entanglement and melt viscosity of compatible polymer blends:poly (methyl methacrylate) and poly (styrene-acrylonitrile)[J]. Polymer,1987,28:1144-1148.
    [18]Liu C, He J, van Ruymbeke E, Keunings R, Bailly C. Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight[J]. Polymer,2006, 47:4461-4479.
    [19]Wu S. Chain structure and entanglement[J]. Journal of Polymer Science Part B:Polymer Physics, 1989,27:723-741.
    [20]Lin Y, Shangguan Y, Zuo M, Harkin-Jones E, Zheng Q. Effects of molecular entanglement on molecular dynamics and phase-separation kinetics of poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) blends[J], Polymer,2012,53:1418-1427.
    [21]Zheng Q, Du M, Yang B, Wu G Relationship between dynamic rheological behavior and phase separation of poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) blends[J]. Polymer,2001, 42:5743-5747.
    [22]Chopra D, Kontopoulou M, Vlassopoulos D, Hatzikiriakos SG Effect of maleic anhydride content on the rheology and phase behavior of poly (styrene-co-maleic anhydride)/poly (methyl methacrylate) blends[J]. Rheologica acta,2002,41:10-24.
    [23]Ng W, Tam K, Jenkins R. Lifetime and network relaxation time of a HEUR-C20 associative polymer system[J]. Journal of rheology,2000,44:137.
    [24]Tschoegl NW. The phenomenological theory of linear viscoelastic behavior:an introduction[M]. Springer,1989.
    [25]Wu G, Miura T, Asai S, Sumita M. Carbon black-loading induced phase fluctuations in PVDF/PMMA miscible blends:dynamic percolation measurements[J]. Polymer,2001, 42:3271-3279.
    [26]Carreau P, Bousmina M, Ajji A. Rheological properties of blends:facts and challenges [J]. Progress in Pacific polymer science,1994,3:25-39.
    [27]Niu YH, Wang ZG Rheologically determined phase diagram and dynamically investigated phase separation kinetics of polyolefin blends[J]. Macromolecules,2006,39:4175-4183.
    [28]Es-Haghi SS, Yousefi AA, Oromiehie A. Thermorheological complexity of poly(methyl methacrylate)/poly(vinylidene fluoride) miscible polymer blend:Terminal and segmental levels[J]. Journal of Polymer Science Part B:Polymer Physics,2007,45:2860-2870.
    [29]Vlassopoulos D. Rheology of critical LCST polymer blends:poly (styrene-co-maleic anhydrite)/ poly (methyl methacrylate)[J]. Rheologica acta,1996,35:556-566.
    [30]Gregorio Jr R. Determination of the a, (3, and y crystalline phases of poly (vinylidene fluoride) films prepared at different conditions[J]. Journal of applied polymer science,2006, 100:3272-3279.
    [31]Shieh YT, Hsiao TT. Morphological changes of PVDF/PMMA blends via CO2 treatments [J]. The Journal of Supercritical Fluids,2009,48:64-71.
    [32]Lovinger AJ, Davis D, Cais R, Kometani J. The role of molecular defects on the structure and phase transitions of poly (vinylidene fluoride)[J]. Polymer,1987,28:617-626.
    [33]Ma W, Zhang J, Wang X, Wang S. Effect of PMM A on crystallization behavior and hydrophilicity of poly (vinylidene fluoride)/poly (methyl methacrylate) blend prepared in semi-dilute solutions[J]. Applied surface science,2007,253:8377-8388.
    [34]Elashmawi I, Hakeem N. Effect of PMMA addition on characterization and morphology of PVDF[J]. Polymer Engineering & Science,2008,48:895-901.
    [35]Gu X, Michaels C, Nguyen D, Jean Y, Martin J, Nguyen T. Surface and interfacial properties of PVDF/acrylic copolymer blends before and after UV exposure[J]. Applied surface science,2006, 252:5168-5181.
    [36]Kapnistos M, Hinrichs A, Vlassopoulos D, Anastasiadis S, Stammer A, Wolf B. Rheology of a lower critical solution temperature binary polymer blend in the homogeneous, phase-separated, and transitional regirnes[J]. Macromolecules,1996,29:7155-7163.
    [37]Niu YH, Wang ZG Rheologically determined phase diagram and dynamically investigated phase separation kinetics of polyolefin blends[J]. Macromolecules,2006,39:4175-4183.
    [38]Jeon H, Nakatani A, Han C, Colby R. Melt rheology of lower critical solution temperature polybutadiene/polyisoprene blends[J]. Macromolecules,2000,33:9732-9739.
    [39]Han CD, Kim JK. Molecular theory for the viscoelasticity of compatible polymer mixtures.1. A tube model approach[J]. Macromolecules,1989,22:1914-1921.
    [40]Han CD, Kim JK. Molecular theory for the viscoelasticity of compatible polymer mixtures.2. Tube model with reptation and constraint release contributions[J]. Macromolecules,1989, 22:4292-4302.
    [41]Tsangaris G. Psarras G. Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems[J]. Journal of Materials Science,1998,33:2027-2037.
    [42]Zhang H, Lamnawar K, Maazouz A. Rheological modeling of the mutual diffusion and the interphase development for an asymmetrical bilayer based on PMMA and PVDF model compatible polymers[J]. Macromolecules,2012,46:276-299.
    [43]Sasaki H, Kanti Bala P, Yoshida H, Ito E. Miscibility of PVDF/PMMA blends examined by crystallization dynamics[J]. Polymer,1995,36:4805-4810.
    [44]Es-Haghi SS, Yousefi A, Oromiehie A. Thermorheological complexity of poly (methyl methacrylate)/poly (vinylidene fluoride) miscible polymer blend:Terminal and segmental levels[J]. Journal of Polymer Science Part B:Polymer Physics,2007,45:2860-2870.
    [45]Huang C, Zhang L. Miscibility of poly (vinylidene fluoride) and atactic poly (methyl methacrylate)[J]. Journal of applied polymer science,2004,92:1-5.
    [46]Yoon D, Ando Y, Rojstaczer S, Kumar S, Alfonso G Crystal-amorphous interphases in binary semicrystalline/amorphous polymer blends. Makromolekulare Chemie Macromolecular Symposia: Wiley Online Library; 1991. p.183-190.
    [47]Ferry JD. Viscoelastic properties of polymers[M]. Wiley New York,1980.
    [48]Bousmina M, Lavoie A, Riedl B. Phase segregation in SAN/PMMA blends probed by rheology, microscopy, and inverse gas chromatography techniques[J]. Macromolecules,2002, 35:6274-6283.
    [49]Meng Q, Li W, Zheng Y, Zhang Z. Effect of poly (methyl methacrylate) addition on the dielectric and energy storage properties.of poly (vinylidene fluoride)[J]. Journal of applied polymer science, 2010,116:2674-2684.
    [50]Sy JW, Mijovic J. Reorientational dynamics of poly (vinylidene fluoride)/poly (methyl methacrylate) blends by broad-band dielectric relaxation spectroscopy[J]. Macromolecules,2000, 33:933-946.
    [51]Mijovic J, Lee H, Kenny J, Mays J. Dynamics in polymer-silicate nanocomposites as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy[J]. Macromolecules, 2006,39:2172-2182.
    [52]Hammami H, Arous M, Lagache M, Kallel A. Experimental study of relaxations in unidirectional piezoelectric composites[J]. Composites Part A:Applied Science and Manufacturing,2006, 37:1-8.
    [53]Schneider S, Drujon X, Wittmann J, Lotz B. Impact of nucleating agents of PVDF on the crystallization of PVDF/PMMAblends[J]. Polymer,2001,42:8799-8806.
    [54]Hirschinger J, Schaefer D, Spiess HW, Lovinger AJ. Chain dynamics in the crystalline a-phase of poly (vinylidene fluoride) by two-dimensional exchange deuteron NMR[J]. Macromolecules, 1991,24:2428-2433.
    [55]Saito H, Stuehn B. Exclusion of noncrystalline polymer from the interlamellar region in poly (vinylidene fluoride)/poly (methyl methacrylate) blends[J]. Macromolecules,1994,27:216-218.
    [56]Carini G, D'Angelo G, Tripodo G et al. Locally heterogeneous dynamics in miscible blends of poly (methyl methacrylate) and poly (vinylidene fluoride)[J]. The Journal of chemical physics,2002, 116:7316.
    [57]Yano S. Dielectric relaxation and molecular motion in poly (vinylidene fluoride)[J]. Journal of Polymer Science Part A-2:Polymer Physics,1970,8:1057-1072.
    [58]Linares A, Nogales A, Sanz A, Ezquerra TA, Pieruccini M. Restricted dynamics in oriented semicrystalline polymers:Poly (vinilydene fluoride)[J]. Physical Review E,2010,82:031802.
    [59]Rekik H, Ghallabi Z, Royaud I et al. Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites[J]. Composites Part B:Engineering,2013, 45:1199-1206.
    [1]Cao X, Ma J, Shi X, Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane[J]. Applied surface science,2006,253:2003-2010.
    [2]Song R, Yang D, He L. Effect of surface modification of nanosilica on crystallization, thermal and mechanical properties of poly (vinylidene fluoride)[J]. Journal of Materials Science,2007, 42:8408-8417.
    [3]Yu LY, Xu ZL, Shen HM, Yang H. Preparation and characterization of PVDF-SiO2, composite hollow fiber UF membrane by sol-gel method[J]. Journal of membrane science,2009, 337:257-265.
    [4]Yano S, Iwata K, Kurita K. Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process[J]. Materials Science and Engineering:C,1998,6:75-90.
    [5]Shen Y, Qiu X, Shen J, Xi J, Zhu W. PVDF-g-PSSA and A12O3 composite proton exchange membranes[J]. Journal of power sources,2006,161:54-60.
    [6]Yan L, Li YS, Xiang CB, Xianda S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance[J]. Journal of membrane science,2006,276:162-167.
    [7]Li X, Lu X. Morphology of polyvinylidene fluoride and its blend in thermally induced phase separation process[J]. Journal of applied polymer science,2006,101:2944-2952.
    [8]Wang X, Li W, Luo L, Fang Z, Zhang J, Zhu Y. High dielectric constant and superparamagnetic polymer-based nanocomposites induced by percolation effect[J]. Journal of applied polymer science,2012,125(4):2711-2715.
    [9]Ebert K, Fritsch D, Koll J, Tjahjawiguna C. Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes[J]. Journal of membrane science,2004, 233:71-78.
    [10]Yu LY, Shen HM, Xu ZL. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method[J]. Journal of applied polymer science,2009, 113:1763-1772.
    [11]Shi F, Ma Y, Ma J, Wang P, Sun W. Preparation and characterization of PVDF/T1O2 hybrid membranes with different dosage of nano-TiO2[J]. Journal of membrane science,2012, 389:522-531.
    [12]Tang J, Lin Q Yang H, Jiang Q Chen-Yang Y. Polyimide-silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica[J]. Journal of applied polymer science,2007,104:4096-4105.
    [13]Bugnicourt E, Galy J, Gerard JF, Barthel H. Effect of sub-micron silica fillers on the mechanical performances of epoxy-based composites[J]. Polymer,2007,48:1596-1605.
    [14]Wang M, Deb S, Bonfield W. Chemically coupled hydroxyapatite-polyethylene composites: processing and characterisation[J]. Materials Letters,2000,44:119-124.
    [15]Sousa R, Reis R, Cunha A, Bevis M. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies[J]. Journal of Materials Science:Materials in Medicine,2003, 14:475-487.
    [16]Landry CJ, Coltrain BK, Teegarden DM, Long TE, Long VK. Use of organic copolymers as compatibilizers for organic-inorganic composites[J]. Macromolecules,1996,29:4712-4721.
    [17]Yin X, Tan Y, Chen Y, Song Y, Zheng Q. Viscoelastic behaviors of shell-crosslinked core-shell nanoparticles suspended in polystyrene solutions[J]. polymer international,2012,61:1439-1446.
    [18]Instruments T. Inc.109 Lukens Drive[J]. New Castle, DE,19720.
    [19]Cui WW, Tang DY, Gong ZL. Electrospun poly (vinylidene fluoride)/poly (methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries[J]. Journal of power sources,2012,233:206-213.
    [20]潘祖仁.高分子化学[M].化学工业出版社,2002.
    [21]Peng QY, Cong PH, Liu XJ, Liu TX, Huang S, Li TS. The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties[J]. Wear,2009,266:713-720.
    [22]Jin FL, Park SJ. Thermal stability of trifunctional epoxy resins modified with nanosized calcium carbonate[J]. Math Sci EngA,2008,478:334-338.
    [23]Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly (L-lactic acid)[J]. Journal of Polymer Science Part B:Polymer Physics,2004, 42:25-32.
    [24]Meng Q, Li W, Zheng Y, Zhang Z. Effect of poly (methyl methacrylate) addition on the dielectric and energy storage properties of poly (vinylidene fluoride)[J]. Journal of applied polymer science, 2010,116:2674-2684.
    [25]Laachachi A, Ferriol M, Cochez M, Ruch D, Lopez-Cuesta J-M. The catalytic role of oxide in the thermooxidative degradation of poly (methyl methacrylate)-TiO2 nanocomposites[J]. Polymer degradation and stability,2008,93:1131-1137.
    [26]Mijovic J, Sy JW, Kwei T. Reorientational dynamics of dipoles in poly (vinylidene fluoride)/poly (methyl methacrylate)(PVDF/PMMA) blends by dielectric spectroscopy[J]. Macromolecules, 1997,30:3042-3050.
    [27]Lin Y, Tan Y, Qiu B, Shangguan Y, Harkin-Jones E, Zheng Q. Influence of Annealing on Chain Entanglement and Molecular Dynamics in Weak Dynamic Asymmetry Polymer Blends[J]. The Journal of Physical Chemistry B,2013,117:697-705.
    [28]Hammami H, Arous M, Lagache M, Kallel A. Experimental study of relaxations in unidirectional piezoelectric composites[J]. Composites Part A:Applied Science and Manufacturing,2006, 37:1-8.
    [29]Chanmal C, Jog J. Dielectric relaxations in PVDF/BaTiO3 nanocomposites[J]. Express Polymer Letters,2008,2:294-301.
    [30]Psarras Q Manolakaki E, Tsangaris G Dielectric dispersion and ac conductivity in-Iron particles loaded-polymer composites[J]. Composites Part A:Applied Science and Manufacturing,2003, 34:1187-1198.
    [31]Zheng Q, Du M, Yang B, Wu G Relationship between dynamic rheological behavior and phase separation of poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) blends[J]. Polymer,2001, 42:5743-5747.
    [32]Romeo G, Filippone G, Fernandez-Nieves A, Russo P, Acierno D. Elasticity and dynamics of particle gels in non-Newtonian melts[J]. Rheologica Acta,2008,47:989-997.
    [33]Xu C, Tan Y, Song Y, Zheng Q. Influences of compatibilization and compounding process on electrical conduction and thermal stabilities of carbon black-filled immiscible polypropylene/polystyrene blends[J]. polymer international,2012,62:238-245.
    [34]Cassagnau P, Melis F. Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers[J]. Polymer,2003,44:6607-6615.
    [1]朱仕惠,刘端,郑成赋,汪宝林,刘长生,周爱军.PVC/PVDF共混物的制备及其表面性能的研究[J].武汉理工大学学报,2009:27-29.
    [2]王秀江.影响PVC塑窗耐候性的因素及防止老化的措施[J].工程塑料应用,2006,34:57-59.
    [3]Zhang Z, Chen S, Zhang J. Synergistic toughening effect of chlorinated polyethylene and ethylene-vinyl acetate copolymer on the poly (vinyl chloride)/poly (alpha-methylstyrene-acrylonitrile) blends via compatibilization[J]. Polymer Testing,2011,30:534-542.
    [4]Liu ZH, Zhang XD, Zhu XG Effect of morphology on the brittle ductile transition of polymer blends:2. Analysis on poly(vinyl chloride) nitrile rubber blends[J]. Polymer,1998,39:5019-5025.
    [5]Zhang LX, Zhou C, Sun SL. Study of compatibility, morphology structure and mechanical properties of CPVC/ABS blends[J]. Journal of Applied Polymer Science,2010,116:3448-3454.
    [6]Si QB, Zhou C, Yang HD, Zhang HX. Toughening of polyvinylchloride by core-shell rubber particles:Influence of the internal structure of core-shell particles[J]. European Polymer Journal, 2007,43:3060-3067.
    [7]Scott G, Tahan M. Photooxidation of PVC and impact modified PVC chemical changes[J]. European Polymer Journal,1977,13:989-996.
    [8]Belhaneche-Bensemra N, Bedda A. Study of the properties of PVC/ABS blends[J]. Macromolecular Symposia,2001,176:145-153.
    [9]Lee YD, Chen CM. Properties of PVC/CPE/EPDM polyblends[J]. Journal of applied polymer science,1987,33:1231-1240.
    [10]Chen C, Wesson R, Collier J, Lo Y. Studies of rigid poly (vinyl chloride)(PVC) compounds. I. Morphological characteristics of poly (vinyl chloride)/chlorinated polyethylene (PVC/CPE) blends[J]. Journal of applied polymer science,1995,58:1087-1091.
    [11]张士林,范孜娟.聚偏氟乙烯树脂性能和加工应用[J].工程塑料应用,2005,33:67-69.
    [12]方少明,陈志军,周立明,崔广三,王瑞丽.PVC/PVDF/CPE共混体系研究[J].塑料工业,1999,27:14-15.
    [13]张运湘,宋义虎,郑强.相分离对PVDF/PMMA共混物的力学与耐UV老化性能的影响[J].高分子学报.2012,12:1364-1370.
    [14]Sy JW, Mijovic J. Reorientational dynamics of poly (vinylidene fluoride)/poly (methyl methacrylate) blends by broad-band dielectric relaxation spectroscopy[J]. Macromolecules,2000, 33:933-946.
    [15]Mijovic J, Sy JW, Kwei T. Reorientational dynamics of dipoles in poly (vinylidene fluoride)/poly (methyl methacrylate)(PVDF/PMMA) blends by dielectric spectroscopy[J]. Macromolecules, 1997,30:3042-3050.
    [16]张琪.光谱及热重分析法在PVC材料分析中的应用[J].塑料科技,2007,9:90-94.
    [17]王西能,李曹.PVC树脂原粉结构分析及热稳定性研究[J].聚氯乙烯,2009,11:012.
    [18]Beltran M, Marcilla A. Fourier transform infrared spectroscopy applied to the study of PVC decomposition[J]. European Polymer Journal,1997,33:1135-1142.
    [19]Zhang Y, Xu Y, Song Y, Zheng Q. Study of poly(vinyl chloride)/acrylonitrile-styrene-acrylate blends for compatibility, toughness, thermal stability and UV irradiation resistance[J]. Journal of applied polymer science,2013,130:2143-2151.
    [20]Ye X, Pi H, Guo S. A Novel Route for Preparation of PVC Sheets with High UV Irradiation Resistance[J]. Journal of Applied Polymer Science,2010,117:2899-2906.
    [21]侯佳音.PVDF/PMMA/TiO2复合材料的制备及其耐候性研究[M].东华大学,2012.
    [22]黄宝臣.航空有机玻璃全紫外线加速老化方法初探[J].飞机设计,1995:35-40.
    [23]陈新文,裴高林,金玉顺.航空有机玻璃紫外光老化研究[J].航空材料学报,2009,29:107-112.
    [1]Zhang Y, Xu Y, Song Y, Zheng Q. Study of poly(vinyl chloride)/acrylonitrile-styrene-acrylate blends for compatibility, toughness, thermal stability and UV irradiation resistance[J]. Journal of applied polymer science,2013,130:2143-2151.
    [2]DeArmitt C. Raising the softening point of PVC[J]. Plastics, Additives and Compounding,2004, 6:32-34.
    [3]Bailey FE, Koleske JV. Impact modifiers for polyvinyl chloride. Google Patents; 1978.
    [4]Nabi Z, Hashemi S. Influence of short glass fibres and weldlines on the mechanical properties of injection-moulded acrylonitrile-styrene-acrylate copolymer[J]. Journal of Materials Science,1998, 33:2985-3000.
    [5]Ramteke AA, Maiti S. Mechanical properties of polycarbonate/modified acrylonitrile-styrene-acrylate terpolymer blend[J]. Journal of applied polymer science,2010,116:486-492.
    [6]Zabrocki VS, Kelch RH. Coextruded weatherable film structures and laminates. Google Patents; 1994.
    [7]Nabi Z, Hashemi S. The effect of glass bead content on the mechanical properties of acrylonitrile/styrene/acrylate copolymer[J]. Journal of Materials Science,1996,31:5593-5601.
    [8]Ting SP. Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier. Google Patents; 1988.
    [9]Laughner MK. Molding compositions with acrylonitrile-styrene-acrylate rubber copolymers. Google Patents; 1991.
    [10]Tolue S, Moghbeli MR, Ghafelebashi SM. Preparation of ASA (acrylonitrile-styrene-acrylate) structural latexes via seeded emulsion polymerization[J]. European Polymer Journal,2009, 45:714-720.
    [11]Ramteke AA, Maiti SN. Mechanical Properties of Polycarbonate/Modified Acrylonitrile-Styrene-Acrylate Terpolymer Blend[J]. Journal of Applied Polymer Science,2010,116:486-492.
    [12]Han Y, Tai ZX, Zhou C, Zhang MY, Zhang HX, Liu FQ. Influence of blend composition on the mechanical properties and morphology of PC/ASA/SAN ternary blends[J]. Polymer Bulletin, 2009,62:855-866.
    [13]Rimdusit S, Damrongsakkul S, Wongmanit P, Saramas D, Tiptipakorn S. Characterization of coconut fiber-filled polyvinyl chloride/acrylonitrile styrene acrylate blends[J]. Journal of Reinforced Plastics and Composites,2011,30:1691-1702.
    [14]Chris D. Raising the softening point of PVC[J]. Plastics, Additives and Compounding,2004, 6:32-34.
    [15]张琪.光谱及热重分析法在PVC材料分析中的应用[J].塑料科技,2007,9:90-94.
    [16]Beltran M, Marcilla A. Fourier transform infrared spectroscopy applied to the study of PVC decomposition[J]. European Polymer Journal,1997,33:1135-1142.
    [17]Qian Z, Zhang Z, Song L, Liu H. A novel approach to raspberry-like particles for superhydrophobic materials[J]. Journal of Materials Chemistry,2009,19:1297-1304.
    [18]McBrierty V, Douglass D, Kwei T. Compatibility in blends of poly (methyl methacrylate) and poly (styrene-co-acrylonitrile).2. An NMR study[J]. Macromolecules,1978,11:1265-1267.
    [19]l'Abee R, Li W, Goossens H, van Duin M. Application of FTIR Microscopy in Combinatorial Experimentation on Polymer Blends[J]. Macromolecular Symposia,2008,265:281-289.
    [20]Feng H, Shen L, Feng Z. Miscibility of homopolymer/random copolymer blends-2. SMA/PMMAblend[J]. European Polymer Journal,1995,31:243-247.
    [21]Aouachria K, Belhaneche-Bensemra N. Miscibility of PVC/PMMA blends by vicat softening temperature, viscometry, DSC and FTIR analysis[J]. Polymer Testing,2006,25:1101-1108.
    [22]Meier RJ, Struik LCE. Atomistic modelling study of relaxation processes in polymers:the P-relaxation in polyvinylchloride[J]. Polymer,1998,39:31-38.
    [23]Moon HS, Choi WM, Kim MH, Park OO. Miscibility and rheological properties of poly(vinyl chloride)/styrene-acrylonitrile blends prepared by melt extrusion[J]. Journal of Applied Polymer Science,2007,104:95-101.
    [24]Si QB, Zhou C, Yang HD, Zhang HX. Toughening of polyvinylchloride by core-shell rubber particles:Influence of the internal structure of core-shell particles[J]. European Polymer Journal, 2007,43:3060-3067.
    [25]Shah BL, Shertukde VV. Effect of plasticizers on mechanical, electrical, permanence, and thermal properties of poly(vinyl chloride)[J]. Journal of applied polymer science,2003,90:3278-3284.
    [26]Tawfik SY, Asaad JN, Sabaa MW. Thermal and mechanical behaviour of flexible poly (vinyl chloride) mixed with some saturated polyesters[J]. Polymer Degradation and Stability,2006, 91:385-392.
    [27]Wang QG, Zhang XH, Liu SY. Ultrafine full-vulcanized powdered rubbers/PVC compounds with higher toughness and higher heat resistance[J]. Polymer,2005,46:10614-10617.
    [28]Takemori MT. Towards an understanding of the heat distortion temperature of thermoplastics[J]. Polymer Engineering and Science,1979,19:1104-1109.
    [29]Bacaloglu R, Fisch M. Degradation and stabilization of poly (vinyl chloride). V. Reaction mechanism of poly(vinyl chloride) degradation[J]. Polymer Degradation and Stability,1995, 47:33-57.
    [30]Gong FL, Feng M, Zhao CQ Zhang SM, Yang MS. Thermal properties of poly(vinyl chloride)/montmorillonite nanocomposites[J]. Polymer Degradation and Stability,2004, 84:289-294.
    [31]Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride)[J]. Polymer,2010,51:3998-4007.
    [32]Ye X, Pi H, Guo S. A Novel Route for Preparation of PVC Sheets with High UV Irradiation Resistance[J]. Journal of Applied Polymer Science,2010,117:2899-2906.
    [33]Pi H, Chen SQ, Guo SY. Microstructure and Properties Development of Impact-modified PVC During Photoageing[J]. Chemical Journal of Chinese Universities-Chinese,2009,30:1029-1034.
    [34]Shi W, Zhang J, Shi XM, Jiang GD. Different photodegradation processes of PVC with different average degrees of polymerization[J]. Journal of Applied Polymer Science,2008,107:528-540.
    [35]Gardette J, Gaumet S, Philippart J. Influence of the experimental conditions on the photooxidation of poly (vinyl chloride)[J]. Journal of Applied Polymer Science,1993,48:1885-1895.
    [36]Gardette JL, Gaumet S, Philippart JL. Influence of the experimental conditions on the photooxidation of poly(vinyl chloride)[J]. Journal of applied polymer science,1993, 48:1885-1895.
    [37]Oneill MA. Thermoplastic/foam core/fiber-reinforced resin structural composite material, a process for making said material and a boat structure made from said material. Google Patents; 1990.
    [38]Hills RA. Additives for special effect appearances in plastic parts. Google Patents; 2004.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.